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 2 

Abstract 1 
 2 
Cancer genomes exhibit surprisingly weak signatures of negative selection1,2. This may 3 
be because selective pressures are relaxed or because genome-wide linkage prevents 4 
deleterious mutations from being removed (Hill-Robertson interference)3. By stratifying 5 
tumors by their genome-wide mutational burden, we observe negative selection (dN/dS 6 
~ 0.47) in low mutational burden tumors, while remaining cancers exhibit dN/dS ratios 7 
~1. This suggests that most tumors do not remove deleterious passengers. To buffer 8 
against deleterious passengers, tumors upregulate heat shock pathways as their 9 
mutational burden increases. Finally, evolutionary modeling finds that Hill-Robertson 10 
interference alone can reproduce patterns of attenuated selection and estimates the 11 
total fitness cost of passengers to be 40% per cell on average. Collectively, our findings 12 
suggest that the lack of observed negative selection in most tumors is not due to 13 
relaxed selective pressures, but rather the inability of selection to remove deleterious 14 
mutations in the presence of genome-wide linkage. 15 

 16 

  17 
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 3 

Introduction 1 

 Tumor progression is an evolutionary process acting on somatic cells within the 2 
body. These cells acquire mutations over time that can alter cellular fitness by either 3 
increasing or decreasing the rates of cell division and/or cell death. Mutations which 4 
increase cellular fitness (drivers) are observed in cancer genomes more frequently 5 
because natural selection enriches their prevalence within the tumor population1,2. This 6 
increased prevalence of mutations across patients within specific genes is used to 7 
identify driver genes. Conversely, mutations that decrease cellular fitness (deleterious 8 
passengers) are expected to be observed less frequently. This enrichment or depletion 9 
is often measured by comparing the expected number of nonsynonymous mutations 10 
(dN) within a region of the genome to the expected number of synonymous mutations 11 
(dS), which are presumed to be neutral. This ratio, dN/dS, is expected to be below 1 12 
when the majority of nonsynonymous mutations are deleterious and removed by natural 13 
selection, be approximately 1 when all nonsynonymous mutations are neutral, and can 14 
be greater than 1 when a substantial proportion of nonsynonymous mutations are 15 
advantageous.  16 

 Two recent analyses of dN/dS patterns in cancer genomes found that for most 17 
non-driver genes dN/dS is ~1 and that only 0.1 - 0.4% of genes exhibit detectable 18 
negative selection (dN/dS < 1)1,2.This differs substantially from patterns in human 19 
germline evolution where most genes show signatures of negative selection (dN/dS ~ 20 
0.4)1. Two explanations for this difference have been posited. First, the vast majority of 21 
nonsynonymous mutations may not be deleterious in somatic cellular evolution despite 22 
their deleterious effects on the organism. While most genes may be critical for proper 23 
organismal development and multicellular functioning, they may not be essential for 24 
clonal tumor growth. In this hypothesis, negative selection (dN/dS < 1) should be 25 
observed only within essential genes and absent elsewhere (dN/dS ~ 1). While 26 
appealing in principle, most germline selection against nonsynonymous variants 27 
appears to be driven by protein misfolding toxicity4,5, in addition to gene essentiality. 28 
These damaging folding effects ought to persist in somatic evolution. 29 

 A second hypothesis is that even though many nonsynonymous mutations are 30 
deleterious in somatic cells, natural selection fails to remove them. One possible reason 31 
for this inefficiency is the unique challenge of evolving without recombination. Unlike 32 
sexually-recombining germline evolution, tumors must evolve under genome-wide 33 
linkage that creates interference between mutations, known as-Hill-Robertson 34 
interference, which reduces the efficiency of natural selection3. Without recombination 35 
to link and unlink combinations of mutations, natural selection must act on entire 36 
genomes — not individual mutations — and select for clones with combinations of 37 
mutations of better aggregate fitness. Thus, advantageous drivers may not fix in the 38 
population, if they arise on an unfit background, and conversely, deleterious passengers 39 
can fix, if they arise on fit backgrounds.   40 

 The inability of asexuals to eliminate deleterious passengers is driven by two Hill-41 
Robertson interference processes: hitchhiking and Muller’s ratchet (Fig. 1A). Hitchhiking 42 
occurs when a strong driver arises within a clone already harboring several passengers. 43 
Because these passengers cannot be unlinked from the driver under selection, they are 44 
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 4 

carried with the driver to a greater frequency in the population. Muller’s ratchet is a 1 
process where deleterious mutations continually accrue within different clones in the 2 
population until natural selection is overwhelmed. Whenever the fittest clone in an 3 
asexual population is lost through genetic drift, the maximum fitness of the population 4 
declines to the next most fit clone (Fig. 1A). The rate of hitchhiking and Muller’s ratchet 5 
both increase with the genome-wide mutation rate6,7. Therefore, the second hypothesis 6 
predicts that selection against deleterious passengers should be more efficient (dN/dS < 7 
1) in tumors with lower mutational burdens.  8 

 Here, we leverage the 10,000-fold variation in tumor mutational burden across 50 9 
cancer types to quantify the extent that selection attenuates, and thus becomes more 10 
inefficient, as the mutational burden increases. Using dN/dS, we find that selection 11 
against deleterious passengers and in favor of advantageous drivers is most efficient in 12 
low mutational burden cancers. Furthermore, low mutational burden cancers exhibit 13 
efficient selection across cancer subtypes, as well as within sub-clonal mutations, 14 
homozygous mutations, somatic copy-number alterations, and essential genes. 15 
Additionally, high-mutational burden tumors appear to mitigate this deleterious load by 16 
upregulating protein folding and degradation machinery. Finally, using evolutionary 17 
modeling, we find that Hill-Robertson interference alone can in principle explain these 18 
observed patterns of selection. Modeling predicts that most cancers carry a substantial 19 
deleterious burden (~40%) that necessitates the acquisition of multiple strong drivers 20 
(~5) in malignancies that together provide a benefit of ~130%. Collectively, these results 21 
explain why signatures of selection are largely absent in cancers with elevated 22 
mutational burdens and indicate that the vast majority of tumors harbor a large 23 
mutational load. 24 
 25 

 26 

 27 
Figure 1. Two Hill-Robertson interference processes that accumulate deleterious 28 
mutations at high mutation rates. (A) Genetic hitchhiking. Each number identifies a 29 
different segment of a clone genome within a tumor. De novo beneficial driver mutations 30 
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 5 

that arise in a clone can drive other mutations (passengers) in the clone to high 1 
frequencies (black dotted column). If the passenger is deleterious, both beneficial 2 
drivers and deleterious passengers can accumulate. (B) Muller’s ratchet. As the 3 
mutation rate within a tumor increases, deleterious passengers accumulate on more 4 
clones. If the fittest clone within the tumor is lost through genetic drift (black dotted row), 5 
the overall fitness of the population will decline. 6 

 7 

Results 8 

Null models of mutagenesis in cancer. Mutational processes in cancer are 9 
heterogeneous, which can bias dN/dS estimates of selective pressures. dN/dS 10 
overcomes this issue by dividing observed mutation counts by what is expected under 11 
neutral evolution using null models. These null models must account for mutational 12 
biases that are often specific to cancer types and genomic regions.  13 

To ensure our dN/dS calculations are robust and reproducible, we applied two 14 
different methods to account for mutational biases. The first approach uses a previously 15 
established parametric mutational model (dNdScv) that explicitly estimates the 16 
background mutational bias of each gene in its calculation of dN/dS1. The second 17 
approach uses a permutation-based, nonparametric (parameter-free) estimation of 18 
dN/dS. In this approach, every observed mutation is permuted while preserving the 19 
gene, patient samples, specific base change (e.g. A>T) and its tri-nucleotide context. 20 
Note that permutations do not preserve the codon position of a mutation and thus can 21 
change its protein coding effect (nonsynonymous vs synonymous). The permutations 22 
are then tallied for both nonsynonymous dN(permuted) and synonymous dS(permuted) 23 
substitutions (Fig. S1) and used as expected proportional values for the observed 24 
number of nonsynonymous dN(observed) (or simply dN) and synonymous dS(observed) (dS) 25 
mutations in the absence of selection. The unbiased effects of selection on a gene, 26 
dN/dS, is then:  27 

𝑑𝑁
𝑑𝑆 =

	𝑑!
(#$%&'(&)) 𝑑!

(+&',-.&))&
	𝑑/
(#$%&'(&)) 𝑑/

(+&',-.&))&
 28 

For all cancer types and patient samples, P-values and confidence intervals are 29 
determined by bootstrapping patient samples. Note that this permutation procedure will 30 
account for gene and tumor-level mutational biases (e.g. neighboring bases9, 31 
transcription-coupled repair, S phase timing10, mutator phenotypes) and their 32 
covariation. We confirmed that this approach accurately measures selection even in the 33 
presence of simulated mutational biases (Methods, Fig. S2A) as well as variation in 34 
gene length (Fig. S3). In addition, this approach also reliably measures the absence of 35 
selection (dN/dS = 1) in weakly expressed genes (Fig. S2C). 36 

We find that both the parametric and nonparametric approaches identify similar 37 
patterns of selection (Fig. 2A and Fig. S3). Since parametric mutational models can 38 
become very complex in cancer (exceeding 5,000 parameters in some cases1,8), we 39 
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 6 

elected to use the non-parametric approach, which makes fewer assumptions about 1 
underlying mutational processes, in subsequent calculations of dN/dS. 2 

Attenuation of selection in drivers and passengers for elevated mutational burden 3 
tumors. We estimated dN/dS patterns in both driver and passenger gene sets across 4 
11,808 tumors from TCGA (whole-exome) and ICGC (whole-genome) aggregated over 5 
50 cancer types (Methods). We used the following four mutational tallies as a proxy for 6 
the genome-wide mutation rate: (1) the total number of mutations or tumor mutational 7 
burden (TMB) (2) the total number of observed substitutions in both synonymous and 8 
nonsynonymous sites (dN + dS) (Fig. 1), and (3) the total number of mutations in 9 
intergenic, and (4) intronic regions. All estimates are strongly correlated (R2 > 0.97, Fig. 10 
S4). 11 

