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Abstract 43 

As newer single-cell protocols generate increasingly more cells at reduced sequencing 44 

depths, the value of a higher read depth may be overlooked. Using data from three 45 

different single-cell RNA-seq protocols that lend themselves to having either higher read 46 

depth (Smart-seq) or many cells (MARS-seq and 10X), we evaluate their ability to 47 

recapitulate biological signals in the context of pseudo-spatial reconstruction. Overall, 48 

we find gene expression profiles after spatial-reconstruction analysis are highly 49 

reproducible between datasets despite being generated by different protocols and using 50 

different computational algorithms. While UMI based protocols such as 10X and MARS-51 

seq allow for capturing more cells, Smart-seq’s higher sensitivity and read-depth allows 52 

for analysis of lower expressed genes and isoforms. Additionally, we evaluate trade-offs 53 

for each protocol by performing subsampling analyses, and find that optimizing the 54 

balance between sequencing depth and number of cells within a protocol is important 55 

for efficient use of resources. Our analysis emphasizes the importance of selecting a 56 

protocol based on the biological questions and features of interest.  57 

 58 

Introduction 59 

Single-cell RNA sequencing (scRNA-seq)1–5 is a powerful tool for studying 60 

transcriptional differences between individual cells. The innovation of droplet-based 61 

techniques6,7 and unique molecular identifiers (UMI)8 has lowered the cost per cell and 62 

pushed the field towards obtaining data from tens of thousands of cells per experiment 63 

albeit at a reduced sequencing depth. Recent publications have compared the 64 

sensitivity, accuracy, and precision between several scRNA-seq techniques and report 65 

that the major trade-off between protocols is sensitivity, which is dependent on read 66 

depth9,10. With the push for sequencing an ever-increasing number of cells at the 67 

expense of read depth per cell, the value of a higher read depth might be overlooked. 68 

Here we investigate the reproducibility of biological signals across protocols that 69 

naturally lend themselves to generating data on more cells versus higher read depth.  70 
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Studies comparing protocols have mainly done so with respect to performance 71 

on spike-ins or on technical variability alone9,10. Recently, Guo et al.11 showed 72 

agreement of cell types and signature genes between two platforms used for single-cell 73 

RNA-seq – Fluidigm C1 and Drop-seq. However, few studies have examined 74 

comparative agreement among protocols for biological inferences beyond clustering 75 

and identifying differential gene expression, yet a key question of interest with single-76 

cell data is its ability to reflect temporal or spatial heterogeneity. For cells collected at a 77 

given time, the underlying dynamic biological process is reflected in genome-wide 78 

differences in gene expression. Computational algorithms that attempt to order cells in 79 

pseudo-time or pseudo-space based on variability in gene expression have been 80 

developed4,12,13, and more than 45 existing algorithms were recently compared14. Yet, 81 

as far as we know, no comparison of single-cell protocols exists for the question of cell 82 

ordering.  83 

Here, our evaluation is in the context of pseudo-spatial reconstruction in which 84 

we compared three independently produced scRNA-seq datasets on the mouse liver 85 

lobule. We chose to compare protocols on their ability to reflect the spatial patterning of 86 

the liver lobule in which the parenchymal cells of the liver, hepatocytes, are organized 87 

spatially in a polygonal shape around a central vein (Figure 1A). From the central vein, 88 

a gradient of metabolic functions is performed extending to a portal triad at each 89 

vertex15–19. The gradient of differences in gene expression patterns is referred to as the 90 

zonation axis (from periportal (PP) to pericentral (PC))20. This coordinated spatial 91 

organization provides a particularly interesting application of single-cell techniques. For 92 

this study we obtained one dataset using Smart-seq—a full-length protocol, a second 93 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 10, 2020. ; https://doi.org/10.1101/764191doi: bioRxiv preprint 

https://doi.org/10.1101/764191
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

dataset using MARS-seq21—a UMI and plate based protocol and the third dataset 94 

generated using 10X22—a UMI and droplet protocol. Although the cell number and read 95 

depth differ greatly across datasets, we find high reproducibility of gene expression 96 

profiles after spatial-reconstruction analysis. Given the reproducibility and that each 97 

protocol naturally lends itself to either producing more cells at a lower sequencing depth 98 

or fewer cells at a higher depth, our results demonstrate the importance of carefully 99 

evaluating the biological question and features of interest when selecting the 100 

appropriate sequencing protocol. In applications focused on lower expressed genes or 101 

on genes with high sequence similarity, increased read depth is preferable, whereas a 102 

focus on identifying cell types based on more highly expressed genes will benefit from 103 

collecting more cells. In an ideal situation a single cell assay would result in thousands 104 

of cells that are all sequenced at a high read depth, but technical and financial 105 

restrictions make this rarely possible.  106 

Results 107 

Differences in detection rates 108 

 By using the Fluidigm C1 coupled with the Smart-seq protocol, we were able to 109 

identify on average around 38% (about 7100 genes) (Figure 1B) of all genes in the 110 

genome expressed per cell, whereas the MARS-seq dataset finds on average 12% 111 

(about 2200 genes) and the 10X dataset finds on average 6% (about 1100 genes) 112 

