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genes with known isoforms and identify cases where the transcript variants for each 284 

isoform has distinct expression from each other across the periportal to pericentral axis, 285 

which is not possible with less sensitive protocols. In Figure 5B the transcript variants of 286 

Romo1 are seen to display opposite trends in expression across the zonation axis, 287 

where the Romo1 variant 3 is increasing in expression from the pericentral end towards 288 

the periportal end and the Romo1 variant 1 is decreasing in expression along the same 289 

axis. We also highlight genes Acox1 and Eif4a2 whose variants both show constant 290 

expression across the zonation axis but at different levels. Both of these genes are 291 

known to have isoform-specific expression in the liver lobule32,33. (For Ensembl and 292 

ENTEREZ IDs for transcript variants see S6 Table).  293 

Due to UMI based protocols capturing only one end of the transcript compared to 294 

full-length cDNA procedures, there is an inability to resolve not just isoforms but also 295 

many genes that are closely related. For instance, there were 242 concatenated genes 296 

in the MARS-seq set that correspond to 539 unique genes. An example of this is seen 297 

in S5 Figure where we highlight a concatenate of Ugt1a enzymes. Eight genes are 298 

concatenated (annotated together) and when combined, the average expression level is 299 

shown to be high at the pericentral end of the lobule and low at the periportal end. 300 

Again, it is clear that not all the members of this concatenated group follow this trend as 301 

Ugt1a6a can be seen to have consistent expression levels across the pericentral to 302 

periportal axis.  303 

Evaluating the trade-off within each protocol in silico 304 

To further study the trade-offs between higher depth versus more cells, we 305 

performed a subsampling experiment. For each dataset, we held either the number of 306 
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cells or the sequencing depth constant while varying the other. For the Smart-seq and 307 

10X datasets, we evaluated the effect on the cell ordering as well as the gene-specific 308 

zonation profiles. For the MARS-seq dataset, the assignment of each cell to a zonation 309 

group depended on external data and was independent of the other cells profiled, and 310 

thus we only evaluated the effect on zonation profiles. We estimate the MSE (mean 311 

squared error) as the difference in zonation profiles in the subsampled dataset versus 312 

the original dataset. In Figure 6A, the MARS-seq dataset displayed an approximately 313 

linear tradeoff in zonation profile error for fewer cells at the original read depth. 314 

However, at reduced read depths using the original 1,415 cells, the error increased 315 

exponentially (Fig.6B). Within a dataset, we can compare the MSE between the two 316 

trade-off scenarios and we find that for the MARS-seq dataset resequencing at the 317 

same depth results in error that is equivalent to the reduction observed in MSE by going 318 

from 600 to 1400 total cells. For the 10X dataset, we also find an approximately linear 319 

tradeoff in zonation profile error for fewer cells at the original read depth (Fig. 6C). 320 

However, at reduced read depths using the original 606 cells, we observe a gradual 321 

increase in error as total depth decreases (Fig.6D). Similarly, by comparing the MSE 322 

trade-off, it appears that resequencing at the same depth results in error that is 323 

equivalent to reducing the total cells from 600 to around 400. Thus, in scenarios with 324 

very low sequencing depth (average of 3-12k total UMIs per cell), sequencing deeper 325 

may be more beneficial than adding more cells. For the Smart-seq dataset, we found 326 

the spatial ordering to be quite robust to reduced sequencing depth, even as low as 327 

50% fewer reads only marginal increased the average MSE as shown in Figure 6F. The 328 

average sequencing depth for the Smart-seq cells was 3.5 million counts per cell, well 329 
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beyond the suggested sequencing saturation for single-cell data that occurs close to 330 

one million total reads34. We do see more dramatic increases in error related to zonation 331 

profiles when profiling fewer cells (Figure 6E). For Smart-seq data, sequencing to even 332 

half of the current depth and increasing the number of cells would be beneficial.  333 

 334 
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Figure 6. Subsampling total numbers of cells and sequencing depth. A) For 25 335 

subsamplings at various total numbers of cells in the MARS-seq dataset, the mean 336 

squared error (MSE) of the zonation profile over 500 randomly selected genes is shown. 337 