 In principle, only the last two tallies — the number of substitutions in intergenic or 12 
intronic regions — are orthogonal to dN/dS, and least likely to be biased by selection. 13 
However, these measures can only be applied to whole-genome datasets, which 14 
constitute only 15% of sequenced samples. Therefore, for most of the analyses, we 15 
used the second measure (dN + dS) to define mutational burden, while being cognizant 16 
that the analysis could be complicated by the fact that the same mutation tallies are 17 
used for both the x-axis (dN + dS) and y-axis (dN/dS). We note that this interdependence 18 
leads to a slight underestimation of the degree of purifying selection, rendering our 19 
analysis conservative (Fig. S5, Methods).  20 
 21 
 To quantify the extent that selection attenuates as the mutational burden 22 
increases, we stratified tumors into bins based on their total number of substitutions on 23 
a log scale. For each bin of tumors, we pooled all of the variants together and estimated 24 
dN/dS jointly. Consistent with the inefficient selection model, whereby selection fails to 25 
eliminate deleterious mutations in high mutational burden tumors, we observe pervasive 26 
selection against passengers exclusively in tumors with low mutational burdens (dN/dS 27 
~ 0.47 in tumors with mutational burden ≤ 3, while dN/dS ~ 0.95 in tumors with 28 
mutational burden > 10, Fig. 2A). We observed little negative selection in passengers 29 
when aggregating tumors across all mutational burdens (dN/dS ~ 0.97), which is 30 
broadly similar to previous estimates1,2,8,11.  31 

We confirmed that negative selection on passengers is specific to low mutational 32 
burden tumors and not biased by small sample sizes (Fig. S2B). We randomly sampled 33 
passengers from high mutational burden tumors (>10 substitutions) 1000 times using 34 
the same bin sizes in Fig. 2A and calculated dN/dS. Within the smallest bin size (N=130 35 
SNVs), negative selection on passengers sampled from high mutational burden tumors 36 
was absent (average dN/dS ~ 1.02) compared to observed dN/dS in low mutational 37 
burden tumors (dN/dS ~ 0.47; p < 2.2-16). In fact, only 0.6% of randomly sampled sets of 38 
sites had similar signals of negative selection (dN/dS < 0.47). 39 

Also consistent with the inefficient selection model, drivers exhibit a similar but 40 
opposing trend of attenuated selection at elevated mutational burdens (dN/dS ~ 3.3 41 
when mutational burden ≤ 3 and gradually declines to ~1.5 when mutational burden > 42 
100). This pattern is not specific to drivers that are oncogenes or tumor suppressors 43 
(Fig. S6). While the attenuation of selection against passengers in higher mutational 44 
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burden tumors is a novel discovery, this pattern among drivers has been reported 1 
previously1.  2 

Furthermore, we confirmed that these patterns are robust to the choices that we 3 
made in our analysis pipeline. These include the: (1) somatic mutation calling algorithm 4 
(Mutect2 and MC3 SNP calls12, Fig. S3B),  (2) dataset (TCGA13, ICGC14, COSMIC15 5 
and an additional independent validation cohort; Fig. S3B and Fig. S3D), (3) effects of 6 
germline SNP contamination (Fig. S7), (4) choice of driver gene set (Bailey et al16, 7 
IntOGen17, and COSMIC15, Fig. S3B and Fig. S8), (5) mutational burden metric (Fig. 8 
S3A), (6) differences in tumor purity and thresholding (Fig. S9), and (7) null model of 9 
mutagenesis (dNdScv, Fig. S3C & S10)1 (Methods). 10 

 If negative selection is more pronounced in low mutational burden tumors, then 11 
the nonsynonymous mutations observed should also be less functionally consequential. 12 
By annotating the functional effect of all missense mutations using PolyPhen218 (Fig 13 
2B), we indeed find that observed nonsynonymous passengers are less damaging in 14 
low mutational burden cancers. Similarly, driver mutations become less functionally 15 
consequential as mutational burden increases, as expected for mutations experiencing 16 
inefficient positive selection (Fig 2B). Together these two trends provide additional and 17 
orthogonal evidence that selective forces on nonsynonymous mutations are more 18 
efficient in low mutational burden cancers.   19 

 Since all mutational types experience Hill-Robertson interference, attenuated 20 
selection should also persist in Copy Number Alterations (CNAs). We used two 21 
previously-published statistics to quantify selection in CNAs: Breakpoint Frequency19 22 
and Fractional Overlap20. For both measures, we compare the number of CNAs that 23 
either terminate (Breakpoint Frequency) within or partially overlap (Fractional Overlap) 24 
Exonic regions of the genome relative to non-coding (Intergenic and Intronic) regions 25 
(dE/dI, See Methods). Like dN/dS, dE/dI is expected to be <1 in genomic regions 26 
experiencing negative selection, >1 in regions experiencing positive selection (e.g. 27 
driver genes), and approximately 1 when selection is absent or inefficient (Fig. S23). 28 
Using dE/dI, we observe attenuating selection in both driver and passenger CNAs as 29 
the total number of CNAs increases for both Breakpoint Frequency (Fig. 2C) and 30 
Fractional Overlap (Fig. S11). While CNAs of all lengths experience attenuated 31 
selection, CNAs longer than the average gene length (>100 KB) experience greater 32 
selective pressures in drivers (p < 10-4).  33 

Collectively, these results suggest that tumors with elevated mutational burdens 34 
carry a substantial deleterious load. Since nonsynonymous mutations are thought to be 35 
primarily deleterious by inducing protein misfolding4,5, we tested whether an increase in 36 
the number of passenger mutations in tumors would lead to elevated protein folding 37 
stress, and, in turn, drive the upregulation of heat shock and protein degradation21 38 
pathways in cancer22. Indeed, gene expression of HSP90, Chaperonins, and the 39 
Proteasome does increase across the whole range of SNV (weighted R2 of 0.83, 0.77, 40 
and 0.75 respectively) and CNA burdens (weighted R2 of 0.78, 0.87 and 0.84, 41 
respectively) (Fig. 2G and S22). This trend persists across cancer types for SNVs and 42 
CNAs (Fig. S22). Importantly, expression of these gene sets increases across the whole 43 
range of mutational burdens, even after the dN/dS of passengers approaches 1. This 44 
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 8 

result presents additional evidence that passengers continue to impart a substantial 1 
cost to cancer cells, even in high mutational burden tumors. 2 
 3 

 4 

Figure 2. Attenuation of selection and increased protein folding stress in high 5 
mutation load tumors. (A) dN/dS of passenger (red) and driver (green) gene sets 6 
within 11,808 tumors (ICGC and TCGA) stratified by total number of substitutions 7 
present in the tumor (dN(observed) + dS(observed)). dN/dS is calculated with error bars using a 8 
permutation based null model (solid line) and dNdScv (dashed). A dN/dS of 1 (solid 9 
black line) is expected under neutrality. Solid gray line denotes pan-cancer genome-10 
wide dN/dS. (B) Fraction of pathogenic missense mutations, annotated by PolyPhen2, 11 
in the same driver and passenger gene sets also stratified by total number of 12 
substitutions. Black line denotes the pathogenic fraction of missense mutations across 13 
the entire human genome. (C) Breakpoint frequency of CNAs that reside within exonic 14 
(dE) to intergenic (dI) regions within putative driver and passenger gene sets (identified 15 
by GISTIC 2.0, Methods) in tumors stratified by the total number of CNAs present in 16 
each tumor and separated by CNA length. Solid black line of 1 denotes values expected 17 
under neutrality. (D) dN/dS of clonal (VAF > 0.2; darker colors) and subclonal (VAF < 18 
0.2; lighter colors) passenger and driver gene sets in tumors stratified by the total 19 
number of substitutions. A dN/dS of 1 (solid black line) is expected under neutrality. (A-20 
D) Histogram counts of tumors within mutational burden bins are shown in the top 21 
panels. (E)  Driver and passenger dN/dS values of the highest and lowest defined 22 
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mutational burden bin in broad anatomical sub-categories. (F) Same as (E), except for 1 
all specific cancer subtypes with ≥500 samples. (G) Z-scores of median gene 2 
expression within all genes, HSP90, Chaperonin and Proteasome gene sets averaged 3 
across patients (relative to an average tumor) stratified by the total number of 4 
substitutions. All shaded error bars are 95% confidence intervals determined by 5 
bootstrap sampling.  6 

Strong selection in low mutational burden tumors cannot be explained by 7 
mutational timing, gene function, or tumor type. We next tested alternative 8 
hypotheses to the inefficient selection model. We considered the possibility that 9 
selection is strong only during normal tissue development, but absent after cells have 10 
transformed to malignancy. This would disproportionately affect low mutational burden 11 
tumors, as a greater proportion of their mutations arise prior to tumor transformation. If 12 
true, then attenuated selection should be absent in sub-clonal mutations, which must 13 
arise during tumor growth. However, selection clearly attenuates with increasing 14 
mutational burden for the subset of likely sub-clonal mutations with Variant Allele 15 
Frequency (VAF) below 20% (Fig. 2D & S12). Although selection attenuates in drivers 16 
and passengers in both sub-clonal and clonal mutations, selection is weaker in both 17 
drivers and passengers with lower VAFs. Weaker efficiency of selection among less 18 
frequent variants is expected under a range of population genetic models23 and 19 
especially so in rapidly-expanding, spatially-constrained cancers24. In addition, 20 
heterozygous mutations, to the extent they are only partially-dominant25, are also 21 
expected to exhibit lower VAFs and experience weaker selection. 22 