(Figure 1B).  This is in accordance with findings by Ziegenhain et al. 2017 when they 113 

examined single-cell transcriptomic methods9 and by Phipson et al23 when comparing 114 

biases in full-length versus UMI protocols. The increased sensitivity of the full-length 115 

protocol is further illustrated in Figure 1C, which on a per gene level shows the 116 
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difference in detection fraction compared to the log fold change in mean expression 117 

between the protocols. A difference in detection fraction of zero means that the gene is 118 

detected in the same fraction of cells in both datasets. The difference across protocols 119 

in log2 fold-change has a linear relationship with the difference in detection fractions, 120 

which indicates a fairly constant increase in log2 expression as cells are sequenced 121 

with greater sensitivity. At the intercept, a difference in detection equal to zero, the log2 122 

fold change is 3.1 between Smart-seq and MARS-seq, indicating an experiment wide 123 

increase in sensitivity in the Smart-seq protocol of approximately 9-fold. Between 124 

Smart-seq and 10X, the increase in sensitivity is approximately 12-fold and there is a 125 

similar level of sensitivity between MARS-seq and 10X. Not surprisingly, the vast 126 

majority of genes are detected in a larger fraction of cells and have a higher expression 127 

level in the more deeply sequenced dataset using the Smart-seq protocol. Although, it is 128 

worth pointing out that around 6% of genes have higher detection using the MARS-seq 129 

protocol (negative values on x-axis) and a few of these genes also have higher 130 

expression levels (negative values on y-axis) than in the Smart-seq protocol. This 131 

subset of genes better detected in the MARS-seq dataset have higher GC content and 132 

are slightly longer (S1 Figure), which is consistent with previous reports of protocol 133 

comparisons23,24. 134 

 135 

 136 
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 140 

Figure 1. Illustration of the liver anatomy, and general comparison of the datasets. 141 

A) Top. Illustration of the liver lobule identifying the portal triad along the outer edges 142 

and the central vein in the middle. The color gradient represents metabolic zonation.  143 

Bottom. Highlights the main differences between the datasets compared. B) 144 

Comparison of gene detection fraction between the datasets. The detection fraction per 145 

cell (y-axis) is shown for the two datasets (x-axis). C)  Left. The log2 fold-change of 146 

genes detected above an average expression level of zero in the Smart-seq dataset 147 

compared to the MARS-seq dataset (y-axis), versus the difference in gene-level 148 

detection fractions across datasets (x-axis). A linear regression line is overlaid and a 149 

histogram of the x- and y-axis are shown opposite of each axis. Middle. Similar plot 150 

shown for Smart-seq versus 10X. Right. Similar plot shown for 10X versus MARS-seq. 151 
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 152 

Reconstructing spatial profiles of liver zonation profiles 153 

Next, to represent the spatial patterns across the liver lobule, the cells in the 154 

three datasets were computationally ordered according to their expression profiles. The 155 

MARS-seq dataset was spatially ordered by Halpern et al. 2017 by first performing 156 

smFISH for six marker genes at various locations across the zonation axis, then single-157 

cell RNA-seq data obtained by MARS-seq assigned cells to one of nine zonation 158 

locations based on each cell’s expression profile of the six marker genes21. We ordered 159 

the cells in the 10X dataset using the Monocle2 algorithm, which builds a trajectory 160 

through cells based on the expression similarity among the most highly variable 161 

genes12. For the Smart-seq protocol we used the computational algorithm Wave-Crest 162 

to spatially order cells based on fifteen marker genes known in the literature to be 163 

differentially expressed along the zonation axis (Figure 2A)5. The ordering procedure 164 

uses the nearest insertion algorithm implemented in the Wave-Crest package, which 165 

searches among the space of all possible orderings via a 2-opt algorithm by considering 166 

insertion events and choosing orders which minimize the mean square error of a 167 

polynomial regression on the marker genes expression. Of the 15 genes used, we 168 

selected eight periportal expressed genes and seven pericentral expressed genes20. All 169 

orderings assume the zonation profile and spatial organization can be represented in a 170 

single dimension. A similar reconstructed order was obtained for the Smart-seq dataset 171 

when applying Monocle2 (S2 Figure). 172 

 173 

 174 
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 175 

Figure 2. Pseudo-space reordering of hepatocytes, and prediction and validation of 176 

dynamically expressed genes. A) Top. Illustration of the pseudo-spatial reordering 177 

process. Bottom. Heatmap showing the pseudo-spatial reordering (x-axis) and the 178 

expression levels of the marker genes (y-axis) for the Smart-seq dataset. Pericentral 179 

cells are found on the left-hand side and Periportal cells are found on the right-hand 180 

side. B) Scaled expression profile (y-axis) of 8 dynamic genes based on the predicted 181 

pseudo-space reordering (x-axis) of the Smart-seq dataset (orange), the MARS-seq 182 

dataset (blue), and the 10X dataset (green). C) Immunohistochemistry staining of the 183 

genes highlighted in B). Above the staining is the log2 expression counts (y-axis) across 184 

the predicted pseudo-spatial order (x-axis) of the Smart-seq dataset. The left picture 185 
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shows the staining and the right picture is an enlarged section (black square). PP = 186 