B) Similar to A, but for 25 subsamplings at various total read depths. C-D) Similar to A-338 

B, but for the Smart-seq dataset. E-F) Similar to A-B, but for the 10X dataset.  339 

 340 

Discussion 341 

In summary, we compared three scRNA-seq datasets of mouse hepatocytes 342 

where two, MARS-seq and 10X, are wide but shallow and the other, Smart-seq, is 343 

narrow but deeply sequenced. We find that the three different protocols present highly 344 

reproducible liver zonation profiles in single cells, and for the vast majority of genes that 345 

are highly expressed we observe highly comparable results. Our results were not 346 

dependent on any one computational method or pre-processing pipeline. We do 347 

however find that when we look at medium to low expressed genes, the increased 348 

sensitivity of the C1/Smart-seq protocol is able to identify several genes exclusive to this 349 

dataset. This increased sensitivity also allowed us to identify several genes with 350 

isoforms that behaved differently across the periportal to pericentral axis. Though in 351 

general, there are still limitations of short reads in regard to isoform analysis and if more 352 

accuracy is needed, the newly developed technique ScISOr-seq35 might be better 353 

suited. We do however believe that this full-length data allows for more reliable 354 

preliminary isoform analysis compared to either UMI method. However, the main 355 

weakness of using fewer cells is that it is less likely that rare cell types will be sampled. 356 

In cases where such rare cells are of high interest, protocols that produce a large 357 
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number of cells are preferable. In an ideal case, one would sample many cells and 358 

sequence all of them deeply; unfortunately, this is not always possible in practice and 359 

the decision of whether to sample many cells shallowly or fewer cells deeply comes 360 

down to whether rare cell types are of interest or if higher resolution of the individual 361 

cells is preferred.  362 

 Given the distinct advantages of the protocols, we emphasize that the biological 363 

question should be the driving factor when deciding on protocol. Within a chosen 364 

protocol, achieving balance between the sequencing depth and the number of cells is 365 

still an important consideration for optimal use of resources. Based on our simulations 366 

of datasets at opposite ends of the sequencing depth versus number of cells trade-off, 367 

there is eventually a detriment to sacrificing reads for additional cells or sequencing 368 

beyond the attainable sensitivity level on too few cells. We expect that the extent of the 369 

cells versus depth trade-off will vary for other cell types or tissues and it will largely 370 

depend on the heterogeneity of the biological system under study. 371 

 372 

 373 

Methods 374 

Animals and handling. 375 

All animals were kept under standard husbandry conditions. A wildtype 8-week-old male 376 

C57BL/6 (Jackson laboratories) was used in this experiment. Using isoflurane, the 377 

mouse was anesthetized before euthanizing by cervical dislocation. Animal experiments 378 

and procedures were approved by the University of Wisconsin Medical School's Animal 379 
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Care and Use Committee and conducted in accordance with the Animal Welfare Act 380 

and Health Research Extension Act. 381 

 382 

Cell isolation. 383 

The euthanized mouse was pinned to a Styrofoam plate using 20 ga needles to aid in 384 

dissection. The abdominal cavity was opened, and the portal vein exposed. A piece of 385 

4-0 suture thread (Ethicon vicryl coated) was threaded under the portal vein and used to 386 

secure a 26 ga catheter inserted into the portal vein (Butler Schein animal health 26 G 387 

IV Catheter, Fisher Scientific). Hepatocytes were isolated using a 2-step perfusion 388 

protocol. First, Liver Perfusion Medium (Gibco) warmed to 37°C was pumped through 389 

the catheter for 10 minutes using a peristaltic pump at 7 ml/min flowrate. Then, Liver 390 

Digest Medium (Gibco) warmed to 37°C was pumped through the liver at the same 391 

settings for 10 minutes. After perfusion, the liver was excised and transferred to a 10 cm 392 

dish containing 20 ml liver digest medium. The liver was dissected, allowing the cells to 393 

spill into the media. The cells were then filtered through a 40 μm cell strainer into a 50 394 

ml tube and 30 ml media (Williams E media + 2 μg/ml human insulin + 1x glutamax + 395 