 Next, we considered and rejected the possibility that attenuated selection is 23 
limited to particular types of genes. We first annotated our observed mutations by 24 
different functional categories and Gene Ontology (GO) terms26 and find that negative 25 
selection is not specific to any particular gene functional category, and specifically not 26 
limited to essential or housekeeping genes — a key prediction of the ‘weak selection’ 27 
model1 (Fig. S13, p < 0.05, Wilcoxon signed-rank test).  28 

 Finally, we found that these patterns of attenuated selection persist across 29 
cancer subtypes for both SNVs and CNAs. We calculated dN/dS in tumors grouped by 30 
nine broad anatomical sub-categories (e.g. neuronal) and 50 subtype classifications 31 
27(Fig. 2E-F). We find that patterns of attenuated selection in SNVs persists in the broad 32 
and specific (drivers p = 1.4 × 10-5, passengers p = 1.3 × 10-2,,Wilcoxon signed-rank 33 
test; Fig. S14) classification schemes. Furthermore, dE/dI measurements of CNAs 34 
exhibit these same patterns of selection in broad (Fig. S15) and specific subtypes (Fig. 35 
2F; drivers p < 10-6 and passengers p = 7.3 × 10-4).  36 
 37 
 Collectively, these results strongly support the inefficient selection model and 38 
argue that the observed patterns must be due to a universal force in tumor evolution. 39 
We find that selection consistently attenuates in both drivers and passengers across all 40 
cancers as mutational burden increases.  41 
 42 
Evolutionary modeling estimates the fitness effects of drivers and passengers, 43 
and rate of Hill-Robertson interference processes.  We next tested whether Hill-44 
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Robertson interference – a process where selection becomes inefficient due to 1 
interference between linked mutations with competing fitness effects – alone can 2 
generate these patterns of attenuated selection. Specifically, we modeled tumor 3 
progression as a simple evolutionary process with advantageous drivers and 4 
deleterious passengers. We then used Approximate Bayesian Computation (ABC) to 5 
compare these simulations to observed data and infer the mean fitness effects of 6 
drivers and passengers. 7 

Our previously-developed evolutionary simulations model a well-mixed 8 
population of tumor cells that can randomly acquire advantageous drivers and 9 
deleterious passengers during cell division28. The product of the individual fitness 10 
effects of these mutations determines the relative birth and death rate of each cell, 11 
which in turn dictates the population size N of the tumor. If the population size of a 12 
tumor progresses to malignancy (N > 1,000,000) within a human lifetime (≤100 years), 13 
the accrued mutations and patient age are recorded. The mutation rate of each 14 
simulated tumor is randomly sampled from a broad range (10-12 to 10-7 mutations • 15 
nucleotide-1 • generation-1, Methods). Although this model ignores a great deal of known 16 
tumor biology, we believe it constitutes the simplest evolutionary model that could 17 
possibly recapitulate observed selection for drivers and against passengers. Our 18 
question is not whether this model is correct in all details but rather whether even such 19 
a simple model can generate quantitatively similar patterns as observed in the data with 20 
sensible values of mutation rates and selection coefficients.   21 

Figure 3A illustrates the ABC procedure. To compare our model to observed 22 
data, we simulated an exponential distribution of fitness effects with mean fitness values 23 
that spanned a broad range (10-2 - 100 for driver and 10-4 - 10-2 for passengers, 24 
Methods). We summarized observed and simulated data using statistics that capture 25 
three relationships: (i) the dependence of driver and passenger dN/dS rates on 26 
mutational burden, (ii) the rate of cancer age-incidence (SEERs database29), and (iii) 27 
the distribution of mutational burdens (summary statistics of (ii) and (iii) were based on 28 
theoretical parametric models30, Methods, Fig. S16 & S17). We then inferred the 29 
posterior probability distribution of mean driver fitness benefit and mean passenger 30 
fitness cost using a rejection algorithm that we validated using leave-one-out Cross 31 
Validation (Methods, Fig. S18).  32 

Using this approach, the Maximum Likelihood Estimate (MLE) of mean driver 33 
fitness benefit is 18.8% (Fig. 3B), while the MLE of passenger mean fitness cost is 34 
0.96% (Fig. 3C). Simulations with these MLE values agree well with all observed data 35 
(Fig. 3D-F, Pearson’s R = 0.95, 0.80, 0.99, 0.97 for driver dN/dS, passenger dN/dS, 36 
Age-Incidence, and Mutational Burden respectively).  37 

While Hill-Robertson interference alone explains dN/dS rates in the passengers 38 
well, the simulations most consistent with observed data still exhibited consistently 39 
higher dN/dS rates in drivers (Fig. 3D). We tested whether positive selection on 40 
synonymous mutations within driver genes could explain this discrepancy. Indeed, we 41 
find that a model incorporating synonymous drivers agrees modestly better with 42 
observed statistics (p = 0.043, ABC posterior probability). The best-fitting model predicts 43 
that ~10% of synonymous mutations within driver genes experience positive selection, 44 
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which is consistent with previous estimates for human oncogenes31 (Methods, Fig. 3D, 1 
S19). Furthermore, we observe additional evidence of selection and codon bias in 2 
synonymous drivers exclusive to low mutational burdens (TCGA samples, Methods, Fig. 3 
S19).  4 

Finally, our simulations demonstrate that deleterious passengers are necessary 5 
and sufficient to explain the quantitative shape of dN/dS curves – both the steep 6 
attenuation in passengers and the gradual attenuation in drivers (Fig. 3G). In the 7 
Supplementary Note, we discuss several simple models of progression with neutral 8 
passengers that cannot explain the dN/dS curves of drivers (e.g. such as a 5-hit model 9 
or selection bias of tumors with a low mutational burden).  10 

 Our results indicate that rapid adaptation through natural selection – acting on 11 
entire genomes, rather than individual mutations – is pervasive in all tumors, including 12 
those with elevated mutational burdens. Given the quantity of drivers and passengers 13 
observed in a typical cancer (TCGA), our model implies that cancer cells are in total 14 
~90% fitter than normal tissues (130% total benefit of drivers, 40% total cost of 15 
passengers). A median of five drivers each of which has a mean benefit of ~19% 16 
accumulate per tumor in these simulations – also consistent with estimates from age-17 
incidence curves29, known hallmarks of cancer37, and estimates of the selective benefit 18 
of individual drivers34. Lastly, the mutation rates of tumors that could progress to cancer 19 
in our model also recapitulate observed mutation rates in human cancer38 (median 3.7 x 20 
10-9, 95% Interval 1.1 x 10-10 - 8.2  x 10-8, Fig. S20).  21 
 22 
 Most notably, under our modeling assumptions, all passengers together confer a 23 
fitness cost of ~40% per tumor. While this collective burden appears large, the individual 24 
fitness effects of accumulated passengers in these simulations (mean 0.8%) are similar 25 
to observed fitness costs in cancer cell lines (1 - 3%)39 and the human germline 26 
(0.5%)40. Note that in our model, these passengers accumulated primarily via Muller’s 27 
Ratchet, while only ~14% accumulated via hitchhiking (inferred using population 28 
genetics theory28 and MLE fitness effects, Methods, Fig. S21). These results suggest 29 
that Hill-Robertson interference is a plausible model for the empirical patterns of 30 
attenuated selection with mutational burden observed in the data.  31 
 32 
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 1 

Figure 3. ABC procedure estimates the strength of selection in passengers and 2 
drivers. (A) Schematic overview of the ABC procedure used. A model of tumor 3 
evolution with genome-wide linkage contains two parameters — sdrivers (mean fitness 4 
benefit of drivers) and spassengers (mean fitness cost of passengers) — sampled over 5 
broad prior distributions of values. Simulations begin with an initiating driver event that 6 
establishes the initial population size of the tumor. The birth rate of each individual cell 7 
within the tumor is determined by the total accumulated fitness effects of drivers and 8 
passengers. If the final population size of the tumor exceeds one million cells within a 9 
human lifetime (100 years), patient age and accrued mutations are recorded. Summary 10 
statistics of four relationships are used to compare simulations to observed data: (i) 11 
dN/dS rates of drivers and (ii) passengers across mutational burden, (iii) rates of cancer 12 
incidence versus age, and (iv) the distribution of mutational burdens. Simulations that 13 
excessively deviate from observed data are rejected (Methods). (B-C) Inferred posterior 14 
probability distributions of sdrivers and spassengers. The Maximum Likelihood Estimate 15 
(MLE) of sdrivers is 18.8% (green, 95% CI [13.3, 32.7]), and the MLE of spassengers is 16 
0.96% (green, 95% CI [0.28, 3.6%]). (D-F) Comparison of the summary statistics of the 17 
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best-fitting simulations (MLE parameters, dashed lines) to observed data (solid lines). 1 
(D) dN/dS rates of passengers (red) and drivers (light green) for simulated and 2 
observed data versus mutational burden. A model where 10% of synonymous mutations 3 
within drivers experience positive selection (dark green) was also considered. (E) 4 
Cancer incidence rates for patients above 20 years of age. (F) Distribution of the 5 
mutational burdens of tumors. (G) Fine scale comparison of dN/dS within drivers and 6 
passengers in observed data compared to one million simulated tumors using the MLE 7 
estimates of sdrivers and spassengers. 8 

 9 

Discussion 10 
  11 
 Here we argue that signals of selection are largely absent in cancer because of 12 
the inefficiency of selection and not because of weakened selective pressures. In low 13 
mutational burden tumors (≤ 10 total substitutions per tumor), increased selection for 14 
drivers and against passengers is observed and ubiquitous: in SNVs and CNAs; in 15 
heterozygous, homozygous, clonal, and sub-clonal mutations; and in mutations 16 
predicted to be functionally consequential. These trends are not specific to essential or 17 
housekeeping genes. Importantly, these patterns persist across broad and specific 18 
tumor subtypes. Collectively, these results suggest that inefficient selection is generic to 19 
tumor evolution and that deleterious load is a nearly-universal hallmark of cancer. 20 