Periportal, PC = Pericentral. 187 

Using the recreated order of the hepatocytes, we explored the dynamics of gene 188 

expression across the periportal to pericentral axis. Figure 2B shows a subset of genes 189 

that are predicted to be highly regulated across the axis, four of which were not in our 190 

list of marker genes. Since the MARS-seq dataset placed cells into nine discrete zones 191 

along the axis, we divided cells from the Smart-seq and 10X datasets into nine equally 192 

sized groups in order to compare the reconstructed orderings. The zonation profiles in 193 

Figure 2B have high agreement, with a median correlation of 0.95 between the three 194 

datasets. Before proceeding, we also performed an additional experiment to validate 195 

that our cell ordering and expression profiles reflect those of the liver lobule in vivo. 196 

Remarkably, immunohistochemistry studies showed that selected marker gene protein 197 

expression profiles also agreed with our spatial reconstructed scRNA-seq datasets: six 198 

markers display a PC-high/PP-low profile and two markers display a PC-low/PP-high 199 

profile in mouse liver lobule in vivo (Figure 2C). This confirmation in protein gradient 200 

patterns corresponding to our reconstructed mRNA profiles provides us with confidence 201 

for further analysis on the biological inference in comparing the three protocols in this 202 

context. 203 

Comparing marker gene expression across liver zonation profiles 204 

An exciting prospect of single cell analysis is the identification of genes that have 205 

non-monotonic or dynamic expression across pseudo-time or space. Several genes in 206 

the bile acid synthesis pathway were shown by Halpern et al., 2017 to be non-207 

monotonically expressed in a pattern where the highest expression levels along the 208 
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lobule correspond to the functional placement of the genes in the bile acid synthesis 209 

pathway (Cyp7a1, Hsd3b7, Cyp8b1, Cyp27a1 and Baat)21. We find that the expression 210 

profiles for these genes are corroborated across the three datasets (Figure 3).  211 

 212 

Figure 3. Comparison of zonation profiles across three datasets. Scaled 213 

expression profile (y-axis) of 8 genes non-monotonically expressed from Halpern et al. 214 

along the predicted pseudo-space reordering (x-axis) of the Smart-seq dataset 215 

(orange), the MARS-seq dataset (blue), and the 10X dataset (green).  216 

However, in the Smart-seq dataset, Cyp8b1 is found to have largely flat 217 

expression levels along most of the lobule and lower expression toward the periportal 218 

zone and Baat appears to have an opposite trend in the 10X dataset. Other genes 219 

shown to be non-monotonically expressed such as Hamp, Igfbp2 and Mup3 in Halpern 220 

et al., 2017 display similar non-monotonic expression profiles in the Smart-seq and 10X 221 

datasets (Figure 3). The ability to identify gene expression profiles that are either high at 222 

the PP end, high at the PC end, or high in the middle of the liver lobule confirms that the 223 

sampling depth is sufficient to spatially reconstruct the liver lobule. We also investigated 224 
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the expression pattern of Glul in more detail as it is known to be expressed highly in a 225 

one hepatocyte-wide band around the central vein25. Accordingly, the predicted 226 

expression pattern found using all datasets demonstrated sufficient sampling of this 227 

region (S3 Figure). 228 

We further compared the zonation profiles between datasets by identifying genes 229 

having significant differential expression along the reconstructed spatial order across 230 

the periportal to pericentral axis. For genes displaying differential zonation in all 231 

datasets (having adjusted p-value < .1), the Smart-seq versus MARS-seq dataset had 232 

the highest median correlation (0.86), while the Smart-seq versus 10X had the lowest 233 

median correlation (0.69). In Figure 4A we looked at significantly zonated genes within 234 

the metabolic pathways in KEGG and found the median correlation between all datasets 235 

ranged from 0.75 to 0.89. When all genes were considered the median correlation 236 

ranged from 0 – 0.04. 237 

Traditionally the liver lobule is divided into three zones, a periportal zone 1, a 238 

pericentral zone 3, and transitioning zone 226,27. The transitional nature of the liver axis 239 

is reflected in the heatmap of metabolic genes that were significantly zonated in all 240 

datasets (Figure 4B). Using k-means clustering, we found the Smart-seq data tended to 241 

cluster into two distinct gene groups representing either the periportal or pericentral 242 

zone. Examination of the two clusters by enrichment analysis of KEGG metabolic 243 

pathways (Figure 4C) revealed that the predicted location along our reconstructed axis 244 

of metabolic processes with known periportal or pericentral bias such as amino acid 245 

metabolism (periportal), lipogenesis (pericentral), and CYP450 metabolism (pericentral) 246 

corresponds to their known in vivo locations27. Despite using different reordering 247 
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algorithms and protocols, the three datasets show high agreement of expression along 248 

the recovered pericentral to periportal axis among genes that are significantly zonated 249 

in all datasets, and reliably mirror the in vivo patterning of the liver lobule (additional 250 

KEGG categories are shown in S4 Figure). 251 

 252 

Figure 4.  Correlation and Gene Ontology analysis of genes between datasets. 253 

A) Correlation analysis of significantly zonated genes annotated to the metabolic 254 

pathways in KEGG between the datasets. The pairwise correlation is shown for each 255 
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dataset comparison. B) Heatmap of the expression level of genes that are significantly 256 

differentially zonated in all datasets and enriched in the metabolic KEGG pathway. C) 257 