10% FBS) were added and placed on ice. The hepatocytes were purified by 396 

centrifugation at 50 x G, 4 times for 3 minutes each, each time discarding the 397 

supernatant and adding media. 398 

 399 

Single cell RNA sequencing- Full-length dataset 400 

Single-cell RNA sequencing was performed as previously described4,5 with the following 401 

modifications. In this study, we used small (5-10 μm), medium (10-17 μm), and large 402 
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(17-25 μm) plate sizes. ERCC RNA Spike-In (ThermoFisher Cat. No. 4456740) was 403 

diluted in the lysis mix following the manufacturer’s user guide and previous studies36. 404 

Single end reads of 51 bp were sequenced on an Illumina HiSeq 2500 system. 405 

Sequencer outputs were processed using Illumina’s CASAVA-1.8.2. The demultiplexed 406 

reads were trimmed and filtered to eliminate adapter sequence and low-quality 407 

basecalls. The reads were mapped to an mm10 mRNA transcript reference (extended 408 

with ERCC transcripts) using bowtie-0.12.937; expression estimates were generated 409 

using RSEM v.1.2.338. Using the Fluidigm C1 system to capture and synthesize cDNA 410 

from single cells in the liver, we generated transcriptomes for 149 cells. To exclude low 411 

quality transcriptomes, we removed cells in which the fraction of ERCC spike-in made 412 

up 20% or more of the total assigned reads. This left 66 high quality cells that were 413 

used in the downstream analysis. Finally, the data was normalized using SCnorm (R 414 

package v 1.5.7)39.  415 

 416 

Pseudo-spatial reordering- Full-length dataset 417 

For the full-length data, the cells were computationally ordered using the Wave-Crest 418 

method as described in Chu et al. 20165. For the reordering step, gene expression 419 

values were rescaled to mean 0 and variance 1 to ensure the values across different 420 

genes are comparable. The Wave-Crest algorithm implements an extended nearest 421 

insertion algorithm that iteratively adds cells to the order and selects the insertion 422 

location as the location producing the smallest mean squared error in a linear 423 

regression of the proposed order versus gene expression. A 2-opt algorithm is then 424 

used to find an optimal cell order by considering adjacent cell exchanges. The cell 425 
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ordering step uses the expression profiles of pre-selected known marker genes of liver 426 

zonation. Thus, the resulting linear profile of ordered cells represents the periportal to 427 

pericentral axis. The known marker genes used to construct the periportal to pericentral 428 

axis in Wave-Crest include the following pericentral markers: cytochrome P450 7a1 429 

(Cyp7a1), cytochrome P450 2e1 (Cyp2e1), ornithine aminotransferase (Oat), 430 

cytochrome P450 1a2 (Cyp1a2), rh family, B glycoprotein (Rhbg), leucine-rich repeat-431 

containing G-protein coupled receptor 5 (Lgr5), glutamate-ammonia ligase (Glul); and 432 

the following periportal markers: phosphoenolpyruvate carboxykinase 1 (Pck1), catenin 433 

beta interacting protein 1 (Ctnnbip1), aldehyde dehydrogenase 1 family member B1 434 

(Aldh1b1), sulfotransferase family 5A, member 1 (Sult5a1), cytochrome P450 2f2 435 

(Cyp2f2), cathepsin C (Ctsc), serine dehydratase (Sds), and E-cadherin (Cdh1). All 436 

markers were selected based on their expression ratio as reported by Braeuning et al. 437 

200620. 438 

 439 

A detection step was done to identify additional genes that follow the one-dimensional 440 

periportal to pericentral axis by fitting a linear regression to the relationship between 441 

each gene's expression and the Wave-Crest cell order. To determine if a gene is 442 

significantly dynamic (differentially zonated) along the recovered axis, we tested 443 

whether the regression slope is different from zero. We reported the Benjamini-444 

Hochberg adjusted p-values to control the false discovery rate. For genes having an 445 

adjusted p-value < .01, the direction of the expression profile was assigned based on 446 

the sign of the regression slope (periportal: positive slope, pericentral: negative slope). 447 