Importantly, these patterns of selection are missed when dN/dS rates are not 21 
stratified by mutational burden. Since only 0.1% of mutations in TCGA and ICGC reside 22 
within low mutational burden tumors (4% of all tumors, N=563), the dN/dS of 23 
passengers at low mutational burdens (~0.47 - 0.8) do not appreciably alter the pan-24 
cancer dN/dS of passengers (0.97 in our study, 0.82 — 0.98 in1,2,8,11). In fact, the power 25 
to detect negative selection on passengers at low mutational burdens is only possible 26 
by aggregating all mutations within these tumors and estimating dN/dS jointly. Thus, we 27 
believe that low mutational burden tumors are uniquely valuable for identifying genes 28 
and pathways under positive and negative selection. While only 4% of tumors exhibit 29 
substantial negative selection, selection in drivers, selection on CNAs, and expression 30 
patterns of chaperones and proteasome components all show a continuous response to 31 
deleterious passenger load across a broad range of mutational burdens. Collectively, 32 
this suggests that passengers continue to be deleterious even in high mutational burden 33 
tumors.  34 

Using a simple evolutionary model, we show that Hill-Robertson Interference 35 
alone can explain this ubiquitous trend of attenuated selection in both drivers and 36 
passengers. dN/dS rates attenuate in drivers because the background fitness of a clone 37 
becomes more important than the fitness effects of an additional driver at elevated 38 
mutation rates. Furthermore, these simulations indicate that, despite dN/dS patterns 39 
approaching 1 in tumors with elevated mutational burdens, passengers are not 40 
effectively neutral (Ns > 1). Instead, passengers confer an individually-weak, but 41 
collectively-substantial fitness cost of ~40% that measurably impacts tumor progression. 42 
Because this simple evolutionary model does not explicitly incorporate many known 43 
aspects of tumor biology (e.g. haploinsufficiency, see Table S2), these fitness estimates 44 
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are highly provisional. Nonetheless, we note that selection’s efficiency in cancer is 1 
further reduced when spatial constraints are considered24. 2 

The functional explanation for why passengers in cancer are deleterious is 3 
unknown. In germline evolution, mutations are believed to be primarily deleterious 4 
because of protein misfolding4,5. Deleterious passengers in somatic cells should confer 5 
similar effects. Indeed, we find that elevated mutational burden tumors may buffer the 6 
cost of deleterious mutations by upregulating multiple heat-shock pathways. However, 7 
deleterious passengers may carry other costs to cancers or be buffered by additional 8 
mechanisms. Understanding and identifying how tumors manage this deleterious 9 
burden should identify new cancer vulnerabilities that enable new therapies and better 10 
target existing ones41–43. 11 

 12 
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References 1 

Methods & Supplementary Materials 2 
 3 
Data Availability. Exonic, open-access SNV calls (WES) of 10,486 cancer patients in (The 4 
Cancer Genome Atlas) TCGA were downloaded from the Multi-Center Mutation Calling in 5 
Multiple Cancers (MC3) project12. This repository uses a consensus of seven mutation-calling 6 
algorithms. Whole-Genome Sequencing SNV calls (WGS) of 1,830 patients were downloaded 7 
from the ICGC data portal in November 201844. Supplemental analyses on the effect of variant 8 
callers, SNVs from exome and whole genome wide screens were downloaded on October 2016 9 
from the Catalog of Somatic Mutations in Cancer’s (COSMIC) Mutant Export Census15. 10 
Expression data of SNVs were downloaded from the Genotype-Tissue Expression (GTEx) 11 
project (v7 release)45. All CNAs were downloaded from the COSMIC database on June 201515. 12 
Gene expression data compared to CNAs was downloaded from the COSMIC database on 13 
September 2019. To validate our findings, additional WES and WGS SNV calls were 14 
downloaded from cBioPortal from 1,786 treatment-naive, tumor-normal sample pairs across 17 15 
studies of varying cancer types in February 2019. Formalin-Fixed Paraffin Embedded (FFPE) 16 
samples were removed. 46,47,56–62,48–55 17 

Code Availability. All code for the simulations, associated theoretical analysis, and generation 18 
of summary statistics will be made publicly available under the open-source MIT License upon 19 
publication. Code for simulations of tumor growth with advantageous drivers and deleterious 20 
passengers is currently available at https://github.com/mirnylab/pdSim.  21 
 22 
Mutation calling and quality controls. Mutations were downloaded from online repositories 23 
that have already invested heavily in quality control. Multiple data repositories were used to 24 
ensure reproducibility. Post-processing was minimal to avoid engendering a particular result, and 25 
only excluded sequencing samples obtained from cell lines, or studies that did not report 26 
synonymous variants. These exclusions are described in greater detail below.  27 

Somatic Nucleotide Variants (SNVs). Only consensus mutation calls from the PCAWG 28 
Consensus SNV-MNV caller were considered. Both missense and nonsense mutations are 29 
defined as nonsynonymous mutations. Frameshift, indels, and splice-site variants were not 30 
included in analyses. Samples without any synonymous or nonsynonymous mutations in either 31 
dataset were excluded. Note that there is no evidence of germline contamination by common 32 
SNPs (MAF > 5%) from 1,000 Genomes Project63 (v 2015 Aug) using ANNOVAR64 to annotate 33 
mutations in either datasets (Fig. S7). A final of 1,703 whole-genome and 10,152 whole-exome 34 
sequencing samples were used for the analyses in this paper. In SNV data collected from 35 
COSMIC, studies before 2010 that didn’t report silent mutations, and cell lines were removed 36 
from analysis. Whole-exome SNVs in TCGA were also called using Mutect265 (Fig. S3B).  37 

Defining tumor burden. We tested four different mutation burden metrics as a proxy for the 38 
genome-wide mutation rate: (1) the total number of observed mutations, (2) total number of 39 
substitutions in both synonymous and nonsynonymous sites (dN(observed) + dS(observed)), (3) the total 40 
number of mutations in intergenic, and (4) intronic regions. Although only the last two 41 
definitions of mutational burden are completely independent to dN/dS, the vast majority of 42 
samples (10,152 vs 1,703) are derived from whole-exome data. We note that all mutation rates 43 
are strongly correlated to each other (R2  > 0.97). Because only dN + dS could be applied to WES 44 
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data — the majority of samples — and all metrics worked equally-well, we primarily used dN + 1 
dS to measure mutational burden. Lastly, because dN/dS is undefined for tumors with no 2 
synonymous mutations, we necessarily excluded these samples. We also excluded samples with 3 
no nonsynonymous mutations so as to apply a symmetric filter on the data and because data 4 
quality may be compromised in these samples. Inclusion of samples with zero synonymous 5 
mutations or zero nonsynonymous mutations did not appreciably alter observed trends in the 6 
TCGA and ICGC datasets (Fig. S5D).  7 

A Nonparametric Null Model of Mutagenesis to calculate dN/dS. We assume that for any 8 
particular tumor, mutation rates are constant across a gene for a particular tri-nucleotide context 9 
and base change (e.g. C > G). Our procedure is inspired by Constrained Marginal Models (or 10 
‘edge switching’ in network analysis), whereby the marginal distributions of observations 11 
aggregated over known confounding variables are preserved under permutation to create a null 12 
distribution. In our application of this strategy, the marginal distributions of mutations (across 13 
tri-nucleotide context, base change, gene, and tumor) remain preserved – as they would be in a 14 
Constrained Marginal Model; however, we exhaustively consider every acceptable permutation 15 
of the data. Because our approach is highly-constrained, these permutations are exhaustively 16 
computable (median 36 alternatives per mutation). Thus, resampling is unnecessary.  17 

Our null model presumes that all mutations of type i, defined by a tri-nucleotide context 18 
and base change, arise with probability Migt within each gene g and tumor t. For each gene, we 19 
tally the total quantity of nonsynonymous mutations Nig and synonymous mutations Sig. Suppose 20 
selection enriches or depletes nonsynonymous mutations within a gene and tumor by a rate wgt. 21 
The expected number of nonsynonymous and synonymous mutations within a particular tumor 22 
and gene are E[𝑑0] = 𝜔12 ∑ 𝑀312𝑁313  and E[𝑑4] = ∑ 𝑀312𝑆313  in the absence of selective 23 
pressures on synonymous mutations. As with the main text, dN and dN(observed) are used 24 
interchangeably. Although Migt is unknown, dN/dS statistics attempt to infer selection 25 
nonetheless by noting that: 26 

𝐸[𝑑0]
𝐸[𝑑4]

=
𝜔12 ∑ 𝑀312𝑁313

∑ 𝑀312𝑆313
= 𝜔12

< 𝑀312 , 	𝑁312 >
< 𝑀312 , 𝑆312 >

= 𝜔12
𝜌502𝑀1222𝑁122
𝜌542𝑀1222𝑆122

= 𝜔12
𝜌502𝑁122
𝜌542𝑆122

 27 

Note that 𝜌67 =< 𝐴, 𝐵 >/(‖𝐴‖‖𝐵‖) where ‖𝐴‖ = √< 𝐴, 𝐴 > is the Pearson product-moment 28 
correlation coefficient.  When r MN » r MS, 29 

𝐸[𝑑0]/‖𝑁‖3
𝐸[𝑑4]/‖𝑆‖3

≈ 𝜔12 30 

I.e. dN/dS is approximately equal to the selective pressures on nonsynonymous mutations when 31 
the accessible nonsynonymous and synonymous loci are properly accounted and when the 32 
correlation between mutational processes and nonsynonymous loci are roughly equivalent to the 33 
correlation between mutational processes and synonymous loci. Traditionally, this assumption 34 
was used to calculated dN/dS. To improve resolution of dN/dS, researchers have attempted to 35 
account for these correlations using sophisticated parametric models of Migt. An alternative 36 
statistical approach, however, is to treat these correlations as nuisance parameters.  37 
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 Constrained Marginal Models permute observed data in all possible manners that 1 
preserve the underlying covariance structure of the data (e.g. r MN, r MS). In our particular case 2 
of this method, we note that by definition, 𝑑0