Breakdown of KEGG enrichment analysis of the two k-mean clusters based on the 258 

genes shown in B. Dot size represents the fraction of enriched genes in each ontology, 259 

and the color represents the adjusted p-value for the enrichment. 260 

 261 

Differences in gene profiles among lowly expressed genes and gene isoforms 262 

When we look at genes with moderate and low expression levels, we find that the 263 

datasets differ to a greater degree. We identified twenty-one genes that were classified 264 

as significantly zonated along the periportal to pericentral axis in the Smart-seq dataset 265 

that were not detected at all in the MARS-seq dataset and thirty-five such genes not 266 

detected in the 10X dataset. Compared to the Smart-seq dataset, ten genes were 267 

exclusively detected in the MARS-seq dataset and no genes were exclusive to the 10X 268 

dataset. Figure 5A shows the six most highly expressed genes that we were able to 269 

exclusively identify in the Smart-seq dataset having significant zonation (adjusted p-270 

value < .1).  271 
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 272 

Figure 5. Genes and isoforms found in the full-length dataset and not in the UMI 273 

datasets. A) Six genes found to be zonally expressed in the Smart-seq dataset that 274 

were not detected in either the MARS-seq or 10X datasets. The log2 of expression 275 

values are represented on the y-axis and the pseudo-space ordered cells are found on 276 

the x-axis. B) Examples of genes with two transcript variants expressed differently 277 

across reordered cells from the Smart-seq dataset.  278 

Further, an exciting field of study that benefits from an enhanced resolution of 279 

scRNA-seq is isoform analysis28–30. Many genes in the genome have two or more 280 

isoforms that are distinctly expressed and can change properties such as structure, 281 

function, and localization of the resulting protein31. Due to the increased sensitivity of 282 

full-length cDNA libraries generated by Smart-seq protocol, we were able to examine 283 
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genes with known isoforms and identify cases where the transcript variants for each 284 

isoform has distinct expression from each other across the periportal to pericentral axis, 285 

which is not possible with less sensitive protocols. In Figure 5B the transcript variants of 286 

Romo1 are seen to display opposite trends in expression across the zonation axis, 287 

where the Romo1 variant 3 is increasing in expression from the pericentral end towards 288 

the periportal end and the Romo1 variant 1 is decreasing in expression along the same 289 

axis. We also highlight genes Acox1 and Eif4a2 whose variants both show constant 290 

expression across the zonation axis but at different levels. Both of these genes are 291 

known to have isoform-specific expression in the liver lobule32,33. (For Ensembl and 292 

ENTEREZ IDs for transcript variants see S6 Table).  293 

Due to UMI based protocols capturing only one end of the transcript compared to 294 

full-length cDNA procedures, there is an inability to resolve not just isoforms but also 295 

many genes that are closely related. For instance, there were 242 concatenated genes 296 

in the MARS-seq set that correspond to 539 unique genes. An example of this is seen 297 

in S5 Figure where we highlight a concatenate of Ugt1a enzymes. Eight genes are 298 

concatenated (annotated together) and when combined, the average expression level is 299 

shown to be high at the pericentral end of the lobule and low at the periportal end. 300 

Again, it is clear that not all the members of this concatenated group follow this trend as 301 

Ugt1a6a can be seen to have consistent expression levels across the pericentral to 302 

periportal axis.  303 

Evaluating the trade-off within each protocol in silico 304 

To further study the trade-offs between higher depth versus more cells, we 305 

performed a subsampling experiment. For each dataset, we held either the number of 306 
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cells or the sequencing depth constant while varying the other. For the Smart-seq and 307 

10X datasets, we evaluated the effect on the cell ordering as well as the gene-specific 308 

zonation profiles. For the MARS-seq dataset, the assignment of each cell to a zonation 309 

group depended on external data and was independent of the other cells profiled, and 310 

thus we only evaluated the effect on zonation profiles. We estimate the MSE (mean 311 

squared error) as the difference in zonation profiles in the subsampled dataset versus 312 

the original dataset. In Figure 6A, the MARS-seq dataset displayed an approximately 313 

linear tradeoff in zonation profile error for fewer cells at the original read depth. 314 

However, at reduced read depths using the original 1,415 cells, the error increased 315 

exponentially (Fig.6B). Within a dataset, we can compare the MSE between the two 316 

trade-off scenarios and we find that for the MARS-seq dataset resequencing at the 317 

same depth results in error that is equivalent to the reduction observed in MSE by going 318 

from 600 to 1400 total cells. For the 10X dataset, we also find an approximately linear 319 

tradeoff in zonation profile error for fewer cells at the original read depth (Fig. 6C). 320 

However, at reduced read depths using the original 606 cells, we observe a gradual 321 

increase in error as total depth decreases (Fig.6D). Similarly, by comparing the MSE 322 

trade-off, it appears that resequencing at the same depth results in error that is 323 

equivalent to reducing the total cells from 600 to around 400. Thus, in scenarios with 324 

very low sequencing depth (average of 3-12k total UMIs per cell), sequencing deeper 325 

may be more beneficial than adding more cells. For the Smart-seq dataset, we found 326 

the spatial ordering to be quite robust to reduced sequencing depth, even as low as 327 