We also calculated the linear fitting mean squared error (MSE) for each gene. Genes 448 
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with a smoother trend over the recovered cell order are expected to have a smaller 449 

MSE. We report the full list of genes, sorted by their MSE, in S7 Table; scatter plots for 450 

genes having adjusted p-value < .01 are shown in S8 File. 451 

 452 

Pseudo-spatial reordering- 10X dataset 453 

The 10X dataset was downloaded from the Tabula Muris compendium public resource 454 

via Figshare22 . The 10X data was originally processed using the CellRanger version 455 

2.0.1. Within the liver cells, the authors originally identified 975 hepatocytes. For our 456 

analysis, we performed a second quality control step to identify cells with low RNA 457 

content, possible doublets, or dead/damaged cells, where we filtered cells based on the 458 

total number of genes expressed per cell. Using the Seurat R package v3.1.5, 459 

hepatocytes were further filtered to those having between 200 and 3000 genes detected 460 

per cell (only one cell had more than 5000 genes detected per cell). Next, we clustered 461 

the cells using Seurat, where a k-nearest neighbors (KNN) graph used was constructed 462 

based on the first 20 principle components to create a shared nearest neighbors graph 463 

based on the Jaccard index between each cell and its 20 nearest neighbors, as 464 

implemented in the FindNeighbors function. Clusters were then identified by partitioning 465 

this graph using the Louvain community detection algorithm with a resolution of .5, as 466 

implemented in the FindClusters function. The cells clustered into three distinct larger 467 

groups and we retained only the largest grouping of cells that clustered together, 468 

resulting in 606 total cells. The data was then normalized using scran v1.12.1. Next, we 469 

used Monocle v2.12.0 to order the cells, basing the ordering on the top 200 highly 470 

variable genes estimated using the mean variance relationship via the 471 
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FindVariableFeatures function in Seurat. To determine if a gene is significantly dynamic 472 

(differentially zonated) along the recovered axis, the Monocle2 function 473 

differentialGeneTest was used to fit a spline on gene expression versus the estimated 474 

pseudo-time.  475 

 476 

Comparative Analysis 477 

Smoothed densities (bean plots) with overlaid raw data, the mean, and a box 478 

representing the interquartile range of the cellular detection fractions were created using 479 

the pirateplot function in the yarrr R package (v0.1.5). The cellular detection fraction 480 

was calculated per cell as the proportion of genes having expression greater than zero. 481 

The fold-change for each gene between the two datasets (A versus B) was calculated 482 

as the log2 fold-change of the dataset A over dataset B, where each gene mean was 483 

calculated as the average expression among non-zero counts across all cells in the 484 

datasets. The heatmap in Figure 2 of marker gene expression on the normalized Smart-485 

seq data was generated by setting values above the 95th percentile or below the 5nd 486 

percentile to the 95th percentile or 5nd percentile value, respectively. 487 

 488 

Due to the datasets having different dynamic ranges, we used scaled expression plots 489 

to compare expression profiles, where the ordered cells in the full-length dataset and 490 

10X were each divided into nine equally sized groups to correspond to the nine layers in 491 

the UMI dataset. For the full-length and 10X dataset, for a given gene, the median (full-492 

length) or mean (10X) expression in each group was calculated, then the nine values 493 

were scaled between zero and one. Smoothed fits were overlaid using the 494 
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smooth.spline function in R with the degrees of freedom parameter df=4. Expression 495 

correlations along the zonation axis between datasets were calculated using Pearson 496 

correlation. Enrichment of genes in KEGG pathways or GO was done using the R 497 

package clusterProfiler (v. 3.10.1)40. For the enrichment analysis, since different 498 

statistical methods were used to assess zonation profiles, genes were considered 499 

significantly zonated if they had an adjusted p-value < .1 in all datasets. The heatmap in 500 