89:;<29= = ∑ (𝑑0>?@9:A9=3𝑁3 +3 𝑑4>?@9:A9=3𝑁3). Thus:  3 

𝐸<𝑑0
89:;<29==

𝐸<𝑑4
89:;<29==

=
∑ >𝜔12𝑀312𝑁312B +𝑀312𝑁312𝑆312?3

∑ >𝜔12𝑀312𝑁312𝑆312 +𝑀312𝑆312B ?3
4 

=
𝜔12𝜌502𝑀1222𝑁122

B
+ 𝜌502𝑀1222𝑁1222𝑆122

𝜔12𝜌542𝑀1222𝑆1222𝑁122 + 𝜌542𝑀1222𝑆122
B 																																		5 

=
𝜌502𝑁122
𝜌542𝑆122

 6 

Hence, by dividing the observed mutations by all permutations, we eliminate the covariance of 7 
mutational processes with available loci and, thus, measure wgt directly for any particular gene-8 
tumor combination without mutational bias.  9 

Unfortunately, because of the log-sum inequality, mutational bias can arise once cohorts 10 
of genes and cohorts of tumor samples are binned. This problem is common to all dN/dS 11 
measures and is a consequence of the correlation of mutational biases with selection (i.e.	<12 
𝑀312 , 𝜔12 >) – not the correlation of mutational biases with one another, as these covariances are 13 
already accounted-for in a Constrained Marginal Model. For example, if tri-nucleotide biases 14 
covary linearly with gene-level biases, and are independent of tumor-level biases, then a 15 
parametric estimate of Migt may deconstruct Migt into 𝑀312 = 𝑓>𝑖, 𝑔, 𝑡, 𝜌31?, where 𝜌31 is the 16 
covariation of tri-nucleotide mutational biases with gene-level biases. Nonetheless, <17 
𝑀312 , 𝜔12 >	∝	< 𝜌31, 𝜔12 > will still be ignored. Indeed, this covariation of mutational processes 18 
with selective forces is the focus of our current study: selection and genome-wide mutation rate 19 
are correlated (i.e. ∑ 𝑀312𝜔12 ≠ 02 ) because of Hill-Robertson Interference. Hence, the level at 20 
which observed dN values dS are binned necessarily ignores covariation between mutational 21 
processes and selection (in addition to any variation of wgt within the bin). Another example of 22 
this binning challenge arises when positive and negative selection act on different regions of the 23 
same gene, which gene-level dN/dS binning can misinterpret as neutral evolution. 24 

Validation of nonparametric null model. To confirm that our null model can accurately 25 
estimate dN/dS even in the presence of extreme tri-nucleotide mutational biases, we simulated 26 
artificial data where different COSMIC signatures15 (SBS Signatures 1-9, v3) contribute to all of 27 
the mutations. Permuted dN and dS tallies for each mutational context were simulated by 28 
randomly sampling 1,000 genes with the same mutational context. The fraction of permuted dN 29 
and dS tallies for each mutational context was used as weighted probabilities to derive observed 30 
dN and dS tallies. To simulate negative selection, dN counts were randomly removed from each 31 
context at a rate 1 - wgt (e.g. a simulated ‘true’ dN/dS of 0.8 in a cohort of samples indicates a 32 
20% chance of nonsynonymous mutations being removed in the samples). These simulated (true) 33 
rates were then compared to observed and permuted dN and dS tallies according to the dN/dS 34 
metric that we used throughout this study: 35 
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𝑑𝑁
𝑑𝑆 =

𝑑0
(observed) 𝑑0

(permuted)&
𝑑4
(observed) 𝑑4

(permuted)&
 1 

We confirmed that this approach accurately measures selection in the presence of simulated 2 
mutational biases (Fig. S2) 3 

The number of permutations available for each gene/tri-nucleotide combination declines 4 
with gene length. Ultra-short genes may be too constrained for our permutation approach and 5 
underestimate selective pressures. While 12% of genes in our study harbored fewer than 10 6 
permutations per mutation, these genes contained only ~ 3% of all mutations, as these genes are 7 
exceptionally short. Exclusion of these genes did not appreciably alter observed dN/dS patterns 8 
(Fig. S3E).   9 

Mutations can be permuted across every identical tri-nucleotide context within a 10 
particular gene or every identical tri-nucleotide context within a particular transcript. For 11 
differentially-spliced genes, transcript and gene annotations differ: transcripts are comprised of a 12 
subset of exons that define the whole gene. Hence, WES data directly sequences transcripts, 13 
which can be overlaid along the genome to infer genes. Because transcript annotations directly 14 
match WES data, which comprises 85% of available samples, we chose to constrain 15 
permutations at the transcript level (ENST) rather than the gene level (ENSG or Hugo 16 
Symbols)66. This choice does not appreciably affect dN/dS patterns (Fig. S25), however there is 17 
a slight universal shift towards a dN/dS rate of 1 (in both drivers and passengers) when 18 
permuting at the gene level. Presumably, this is because exons exclusive to rare splicing variants 19 
experience weaker selective pressures (and/or less transcription-coupled DNA repair.) The subtle 20 
differences between gene-level and transcript-level null models may explain the subtle difference 21 
in genome-wide dN/dS levels between our approach and the dNdScv model1 (Fig. S3C).  22 

Lastly, we note that binning nonsynonymous and synonymous mutations at the genome-23 
wide level (e.g. drivers and passengers) provided the most robust estimates of dN/dS when 24 
bootstrapping observed tumor samples. Statistical power is insufficient when binning at the 25 
individual gene level. Bootstrapping also demonstrated that log transformation of dN/dS values 26 
increases statistical power, and thus was generally applied to dN/dS analyses in this study. 27 

A Parametric Null Model of Mutagenesis. For comparison, we also calculated dN/dS using 28 
dNdScv67 – a previously-published parametric null model of mutagenesis in cancer1. To compare 29 
both methods, dNdScv was ran globally and separately on samples stratified by the total number 30 
of substitutions using the following parameters:  31 

 max_coding_muts_per_sample = Inf 32 
 max_muts_per_gene_per_sample = Inf 33 

Global dN/dS values of all nonsynonymous mutations (wall, reported by dNdScv) were used. This 34 
model reproduced our nonparametric dN/dS trends (Fig. S3) and was used to infer patterns of 35 
selection in synonymous mutations (Fig. S19). We note that stratifying tumors in TCGA into 20 36 
bins of equal sample-size (as was done in 1), rather than evenly-spaced bins, averages-out a 37 
significant proportion of the negative selection observed in passengers, since low mutation 38 
burden tumors reside within the tail-end of the distribution (Fig. S10). 39 
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Orthogonality of dN/dS with Mutational Burden and effects of excluding samples with no 1 
synonymous mutations. Mutational burden is generally calculated as the total number of 2 
substitutions within a sample (i.e. dN + dS), however these tallies are also used in our 3 
measurement of dN/dS. Hence, any interdependence of mutational burden with dN/dS could bias 4 
our understanding of the relationship between selection and genome-wide mutation rate. We 5 
consider the interdependence of these two measures by assuming that both dN and dS are 6 
Poisson-distributed with rate parameters λN and λS. The joint probability mass density of any 7 
combination of these two quantities is then: 8 

𝑓(𝑑0 , 𝑑4) =
𝜆4
=!N="𝑟=!𝑒OP"(:NQ)	
𝑑0! 𝑑4! (1 − 𝑒OP")

 9 

Here, r = λN / λS. The expectation value of dN/dS, for any degree of selection versus any 10 
combination of nonsynonymous and synonymous mutation tallies can then be calculated simply 11 
by exhaustively summing over all combinations that arise with probability above machine 12 
precision. In Figure S5, we compare the variation in dN/dS for a typical genome under neutral 13 
selection or equally-balanced positive and negative selection (r = 2.8) using the dN + dS and dS 14 
mutational burden metrics. We observe less deviation from expectation using dN + dS primarily 15 
because dS alone is a poor proxy for the mutation rate — i.e. there are far fewer synonymous 16 
mutations to use to estimate the mutation rate. dN + dS did exhibit slightly greater bias in 17 
observed dN/dS relative to expectation, however this bias was small compared to the variation in 18 
estimates (<5% for mutational burdens greater than 2) and biased observed estimates towards 19 
increased values of dN/dS, which will only understate the degree of negative selection. Lastly, 20 
we note that because the genome-wide dN/dS is approximately 1, deviations from these 21 
theoretical calculations should be minimal.  22 

We also tested the effects of this non-orthogonality of our approach in three additional 23 
ways. First, we investigated the correlation of mutational burden metrics mutation rate in our 24 
simulated tumors (see below) and found that dN + dS correlated most strongly with mutation rate 25 
(Fig. S5C). Next, we randomly-partitioned all protein-coding mutations into two necessarily-26 
orthogonal halves: a half that defined the mutational burden and a half that was used for 27 
calculating dN/dS. This partitioning found that selection patterns persisted (Fig. S5B). Finally 28 
using WGS data, we compared dN/dS to measures of mutational burden that excluded data from 29 
protein-coding regions (all intergenic and all intronic mutations), which once again represents a 30 
completely-orthogonal comparison of dN/dS with mutational burden (Fig. S3).  31 

Identification of driver genes in cancer. For all analysis using SNVs, unless explicitly stated, a 32 
comprehensive list of 299 pan-cancer driver genes derived from 26 computational tools was used 33 
to catalog driver genes16. Other pan-cancer driver gene sets tested were derived from COSMIC’s 34 
Driver Gene Census15 (downloaded on October 2016) and IntOGen’s Cancer Drivers Database17 35 
(v2014.12) which contained 602 and 459 number of driver genes, respectively.   36 