50% fewer reads only marginal increased the average MSE as shown in Figure 6F. The 328 

average sequencing depth for the Smart-seq cells was 3.5 million counts per cell, well 329 
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beyond the suggested sequencing saturation for single-cell data that occurs close to 330 

one million total reads34. We do see more dramatic increases in error related to zonation 331 

profiles when profiling fewer cells (Figure 6E). For Smart-seq data, sequencing to even 332 

half of the current depth and increasing the number of cells would be beneficial.  333 

 334 
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Figure 6. Subsampling total numbers of cells and sequencing depth. A) For 25 335 

subsamplings at various total numbers of cells in the MARS-seq dataset, the mean 336 

squared error (MSE) of the zonation profile over 500 randomly selected genes is shown. 337 

B) Similar to A, but for 25 subsamplings at various total read depths. C-D) Similar to A-338 

B, but for the Smart-seq dataset. E-F) Similar to A-B, but for the 10X dataset.  339 

 340 

Discussion 341 

In summary, we compared three scRNA-seq datasets of mouse hepatocytes 342 

where two, MARS-seq and 10X, are wide but shallow and the other, Smart-seq, is 343 

narrow but deeply sequenced. We find that the three different protocols present highly 344 

reproducible liver zonation profiles in single cells, and for the vast majority of genes that 345 

are highly expressed we observe highly comparable results. Our results were not 346 

dependent on any one computational method or pre-processing pipeline. We do 347 

however find that when we look at medium to low expressed genes, the increased 348 

sensitivity of the C1/Smart-seq protocol is able to identify several genes exclusive to this 349 

dataset. This increased sensitivity also allowed us to identify several genes with 350 

isoforms that behaved differently across the periportal to pericentral axis. Though in 351 

general, there are still limitations of short reads in regard to isoform analysis and if more 352 

accuracy is needed, the newly developed technique ScISOr-seq35 might be better 353 

suited. We do however believe that this full-length data allows for more reliable 354 

preliminary isoform analysis compared to either UMI method. However, the main 355 

weakness of using fewer cells is that it is less likely that rare cell types will be sampled. 356 

In cases where such rare cells are of high interest, protocols that produce a large 357 
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number of cells are preferable. In an ideal case, one would sample many cells and 358 

sequence all of them deeply; unfortunately, this is not always possible in practice and 359 

the decision of whether to sample many cells shallowly or fewer cells deeply comes 360 

down to whether rare cell types are of interest or if higher resolution of the individual 361 

cells is preferred.  362 

 Given the distinct advantages of the protocols, we emphasize that the biological 363 

question should be the driving factor when deciding on protocol. Within a chosen 364 

protocol, achieving balance between the sequencing depth and the number of cells is 365 

still an important consideration for optimal use of resources. Based on our simulations 366 

of datasets at opposite ends of the sequencing depth versus number of cells trade-off, 367 

there is eventually a detriment to sacrificing reads for additional cells or sequencing 368 

beyond the attainable sensitivity level on too few cells. We expect that the extent of the 369 

cells versus depth trade-off will vary for other cell types or tissues and it will largely 370 

depend on the heterogeneity of the biological system under study. 371 

 372 

 373 

Methods 374 

Animals and handling. 375 

All animals were kept under standard husbandry conditions. A wildtype 8-week-old male 376 

C57BL/6 (Jackson laboratories) was used in this experiment. Using isoflurane, the 377 

mouse was anesthetized before euthanizing by cervical dislocation. Animal experiments 378 

and procedures were approved by the University of Wisconsin Medical School's Animal 379 
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Care and Use Committee and conducted in accordance with the Animal Welfare Act 380 

and Health Research Extension Act. 381 

 382 

Cell isolation. 383 

The euthanized mouse was pinned to a Styrofoam plate using 20 ga needles to aid in 384 

dissection. The abdominal cavity was opened, and the portal vein exposed. A piece of 385 

4-0 suture thread (Ethicon vicryl coated) was threaded under the portal vein and used to 386 

secure a 26 ga catheter inserted into the portal vein (Butler Schein animal health 26 G 387 

IV Catheter, Fisher Scientific). Hepatocytes were isolated using a 2-step perfusion 388 

protocol. First, Liver Perfusion Medium (Gibco) warmed to 37°C was pumped through 389 

the catheter for 10 minutes using a peristaltic pump at 7 ml/min flowrate. Then, Liver 390 

Digest Medium (Gibco) warmed to 37°C was pumped through the liver at the same 391 

settings for 10 minutes. After perfusion, the liver was excised and transferred to a 10 cm 392 

dish containing 20 ml liver digest medium. The liver was dissected, allowing the cells to 393 

spill into the media. The cells were then filtered through a 40 μm cell strainer into a 50 394 

ml tube and 30 ml media (Williams E media + 2 μg/ml human insulin + 1x glutamax + 395 

10% FBS) were added and placed on ice. The hepatocytes were purified by 396 

centrifugation at 50 x G, 4 times for 3 minutes each, each time discarding the 397 

supernatant and adding media. 398 

 399 

Single cell RNA sequencing- Full-length dataset 400 

Single-cell RNA sequencing was performed as previously described4,5 with the following 401 

modifications. In this study, we used small (5-10 μm), medium (10-17 μm), and large 402 
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(17-25 μm) plate sizes. ERCC RNA Spike-In (ThermoFisher Cat. No. 4456740) was 403 

diluted in the lysis mix following the manufacturer’s user guide and previous studies36. 404 