Figure 3 is a smoothed heatmap, where a smoothing spline was first fit to the log 501 

expression (pseudo-count of one added) of each gene using the smooth.spline function 502 

in R with the smoothing parameter df=4 which provided profiles that were not over- or 503 

underfit in either dataset. Then the smoothed expression was scaled and outliers above 504 

the 98th percentile or below the 2nd percentile were set to the 98th percentile or 2nd 505 

percentile value, respectively. Additional KEGG categories from this analysis can be 506 

interactively viewed on Github 507 

https://github.com/rhondabacher/scSpatialReconstructCompare-Paper. 508 

 509 

Subsampling Analysis 510 

In all subsamplings described below, each scenario was repeated a total of 25 times 511 

and the zonation group means were scaled to be between zero and one. 512 

 513 

For the MARS-seq dataset, zonation group means were recalculated on a subsampled 514 

set of cells using the posterior probability matrix and original UMI counts from Halpern 515 

et al. 2017. In each sampling, the mean squared error (MSE) was calculated based on a 516 

random sample of 500 genes as ∑ ∑ (𝑍$,& − 	𝑍)$,&)+,
&-. 	/00

$-. 500⁄ , where 𝑍$,& represents the 517 
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mean expression of gene 𝑖 in zonation group 𝑗 in the original dataset and 𝑍)$,& is the 518 

corresponding value for the subsampled dataset. For subsampling at lower read depths, 519 

we fixed the number of cells at the original total of 1415 cells and simulated each cell’s 520 

gene counts individually using a multinomial distribution. For each cell, the subsampled 521 

total counts were set to X% of the original total read counts for that cell (for X = 522 

(10,20,30,40,50,60,70,80,90,100)) and each gene’s cell-specific probability was 523 

calculated as its original count divided by the original total counts for that cell. The MSE 524 

was calculated for each subsampled set as described above. 525 

 526 

For the Smart-seq dataset, we reran Wave-Crest when subsampling the total number of 527 

cells using the original parameter settings and marker genes. Then, as before, the 528 

ordered cells were assigned zonation groups by dividing cells into nine equally sized 529 

groups. The zonation profile error was estimated using MSE and calculated as 530 

described above with the exception that since Wave-Crest orders can be flipped, we 531 

calculated the MSE on the returned order and its reverse, and kept the minimum MSE 532 

of the two. To evaluate the zonation profile error with lower read depths, we used a 533 

similar approach as described above for the MARS-seq dataset, fixing the number of 534 

cells to be the same as the original total of 66 and, since the order correlation was 535 

shown to be consistently high, we used the original Wave-Crest order for every scenario 536 

when evaluating zonation profile error. For the 10X dataset, the subsampling was 537 

performed similarly as for the Smart-seq dataset, however Monocle2’s ordering was 538 

more variable as it was not based on marker genes and thus we did not fix the order 539 

when evaluating the zonation profile error. Trade-offs in MSE are directly comparable 540 
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within a dataset but due to intrinsic differences in the original processing and in 541 

subsampling, the MSE should not be compared across the datasets. 542 

 543 

Immunohistochemistry 544 

An 8-week-old male C57BL/6 mouse was anesthetized using isoflurane before 545 

euthanizing by cervical dislocation. The liver was excised, sliced as thinly as possible 546 

with a razor blade, and fixed in formaldehyde overnight. The liver slices were paraffin 547 

embedded and sectioned. Sections were stained following the protocol published by 548 

Abcam (http://www.abcam.com/ps/pdf/protocols/ihc_p.pdf). In short, the slices are 549 

deparaffinized by dipping into sequential solutions of 100% xylene, 50-50% xylene-550 

ethanol, 100% ethanol, 95% ethanol, 70% ethanol, 50% ethanol, and tap water. The 551 

antigens were then retrieved by placing the slides in Tris-EDTA buffer (10 mM Tris 552 

Base, 1 mM EDTA Solution, 0.05% Tween 20, pH 9.0) and incubating them in a 553 

decloaking chamber (Biocare Medical Decloaking Chamber #DC2008US) with the 554 

following settings: delayed start 30 sec.; preheat 80°C, 2 min.; heat 101°C, 3 min. 30 555 

sec.; and fan on. The slides were washed 2 x 5 min in TBS + 0.025% Triton X-100 556 

before they were blocked for two hours at room temperature in 10% normal serum in 557 