Many driver genes are associated with only particular tumor subtypes. To compare 37 
patterns of selection across cancer subtypes without increasing or decreasing the size of the list 38 
for each subtype, we chose to use a single set of driver genes for most analyses. This may 39 
understate the degree of positive selection in driver genes as mutations in these genes may be 40 
passengers in some tumor subtypes. In Fig. S8, we investigate patterns of selection using the top 41 
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100 driver genes identified for each tumor type and observe decreased signatures of positive 1 
selection overall in driver genes. Nevertheless, the patterns of attenuated selection in drivers and 2 
passengers remains. While tissue-type specific driver genes certainly exist, our results suggest 3 
that our statistical power to detect drivers still remains too limited to justify subdividing analyses 4 
by tumor type in many cases.  5 

For all CNA analysis, GISTIC 2.068 was used to identify a set of genomic regions 6 
enriched for copy number gains and copy number losses using recommended settings with a 7 
confidence threshold of 0.9. CNAs used to identify these peaks were downloaded from the NIH 8 
Genomic Data Commons (GDC)27 in the TCGA cohort. For each amplification peak, the closest 9 
gene was annotated as a putative Oncogene, and similarly the closest gene to each deletion peak 10 
was annotated as a putative Tumor Suppressor. The top 100 amplification peaks (oncogenes) and 11 
deletion peaks (Tumor Suppressors) were classified as drivers for each of the 32 tumor types. 12 
34% of identified driver genes appear in more than one tumor type, while 2.6% of identified 13 
driver genes appear in more than five tumor types.  14 
 15 
 For both SNV and CNA analysis, passengers were defined as mutations that did not 16 
reside within driver genes. The vast majority of mutations are passengers, and their relative totals 17 
for both SNVs and CNAs are depicted in Fig. S24. 18 

Annotation of clonal and subclonal mutations. Since TCGA contains SNVs with high 19 
coverage and available purity estimates, only MC3 SNVs (exclusive to TCGA) were used in this 20 
analysis (WGS read-depth is generally lower than WES read-depth). Variant allele frequencies 21 
(VAFs) were calculated per site as the number of mutant read counts divided by the total number 22 
of read counts. VAFs were adjusted for purity using calls made by ABSOLUTE27,69, collected 23 
from GDC. A VAF threshold of 0.2 was used to define ‘subclonal’ (< 0.2) vs ‘clonal’ (> 0.2) 24 
SNVs. Different VAF thresholds were considered (Fig. S12) and the choice of ‘clonal’ 25 
thresholding did not impact the conclusions of this study. 26 

Polyphen2 analysis. PolyPhen2 annotations in the MC3 SNP calls were used18. Only missense 27 
mutations that were categorized as either ‘benign’, ’probably damaging’ or ‘possibly damaging’ 28 
were used. The fraction of pathogenic missense mutations was calculated as the number of 29 
pathogenic mutations categorized as either “probably damaging” or “possibly damaging” divided 30 
by the total number of categorized mutations.   31 

Classification of genes by functional category. To test for patterns of selection in functionally 32 
related genes, we annotated all mutations by different functional categories and Gene Ontology 33 
(GO) terms26. Oncogenes and tumor suppressors were annotated from a curated set of 99 high 34 
confidence cancer genes70. Essential genes were collected from a genome-wide CRISPR screen 35 
that identified genes required for proliferation and survival in a human cancer cell line71. 36 
Housekeeping genes were defined as genes with an exon that is expressed in all tissues at any 37 
nonzero level, and exhibits a uniform expression level across tissues72. Interacting proteins were 38 
downloaded from the mentha database in April 201973. 39 

To identify highly expressed genes, median transcripts per million (TPM) in 54 tissue 40 
types (v7 release) were downloaded from the Genotype-Tissue Expression (GTEx) project45. 41 
Tissues that contained high expression in most genes, specifically testes, were removed. Only 42 
genes that had TPM counts above zero in any of the 53 remaining tissues were used. TPM counts 43 
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were averaged across all tissues. Highly expressed genes were defined as the top 1000 genes 1 
expressed across all tissues.  2 

To test for signals of negative selection in other functional groups, we annotated 3 
mutations by candidate GO terms according to Biological Processes: Transcription Regulation 4 
(GO Term ID: 0140110), Translation Regulation (GO Term ID: 0045182), and Chromosome 5 
Segregation (GO Term ID: 0007059). 6 

Somatic Copy Number Alteration (CNAs). All CNAs were downloaded from the COSMIC 7 
database on June 201515. Mitochondrial CNAs were discarded from analysis, as copy number 8 
changes are difficult to infer. Gene annotations and the locations of telomeres and centromeres 9 
were downloaded from the UCSC Genome Browser (hg19). Telomeric and centromeric regions 10 
were masked from all measurements of dE/dI. Because the selection patterns of non-focal CNAs 11 
— alterations with at least one terminus in a telomere or centromeric region — were not 12 
noticeably different from long (>100kb) focal CNAs, these two alteration classes were 13 
aggregated for analysis. Notably, we observed positive selection for both amplifications and 14 
deletions within oncogenes, and for both deletions and amplifications within Tumor Suppressors. 15 
For this reason, we did not distinguish between gains and losses, nor oncogenes and Tumor 16 
Suppressors in published analyses: any CNA that overlapped an oncogene or tumor suppressor in 17 
any region (for any fraction of the CNA) was classified as a driver. Mutational burden was 18 
defined simply as the total number of CNAs within a sample. Pan-cancer CNAs from cBioPortal 19 
(August 2018) were also analyzed, however consistent purity and ploidy estimates could not be 20 
obtained by using either ABSOLUTE69 or TITAN74, so this data was not used for published 21 
analyses of CNAs.  22 

Measurements of selection on CNAs. dE/dI was calculated using a ‘Breakpoint Frequency’ 23 
metric and a ‘Fractional Overlap’ metric. For both metrics, the dE/dI of a particular gene set i 24 
(e.g. driver or passenger genes) is defined by a genomic track Ti,g , which is one for every 25 
annotated region g of the track and zero elsewhere. Only non-centromeric and non-telomeric 26 
regions are considered in the mappable human genome G. Each CNA Cg,m is defined by its 27 
position on the genome g and the mutational burden m of the tumor harboring the mutation. For 28 
‘Breakpoint Frequency’ Cm,i is one at the position of both termini of the CNA and zero 29 
elsewhere. For ‘Fractional Overlap’ Cm,i is 1/L, where L is the length of the CNA,  for every 30 
region of the genome spanned by the CNA and zero elsewhere. For a particular range of 31 
mutational burdens M, dE/dI was defined as: 32 

𝑑𝐸
𝑑𝐼 3,5

=
∑ ∑ 	𝑇3,1	𝐶;,1S

1
5
;

∑ 𝑇3,1S
1

 33 

We note that calculation is accelerated by >100x by commuting Ti,g with the outer summation 34 
(SmM ). Lastly, we randomly permuted the start and stop positions of each CNA, while preserving 35 
its length, to derive a set of neutral CNAs not experiencing selection. This permutation analysis 36 
finds that dE/dI for both breakpoint frequency and fractional overlap is ~1 in the absence of 37 
selection (Fig. S23). 38 

Tumor purity analysis in TCGA samples. Tumor purity estimates from the ABSOLUTE 39 
algorithm69 were downloaded from the GDC on May 2020. For all tumors and for tumors with 40 
<= 10 substitutions, correlation coefficients between the total number of substitutions and tumor 41 
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purity were calculated. To evaluate the effects of tumor purity on patterns of selection, tumors 1 
below increasing thresholds of tumor purity were removed from the analysis, and dN/dS was 2 
calculated on tumors stratified by mutational burden bins (as described above.)  3 

Expression analysis. Gene expression data was downloaded from the COSMIC database on 4 
September 2019. Genes used to identify different protein folding pathways were downloaded 5 
from 75, genes involved in protein degradation pathways were identified from 76. The median 6 
gene expression of all genes in each protein folding pathway was used. Patients were binned by 7 
the total number of substitutions (using MC3 SNP calls from TCGA) and CNAs, and the average 8 
gene expression of each bin was calculated. 9 

Cancer subtype analysis. All tumor subtypes in TCGA and ICGC were grouped into 9 sub-10 
categories, based on broad, predominantly anatomical features. Anatomical features (i.e. organ 11 
and systems of organs), rather than histological features or inferred cell-of-origin, were used as 12 
groupings because we believe that the fitness effects of mutations should be predominantly 13 
defined by the environment of the tumor. Nevertheless, we observed attenuated selection in both 14 
drivers and passengers in many broad histologically defined classifications (e.g. 15 
adenocarcinomas & sarcomas). For all cancer grouping analysis (broad and subtype), tumors 16 
were stratified into bins by the total number of substitutions (dN + dS) on a log scale. Since tumor 17 
subtypes vary in their range of mutational burdens, (e.g. KIRC cancer subtypes only have tumors 18 
with <100 substitutions), dN/dS values in the lowest and highest mutational burden bin for each 19 
cancer-subtype are shown.  20 

Specific cancer subtype categories were taken directly from the NCI Genomic Data 21 
Commons (GDC)27. Because CNAs were downloaded from COSMIC, CNA datasets were not 22 
classified with this same ontology. Table S1 details how CNA classifications were mapped on 23 
GDC categories (and sometimes more broadly-defined groups). All subtypes with >200 samples 24 
were used in our CNA subtype analyses (Fig. S15).  25 