Single end reads of 51 bp were sequenced on an Illumina HiSeq 2500 system. 405 

Sequencer outputs were processed using Illumina’s CASAVA-1.8.2. The demultiplexed 406 

reads were trimmed and filtered to eliminate adapter sequence and low-quality 407 

basecalls. The reads were mapped to an mm10 mRNA transcript reference (extended 408 

with ERCC transcripts) using bowtie-0.12.937; expression estimates were generated 409 

using RSEM v.1.2.338. Using the Fluidigm C1 system to capture and synthesize cDNA 410 

from single cells in the liver, we generated transcriptomes for 149 cells. To exclude low 411 

quality transcriptomes, we removed cells in which the fraction of ERCC spike-in made 412 

up 20% or more of the total assigned reads. This left 66 high quality cells that were 413 

used in the downstream analysis. Finally, the data was normalized using SCnorm (R 414 

package v 1.5.7)39.  415 

 416 

Pseudo-spatial reordering- Full-length dataset 417 

For the full-length data, the cells were computationally ordered using the Wave-Crest 418 

method as described in Chu et al. 20165. For the reordering step, gene expression 419 

values were rescaled to mean 0 and variance 1 to ensure the values across different 420 

genes are comparable. The Wave-Crest algorithm implements an extended nearest 421 

insertion algorithm that iteratively adds cells to the order and selects the insertion 422 

location as the location producing the smallest mean squared error in a linear 423 

regression of the proposed order versus gene expression. A 2-opt algorithm is then 424 

used to find an optimal cell order by considering adjacent cell exchanges. The cell 425 
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ordering step uses the expression profiles of pre-selected known marker genes of liver 426 

zonation. Thus, the resulting linear profile of ordered cells represents the periportal to 427 

pericentral axis. The known marker genes used to construct the periportal to pericentral 428 

axis in Wave-Crest include the following pericentral markers: cytochrome P450 7a1 429 

(Cyp7a1), cytochrome P450 2e1 (Cyp2e1), ornithine aminotransferase (Oat), 430 

cytochrome P450 1a2 (Cyp1a2), rh family, B glycoprotein (Rhbg), leucine-rich repeat-431 

containing G-protein coupled receptor 5 (Lgr5), glutamate-ammonia ligase (Glul); and 432 

the following periportal markers: phosphoenolpyruvate carboxykinase 1 (Pck1), catenin 433 

beta interacting protein 1 (Ctnnbip1), aldehyde dehydrogenase 1 family member B1 434 

(Aldh1b1), sulfotransferase family 5A, member 1 (Sult5a1), cytochrome P450 2f2 435 

(Cyp2f2), cathepsin C (Ctsc), serine dehydratase (Sds), and E-cadherin (Cdh1). All 436 

markers were selected based on their expression ratio as reported by Braeuning et al. 437 

200620. 438 

 439 

A detection step was done to identify additional genes that follow the one-dimensional 440 

periportal to pericentral axis by fitting a linear regression to the relationship between 441 

each gene's expression and the Wave-Crest cell order. To determine if a gene is 442 

significantly dynamic (differentially zonated) along the recovered axis, we tested 443 

whether the regression slope is different from zero. We reported the Benjamini-444 

Hochberg adjusted p-values to control the false discovery rate. For genes having an 445 

adjusted p-value < .01, the direction of the expression profile was assigned based on 446 

the sign of the regression slope (periportal: positive slope, pericentral: negative slope). 447 

We also calculated the linear fitting mean squared error (MSE) for each gene. Genes 448 
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with a smoother trend over the recovered cell order are expected to have a smaller 449 

MSE. We report the full list of genes, sorted by their MSE, in S7 Table; scatter plots for 450 

genes having adjusted p-value < .01 are shown in S8 File. 451 

 452 

Pseudo-spatial reordering- 10X dataset 453 

The 10X dataset was downloaded from the Tabula Muris compendium public resource 454 

via Figshare22 . The 10X data was originally processed using the CellRanger version 455 

2.0.1. Within the liver cells, the authors originally identified 975 hepatocytes. For our 456 

analysis, we performed a second quality control step to identify cells with low RNA 457 

content, possible doublets, or dead/damaged cells, where we filtered cells based on the 458 

total number of genes expressed per cell. Using the Seurat R package v3.1.5, 459 

hepatocytes were further filtered to those having between 200 and 3000 genes detected 460 

per cell (only one cell had more than 5000 genes detected per cell). Next, we clustered 461 

the cells using Seurat, where a k-nearest neighbors (KNN) graph used was constructed 462 

based on the first 20 principle components to create a shared nearest neighbors graph 463 

based on the Jaccard index between each cell and its 20 nearest neighbors, as 464 

implemented in the FindNeighbors function. Clusters were then identified by partitioning 465 

this graph using the Louvain community detection algorithm with a resolution of .5, as 466 

implemented in the FindClusters function. The cells clustered into three distinct larger 467 

groups and we retained only the largest grouping of cells that clustered together, 468 

resulting in 606 total cells. The data was then normalized using scran v1.12.1. Next, we 469 

used Monocle v2.12.0 to order the cells, basing the ordering on the top 200 highly 470 

variable genes estimated using the mean variance relationship via the 471 
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FindVariableFeatures function in Seurat. To determine if a gene is significantly dynamic 472 