1% BSA. The appropriate primary antibody was then diluted in the same 10% normal 558 

serum in 1% BSA, added to the slides, and incubated at 4ºC overnight in an incubation 559 

chamber. The next day the slides were washed 2 x 5 min in TBS + 0.025% Triton X-100 560 

followed by 15 min incubation in 0.3% H2O2 at room temperature. Next, the appropriate 561 

secondary antibody was diluted into 10% normal serum in 1% BSA before it was added 562 

to the slides and incubated for 1 hour at room temperature. The slides were then 563 
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washed 3 x 5 min in TBS before DAB (#ab103723) staining mixed according to 564 

manufacturer instruction was applied and incubated under a microscope to stop the 565 

reaction after sufficient staining. The slides were rinsed in tap water for 5 min before 566 

being counterstained with Mayer’s hematoxylin (#MHS1-100ML) for 30 sec. The stain 567 

was developed in running tap water for 5 min. The slides were then dehydrated by 568 

sequentially dipping in 50% ethanol, 70% ethanol, 95% ethanol, 100% ethanol, 50-50% 569 

xylene-ethanol, and 100% xylene before Poly-Mount (#08381-120) was added and a 570 

coverslip placed on top. The following primary antibodies were added: Aldh3a4 1:250 571 

(AB184171), Cyp2e1 1:50 (AB28146), Cyp1a2 1:50 (R31007), Rgn 1:100 (NBP1-572 

80849), Oat 1:50 (AB137679), Cyp2f2 1:100 (SC-67283), Hal 1:50 (AV45694), and 573 

Tbx3 1:50 (SC-31657). The following secondary antibodies were used: goat-anti-rabbit 574 

HRP conjugated (ab97051) and donkey-anti-goat HRP conjugated (ab97110) at a 575 

concentration of 1:500. 576 
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 673 

Supporting information captions 674 

S1 Figure – Examining GC content and gene length in genes with a higher detection 675 

fraction in either dataset. Top) The GC content (left) and gene length (right) are shown 676 
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for genes having a higher detection fraction in either the Smart-seq dataset (gray) or the 677 

MARS-seq dataset (blue). A dotted line is shown for genes having a larger mean in 678 

either dataset. The two lines closely correspond since the genes having a high detection 679 

fraction typically have a higher mean. Bottom) Similar to the top for comparing the 680 

Smart-seq and 10X datasets. 681 

S2 Figure – Correlation between WaveCrest and Monocle methods for ordering cells in 682 

the Smart-seq dataset. 683 

S3 Figure – Expression of Glul. Scaled expression plots of Glul showing high correlation 684 

among all three datasets.   685 

S4 Figure – Correlation analysis of more KEGG pathways. A) Top left: Correlation 686 

analysis for genes in the KEGG pathway “Complement and coagulation cascade”. The 687 

pairwise correlation is shown for each dataset comparison. Following are plots for the 688 

eight highest correlated genes between the any two datasets in that pathway. On the 689 

right is a smoothed heatmap of the Smart-seq expression data for the gene expression 690 

of all significantly zonated genes enriched in that KEGG pathway. B) Similar to (A) but 691 

for the “Drug metabolism – cytochrome P450” pathway. C) Similar to (A) but for the 692 

“Biosynthesis of amino acids” pathway. 693 

S5 Figure – Additional genes in Smart-seq dataset but not in the MARS-seq dataset. 694 

Eight Ugt1a genes that were concatenated in the MARS-seq dataset (blue on all 695 

graphs), but can be resolved in the Smart-seq dataset (orange line).  696 

S6 Table – Ensembl and RefSeq ID’s for genes with transcript variants. 697 

S7 Table – Summary of genes with dynamic expression across the zonation axis 698 

identified using Wave-Crest. 699 
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S8 File – Scatter plots of dynamic genes listed in S6 Table. 700 

S9 Dataset – Normalized Smart-Seq single-cell data with cells in the Wave-Crest order. 701 

 702 
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