An evolutionary model with Hill-Robertson Interference. Somatic cells in our populations are 26 
modeled as individual cells that can stochastically divide and die in a first-order (memoryless) 27 
Gillespie Algorithm. This model was developed and described previously33. During division, 28 
cells can acquire advantageous drivers with rate µTdrivers and deleterious passengers with rate 29 
µTpassengers – these values specify the mean of Poisson-distributed pseudo-random number (PRN) 30 
generators that prescribe the number of drivers and passengers conferred during division (e.g. the 31 
number of drivers per division nd = Poisson[nd = k; λ = µTdrivers ] = λk e-k / k! ). The Distribution of 32 
Fitness Effects (DFE) conferred by each driver and each passenger are Exponentially-distributed 33 
PRNs with probability densities P(si = x; sdrivers) = Exp[-x/sdrivers]/sdrivers and P(si = x; spassengers) = -34 
Exp[-x/spassengers]/spassengers respectively. Simulations with other exponential-family DFEs do not 35 
qualitatively differ from these exponential distributions28. The aggregate absolute cellular fitness 36 
is 𝑓 = ∏ (1 + 𝑠3)TUU	;<2T23>W@

3  in our Multiplicative Epistasis model and Δ𝑓 = 𝑠3/(1 + 𝜈𝑓) with n 37 
= 1 in our Diminishing-Returns Epistasis Model where Df is the change in cellular fitness with 38 
each mutation77. The rate of cell birth is inversely proportional to cellular fitness, while the rate 39 
of cell death 𝐷(𝑁;𝑁X) = Log[1 + 0

(9OQ)0#
] increases with the population size of the tumor N. 40 

With these birth and death processes, mean population size abides by a Gompertzian growth law 41 
in the absence of additional mutations, which is scaled by the mean cellular fitness E[N(< f >)] = 42 
Log[1 + < f > / N 0] (derived from Master Equation28). While, programmatically, mutations 43 
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exclusively affect the birth rate and the constraints on growth exclusively affect the death rate, 1 
we previously demonstrated that birth and death rates are generally nearly-balanced such that 2 
dynamics are not affected by this design choice.  3 

 Because somatic cells do not recombine during cell division, dominance coefficients 4 
were not explicitly modeled. Thus in diploid cancers, our selection coefficients estimate the 5 
mean heterozygous effect of drivers and passenger (i.e. hs). Similarly, Loss of Heterozygosity 6 
(LOH) events (gene losses, gene conversions, mitotic recombination, etc) are not explicitly 7 
modeled either; however, these events can be viewed as additional mutations that may be either 8 
adaptive drivers or deleterious passengers in the model. As sequencing data improves, we 9 
believe that it will be informative to explicitly model dominance coefficients, tumor ploidy, and 10 
LOH events.   11 

Simulations progressed until tumor extinction (N = 0 cells), malignant transformation (N 12 
= 106 cells), or until approximately 100 years had passed (18,500 generations). Only fixed 13 
mutations (present in the Most Recent Common Ancestor) within clinically-detectable growths 14 
were analyzed in our ABC pipeline. The behavior of this model has been described 15 
previously28,33 and the most relevant assumptions of this model and their effects on the 16 
conclusions of this study are described in Table S2.  17 

Cells in our populations are fully described by their accrued mutations, and birth and 18 
death times. Birth and death events were modeled using an implementation of the Next 19 
Reaction78, a Gillespie Algorithm that orders events using a Heap Queue. Generation time in our 20 
model was defined as the inverse of the mean birth rate of the population: 1/ <B(d, p)>. While all 21 
mutation events occurred during cell division, if mutations were to occur per unit of time (rather 22 
than per generation), rapidly growing tumors would acquire drivers at a slightly slower rate as 23 
generation times decline over time. This effect, however, is negligible compared to the variation 24 
in waiting times conferred by the variation in mutation rates (division times merely double, while 25 
mutation rates vary by 100,000-fold). 26 

This simple evolutionary model is defined by five parameters µTdrivers, µTpassengers, sdrivers, 27 
spassengers, and N0. The target size of drivers is defined as the approximate number of 28 
nonsynonymous mutations in the Bailey Driver Screen Tdrivers = (# of driver genes)•(mean driver 29 
length)•(fraction of SNVs that are nonsynonymous) = 300 genes • 1298 loci/gene • 0.737 30 
nonsynonymous loci / loci = 286,886 nonsynonymous loci. The target size of passengers was 31 
simply the remaining loci in the protein coding genome, Tpassengers = 20,451,136 nonsynonymous 32 
loci.  The mutation rate was constant throughout each tumor simulation and randomly-sampled 33 
from a uniform distribution in log-space that ranged from 10-12 to 10-7 mutations•loci-34 
1•generation-1.  While tumors were initiated from this broad range, malignancies (N > 106 cells) 35 
were almost always restricted to mutation rates between 10-10 and 10-8 (Fig. S20), as tumors with 36 
mutation rates drawn below this range almost never progressed to cancer within 100 years and 37 
tumors with mutation rates drawn above this range went extinct through natural selection.  38 

The likelihood that tumors progress to cancer in the presence of deleterious passengers 39 
depends heavily on the initial population size N0 of the tumor. This dependence was studied 40 
previously33, where it was demonstrated that reasonable evolutionary simulations (those that 41 
progress to cancer >10% of the time, but less than 90% of the time) are restricted to a four-42 
dimensional manifold N* within the five-dimensional phase space of parameters. For this reason, 43 
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N0 = N*(sdrivers, spassengers, µTdrivers, µTpassengers) was determined by the other four parameters. To 1 
first-order, this manifold is Tpassengers spaassengers / (Tdrivers sdrivers2), however a more precise estimate 2 
(Eq. S8 of 33) incorporating more precise estimates of Muller’s Ratchet and the effects of 3 
hitchhiking on both driver and passenger accumulation rates, which does not exist in closed form 4 
was used. Additionally, at very low values of sdrivers, progression to cancer is limited by time, not 5 
by the accumulation of deleterious passengers. Hence, we assigned N0 such that: 6 

𝑁X = 𝑀𝑎𝑥0#[𝑃YTWY9:(𝑁X 𝑁∗⁄ ) = 0.5, 	𝑡YTWY9:_________(𝑁X 𝑁∗⁄ ) = 	18,500	generations] 7 

Here, Pcancer and tcancer – the likelihood and waiting-time to cancer – are defined by equations S8 8 
and S12 respectively in 33. N0 was determined from these equations using Brent’s Method. 9 
Supplementary Figure 17 depicts the values of N0, which ranged from 1 to 100 for all 10 
simulations.  11 
 In tumors that progress to malignancy (N = 106), only fixed nonsynonymous mutations 12 
(present in all simulated cells) were recorded. We also recorded (i) the fitness effect of these 13 
mutations, (ii) the mean population fitness, (iii) the number of generations until malignancy, and 14 
(iv) the mutation rate. These two values were used to generate the number of synonymous 15 
drivers and passengers, where P(ds = k) = Poisson[k; λ = µTdrivers/passengers /r tMRCA] defines the 16 
number of synonymous drivers/passengers conferred, tMRCA represents the number of division 17 
until the Most Recent Common Ancestor arose in the simulation, r = 2.795 represents the ratio of 18 
nonsynonymous to synonymous loci within the genome, weighted by the genome-wide 19 
trinucleotide somatic mutation rate, and the Poisson PRN generator was defined above. In 20 
simulations where synonymous drivers could arise, a fraction of the recorded nonsynonymous 21 
mutations (ranging from 0 – 20%) were simply re-labeled as synonymous drivers (as opposed to 22 
nonsynonymous drivers). This was done, again, by Poisson-sampling in proportion to the desired 23 
fraction for each cancer simulation.  24 

20 x 20 combinations of sdrivers and spassengers parameters were simulated (Fig. S16 & S17). 25 
Simulations were repeated until 10,000 cancers at each parameter combination were obtained or 26 
until 10 million tumor populations were simulated. While we attempted to initiate tumors at a 27 
population size where the probability of progression to cancer was 50%, some parameter 28 
combinations still did not yield 10,000 cancers after 10 million attempts (i.e. Pcancer < 0.1%). 29 
These combinations were predominately at low values of sdrivers, which were far from the MLE 30 
estimate of sdrivers and represent unrealistic evolutionary scenarios: drivers cannot be weakly 31 
beneficial, relegated to only 300 genes, and still overcome deleterious passengers within 100 32 
years. These simulations are annotated as “Progression Impossible.” Simulation parameter 33 
sweeps were performed for both the Multiplicative and Diminishing Returns Epistasis models. 34 
Twenty fractions of synonymous drivers were also generated (ranging from 0% to 20%). These 35 
fractions were generated by simply re-labeling the driver mutations which conferred fitness 36 
(generated during the simulation) as synonymous, instead of nonsynonymous.  37 
Summary statistics of simulated and observed tumors. For both simulated and observed data, 38 
we summarized dN/dS rates versus mutational burden for drivers and for passengers by decade-39 
sized bins: (0, 10], (10, 100], (100, 1,000]. Mutational burden for simulations was defined as the 40 
total number of substitutions (dN + dS) – exactly as it was defined for observed data. For 41 
simulated data, dN/dS = dN/(dS • r). Like observed data, dN/dS rates attenuated towards 1 for both 42 
drivers and passengers for all values of sdrivers and spassengers.  43 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 24, 2021. ; https://doi.org/10.1101/764340doi: bioRxiv preprint 

https://doi.org/10.1101/764340
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

 Mutational Burdens (MB) for simulated and observed data were summarized with the 1 
parameters of a Negative Binomial distribution, where 𝑃(MB = 𝑘; 	𝑛, 𝑝) = m𝑘 + 𝑛 − 1𝑛 − 1 n𝑝W(1 −2 

𝑝)[. This distribution has been used previously to summarize the mutational burdens of human 3 
tumors 79 and exactly defines the expected number of mutations at transformation in a Multi-4 
Stage Model of Tumorigenesis30 when n drivers are needed for transformation and the 5 
probability that any mutation be a driver is 1 – p 80. Both n and p were used to summarize MB. 6 
These quantities were determined by Maximum Likelihood optimization of the probability mass 7 
function above over the support of mutational burdens of [1, 1,000] substitutions. The Han-8 
Powell quasi-Newton Least-squares method was used for optimization.  9 