(differentially zonated) along the recovered axis, the Monocle2 function 473 

differentialGeneTest was used to fit a spline on gene expression versus the estimated 474 

pseudo-time.  475 

 476 

Comparative Analysis 477 

Smoothed densities (bean plots) with overlaid raw data, the mean, and a box 478 

representing the interquartile range of the cellular detection fractions were created using 479 

the pirateplot function in the yarrr R package (v0.1.5). The cellular detection fraction 480 

was calculated per cell as the proportion of genes having expression greater than zero. 481 

The fold-change for each gene between the two datasets (A versus B) was calculated 482 

as the log2 fold-change of the dataset A over dataset B, where each gene mean was 483 

calculated as the average expression among non-zero counts across all cells in the 484 

datasets. The heatmap in Figure 2 of marker gene expression on the normalized Smart-485 

seq data was generated by setting values above the 95th percentile or below the 5nd 486 

percentile to the 95th percentile or 5nd percentile value, respectively. 487 

 488 

Due to the datasets having different dynamic ranges, we used scaled expression plots 489 

to compare expression profiles, where the ordered cells in the full-length dataset and 490 

10X were each divided into nine equally sized groups to correspond to the nine layers in 491 

the UMI dataset. For the full-length and 10X dataset, for a given gene, the median (full-492 

length) or mean (10X) expression in each group was calculated, then the nine values 493 

were scaled between zero and one. Smoothed fits were overlaid using the 494 
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smooth.spline function in R with the degrees of freedom parameter df=4. Expression 495 

correlations along the zonation axis between datasets were calculated using Pearson 496 

correlation. Enrichment of genes in KEGG pathways or GO was done using the R 497 

package clusterProfiler (v. 3.10.1)40. For the enrichment analysis, since different 498 

statistical methods were used to assess zonation profiles, genes were considered 499 

significantly zonated if they had an adjusted p-value < .1 in all datasets. The heatmap in 500 

Figure 3 is a smoothed heatmap, where a smoothing spline was first fit to the log 501 

expression (pseudo-count of one added) of each gene using the smooth.spline function 502 

in R with the smoothing parameter df=4 which provided profiles that were not over- or 503 

underfit in either dataset. Then the smoothed expression was scaled and outliers above 504 

the 98th percentile or below the 2nd percentile were set to the 98th percentile or 2nd 505 

percentile value, respectively. Additional KEGG categories from this analysis can be 506 

interactively viewed on Github 507 

https://github.com/rhondabacher/scSpatialReconstructCompare-Paper. 508 

 509 

Subsampling Analysis 510 

In all subsamplings described below, each scenario was repeated a total of 25 times 511 

and the zonation group means were scaled to be between zero and one. 512 

 513 

For the MARS-seq dataset, zonation group means were recalculated on a subsampled 514 

set of cells using the posterior probability matrix and original UMI counts from Halpern 515 

et al. 2017. In each sampling, the mean squared error (MSE) was calculated based on a 516 

random sample of 500 genes as ∑ ∑ (𝑍$,& − 	𝑍)$,&)+,
&-. 	/00

$-. 500⁄ , where 𝑍$,& represents the 517 
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mean expression of gene 𝑖 in zonation group 𝑗 in the original dataset and 𝑍)$,& is the 518 

corresponding value for the subsampled dataset. For subsampling at lower read depths, 519 

we fixed the number of cells at the original total of 1415 cells and simulated each cell’s 520 

gene counts individually using a multinomial distribution. For each cell, the subsampled 521 

total counts were set to X% of the original total read counts for that cell (for X = 522 

(10,20,30,40,50,60,70,80,90,100)) and each gene’s cell-specific probability was 523 

calculated as its original count divided by the original total counts for that cell. The MSE 524 

was calculated for each subsampled set as described above. 525 

 526 

For the Smart-seq dataset, we reran Wave-Crest when subsampling the total number of 527 

cells using the original parameter settings and marker genes. Then, as before, the 528 

ordered cells were assigned zonation groups by dividing cells into nine equally sized 529 

groups. The zonation profile error was estimated using MSE and calculated as 530 

described above with the exception that since Wave-Crest orders can be flipped, we 531 

calculated the MSE on the returned order and its reverse, and kept the minimum MSE 532 

of the two. To evaluate the zonation profile error with lower read depths, we used a 533 

similar approach as described above for the MARS-seq dataset, fixing the number of 534 

cells to be the same as the original total of 66 and, since the order correlation was 535 

shown to be consistently high, we used the original Wave-Crest order for every scenario 536 

when evaluating zonation profile error. For the 10X dataset, the subsampling was 537 

performed similarly as for the Smart-seq dataset, however Monocle2’s ordering was 538 

more variable as it was not based on marker genes and thus we did not fix the order 539 

when evaluating the zonation profile error. Trade-offs in MSE are directly comparable 540 
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within a dataset but due to intrinsic differences in the original processing and in 541 

subsampling, the MSE should not be compared across the datasets. 542 

 543 

Immunohistochemistry 544 

An 8-week-old male C57BL/6 mouse was anesthetized using isoflurane before 545 

euthanizing by cervical dislocation. The liver was excised, sliced as thinly as possible 546 

with a razor blade, and fixed in formaldehyde overnight. The liver slices were paraffin 547 

embedded and sectioned. Sections were stained following the protocol published by 548 

Abcam (http://www.abcam.com/ps/pdf/protocols/ihc_p.pdf). In short, the slices are 549 

deparaffinized by dipping into sequential solutions of 100% xylene, 50-50% xylene-550 

ethanol, 100% ethanol, 95% ethanol, 70% ethanol, 50% ethanol, and tap water. The 551 

antigens were then retrieved by placing the slides in Tris-EDTA buffer (10 mM Tris 552 

Base, 1 mM EDTA Solution, 0.05% Tween 20, pH 9.0) and incubating them in a 553 

decloaking chamber (Biocare Medical Decloaking Chamber #DC2008US) with the 554 

following settings: delayed start 30 sec.; preheat 80°C, 2 min.; heat 101°C, 3 min. 30 555 

sec.; and fan on. The slides were washed 2 x 5 min in TBS + 0.025% Triton X-100 556 

before they were blocked for two hours at room temperature in 10% normal serum in 557 

1% BSA. The appropriate primary antibody was then diluted in the same 10% normal 558 

serum in 1% BSA, added to the slides, and incubated at 4ºC overnight in an incubation 559 

chamber. The next day the slides were washed 2 x 5 min in TBS + 0.025% Triton X-100 560 

followed by 15 min incubation in 0.3% H2O2 at room temperature. Next, the appropriate 561 

secondary antibody was diluted into 10% normal serum in 1% BSA before it was added 562 

to the slides and incubated for 1 hour at room temperature. The slides were then 563 
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washed 3 x 5 min in TBS before DAB (#ab103723) staining mixed according to 564 

manufacturer instruction was applied and incubated under a microscope to stop the 565 

reaction after sufficient staining. The slides were rinsed in tap water for 5 min before 566 

being counterstained with Mayer’s hematoxylin (#MHS1-100ML) for 30 sec. The stain 567 

was developed in running tap water for 5 min. The slides were then dehydrated by 568 

sequentially dipping in 50% ethanol, 70% ethanol, 95% ethanol, 100% ethanol, 50-50% 569 

xylene-ethanol, and 100% xylene before Poly-Mount (#08381-120) was added and a 570 

coverslip placed on top. The following primary antibodies were added: Aldh3a4 1:250 571 

(AB184171), Cyp2e1 1:50 (AB28146), Cyp1a2 1:50 (R31007), Rgn 1:100 (NBP1-572 

80849), Oat 1:50 (AB137679), Cyp2f2 1:100 (SC-67283), Hal 1:50 (AV45694), and 573 

Tbx3 1:50 (SC-31657). The following secondary antibodies were used: goat-anti-rabbit 574 

HRP conjugated (ab97051) and donkey-anti-goat HRP conjugated (ab97110) at a 575 

concentration of 1:500. 576 
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 671 

 672 

 673 

Supporting information captions 674 

S1 Figure – Examining GC content and gene length in genes with a higher detection 675 

fraction in either dataset. Top) The GC content (left) and gene length (right) are shown 676 
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for genes having a higher detection fraction in either the Smart-seq dataset (gray) or the 677 

MARS-seq dataset (blue). A dotted line is shown for genes having a larger mean in 678 

either dataset. The two lines closely correspond since the genes having a high detection 679 

fraction typically have a higher mean. Bottom) Similar to the top for comparing the 680 

Smart-seq and 10X datasets. 681 

S2 Figure – Correlation between WaveCrest and Monocle methods for ordering cells in 682 

the Smart-seq dataset. 683 

S3 Figure – Expression of Glul. Scaled expression plots of Glul showing high correlation 684 

among all three datasets.   685 

S4 Figure – Correlation analysis of more KEGG pathways. A) Top left: Correlation 686 

analysis for genes in the KEGG pathway “Complement and coagulation cascade”. The 687 

pairwise correlation is shown for each dataset comparison. Following are plots for the 688 

eight highest correlated genes between the any two datasets in that pathway. On the 689 

right is a smoothed heatmap of the Smart-seq expression data for the gene expression 690 

of all significantly zonated genes enriched in that KEGG pathway. B) Similar to (A) but 691 

for the “Drug metabolism – cytochrome P450” pathway. C) Similar to (A) but for the 692 

“Biosynthesis of amino acids” pathway. 693 

S5 Figure – Additional genes in Smart-seq dataset but not in the MARS-seq dataset. 694 

Eight Ugt1a genes that were concatenated in the MARS-seq dataset (blue on all 695 

graphs), but can be resolved in the Smart-seq dataset (orange line).  696 

S6 Table – Ensembl and RefSeq ID’s for genes with transcript variants. 697 

S7 Table – Summary of genes with dynamic expression across the zonation axis 698 

identified using Wave-Crest. 699 
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S8 File – Scatter plots of dynamic genes listed in S6 Table. 700 

S9 Dataset – Normalized Smart-Seq single-cell data with cells in the Wave-Crest order. 701 

 702 
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