 Age-dependent Cancer Incidence rates (CI) were summarized with the parameters of a 10 
Gamma distribution, where 𝑃(𝐶𝐼 ≤ 𝑡; 	𝑘, 𝜃) = 	 Q

\([)
𝛾 m𝑘, 2

]
n. Here, 𝛾(𝑠, 𝑥) = ∫ 𝑡@	O	Q𝑒O2𝑑𝑡^

X  is 11 
the lower incomplete gamma function and G(k) = g(k, ¥) is the regular gamma function. Similar 12 
to our summarization of mutational burdens, this distribution is a generalization of the exact 13 
waiting time to transformation expected from a Multi-Stage Model of Tumorigenesis when 14 
tumors arise at a uniform rate over time, require k drivers for transformation, and wait an average 15 
time of q  between drivers 80. This Cumulative Distribution Function was fit to observed 16 
incidence rates for all patients above 20 years of age using the least squares numerical 17 
optimization defined above (All cancer sites combined, both sexes, all races, 2012 – 2016 81). 18 
Patients under 20 years of age were excluded because cancers in these patients generally arise 19 
from germline predispositions to cancer, which are (i) not directly modeled by our simulations, 20 
(ii) not detected as somatic mutations, and (iii) result in age-incidence curves that do not agree 21 
with a Gamma distribution30. Because all cancer simulations are initiated at t = 0 (instead of 22 
uniformly in time, as is presumed in the Multi-Stage Model), the simulated data was fit using the 23 
probability density function of this distribution (instantaneous derivative) using Maximum 24 
Likelihood and the optimization algorithm described above. The cumulative distribution, then, 25 
represents the expected age-incidence cancer incidence rate when simulations begin at 26 
uniformly-distributed moments in time and, thus, was used to generate Figure 3D. Only the 27 
shape parameter k was used in ABC (and q  was ignored), as this parameter only specifies the 28 
dimensionality of time (simulation time was measured in cellular generations, not years) and all 29 
values of q  in our simulations are equivalent under a Gauge transformation. Additionally, we do 30 
not expect the exact times of incidence to be particularly informative as the time of 31 
transformation is generally somewhat earlier than the time of detection.  32 

Use of Approximate Bayesian Criterion (ABC) for model selection and parameter 33 
inference. Like many Bayesian analyses, the main steps of an ABC analysis scheme are: (1) 34 
formulate a model, (2) fit the model to data (parameter estimation), and (3) improve the model 35 
by checking its fit (posterior-predictive checks) and (4) comparing this model to other models 36 
82,83. 37 

 The nine summary statistics described above were used to compare simulations to 38 
observed data. Agreement was summarized with a Log-Euclidian distance, as all summary 39 
statistics resided on the domain [0, ¥) and log-transformation of the summary statistics 40 
minimized heteroscedasticity of the simulated data relative to a square-root or no transformation. 41 
Variance of the summary statistics was not normalized. ABC was performed using the `abc` R 42 
package82. 43 
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The rejection method (Feedforward Neural Net) and tolerance (0.5) were chosen based 1 
on their capacity to minimize prediction error of the simulated data using Leave-one-out Cross 2 
Validation (CV, Fig. S18A). 10,000 instances of the neural network, which was restricted to a 3 
single layer, were initiated and the median prediction of these networks were used. These 4 
parameters were used for both model comparison and parameter inference. The posterior model 5 
probability (postpr) was used to compare the two epistatic models (Diminishing Returns versus 6 
Multiplicative). The likelihood of the data under the Diminishing Returns model (14%) was less 7 
than the likelihood under the Multiplicative Epistasis Model (86%). For parameter inferencing, 8 
the sdrivers and spassengers prior values were log-transformed.  9 

 For the synonymous driver model, the base model (without synonymous drivers) was 10 
simply the lowest quantity of synonymous drivers (0%) in the parameter sweep of synonymous 11 
driver quantities (Fig. S18B). The posterior probability mass of this value 0.043 was used as the 12 
one-sided p-value for the null hypothesis that these two models are equally predictive. Although 13 
the synonymous driver model agreed with the observed data slightly-better, sdrivers and spassengers 14 
parameters could not be inferred from the data because the potential for synonymous drivers 15 
destroys the utility of a dN/dS statistics, which is predicated on the notion that synonymous 16 
mutations are neutral. Virtually any value of dN/dS is attainable when the right combinations of 17 
selective pressures on nonsynonymous and synonymous are paired (Fig. S18C).  18 

  19 
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Supplementary Note 1 

Here, we consider alternative explanations for the attenuation of dN/dS rates in driver 2 
genes with increasing Tumor Mutational Burden (TMB). In the main text, we argue that 3 
the attenuation in both the driver and the passenger dN/dS curves observed within 4 
cancers are most consistent with evolutionary models where passengers are 5 
deleterious and, thus, interfere with natural selection. Certainly, the attenuation of dN/dS 6 
in passengers is the most direct evidence for the deleteriousness of these mutations; 7 
however, the attenuation of dN/dS of drivers due to Hill-Robertson Interference is also 8 
strong evidence of for the deleteriousness of passengers.  9 
 10 
 We cannot reasonably entertain evolutionary models where Hill-Robertson 11 
Interference does not exist because it is an inextricable consequence of asexual 12 
evolution. Instead in this note, we consider other factors that might also impart an 13 
attenuating dN/dS in drivers in an asexually-evolving tumor and discuss how these 14 
models are inconsistent with the observed genomic patterns within drivers.  15 
 16 
Evolutionary models with a fixed quantity of driver mutations (multi-hit model). 17 
Suppose progression to malignancy is contingent upon acquisition of a fixed number of 18 
nonsynonymous driver mutations (we refer to this as a ‘multi-hit’ model), while the 19 
acquisition of passenger mutations (including synonymous mutations within driver 20 
genes) is entirely random. In such a scenario, TMB will abide by a negative binomial 21 
distribution with the ratio of drivers to passengers necessarily increasing as TMB 22 
decreases – driver quantities are fixed, while passengers are randomly dispersed. 23 
Because synonymous driver mutations are also passengers, the quantity of these 24 
mutations will also decrease with TMB, thereby increasing the driver dN/dS ratio as 25 
TMB decreases.  26 
 27 
While driver dN/dS will decrease with TMB in this model, this model also predicts that 28 
tumors will exhibit a constant quantity of nonsynonymous drivers and a paucity of 29 
synonymous driver mutations at low TMB. Quite the contrary, low TMB exhibit slightly 30 
more synonymous driver mutations than expected (Fig. S19A). Furthermore, the 31 
quantity of nonsynonymous drivers increases with TMB suggesting that higher TMB 32 
tumors must acquire more drivers to overcome their deleterious passenger load.  33 
 34 
Evolutionary models where a fraction of nonsynonymous mutations within driver 35 
genes are neutral (causing selection bias for drivers at low TMB). The multi-hit 36 
tumorigenesis model might still be capable of explaining observed dN/dS patterns in 37 
drivers, if we assume that a fraction of nonsynonymous mutations within driver genes 38 
are not drivers, but instead neutral mutations. This model can recapitulate the increase 39 
in nonsynonymous drivers with TMB because low TMB tumors are conditionally-40 
required to harbor fewer neutral mutations overall (including fewer mutations in 41 
passenger genes, fewer synonymous mutations, and fewer neutral nonsynonymous 42 
mutation within driver genes).  43 
 44 
Unfortunately, the quantitative shape of this model is still inconsistent with the observed 45 
dN/dS driver curve.  46 
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 1 
A multi-hit tumor model without deleterious passengers cannot explain dN/dS patterns in 2 
drivers. We considered a model of tumorigenesis where a fixed quantity of drivers n is required 3 
for tumorigenesis. Passengers, synonymous driver mutations, and neutral nonsynonymous 4 
mutations within driver genes (50% of nonsynonymous mutations within these genes) were all 5 
negative-binomially distributed random variates with shape parameter n. Expected dN/dS values 6 
for this model were calculated exactly. The resulting dN/dS curve in drivers (blue) declines 7 
hyperbolically with TMB and cannot explain observed dN/dS patterns in drivers (green).   8 

 9 
Specifically, the effects of selection bias for nonsynonymous drivers decline faster than 10 
the observed attenuation in drivers. This model predicts a hyperbolic decline, whereas 11 
we found that the observed dN/dS in drivers is better-described by a logistic curve after 12 
log-transforming TMB.  13 
 14 
Evolutionary models with diminishing returns to driver mutations. Additionally, we 15 
considered an extension of our model of tumor evolution with adaptive drivers and 16 
deleterious passengers where driver mutations impart a weaker fitness advantage as 17 
the background fitness of a cell increases (diminishing-returns epistasis). Specifically, 18 
the change in fitness Df imparted by a driver i with untransformed fitness benefit si 19 
is	Δ𝑓 = 𝑠3/(1 + 𝑓). This model might also explain the decline in dN/dS in driver genes 20 
without invoking the need for a substantial deleterious passenger load. Using our ABC 21 
procedure and the same prior probability distributions (10-2 – 100 for mean driver fitness 22 
benefit and 10-4 – 10-2 for mean passenger fitness cost) we find that this model cannot 23 
explain observed dN/dS patterns in drivers and passengers better than our base model 24 
with multiplicative epistasis between all mutations. The likelihood of the data under the 25 
Diminishing Returns model (14%) was less than the likelihood under the Multiplicative 26 
Epistasis Model (86%). 27 
 28 
  29 
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Supplementary Figures 1 

 2 

Supplemental Figure 1. Schematic of our permuted dN and dS calculation. 3 
Permuted synonymous and nonsynonymous counts are used to account for mutational 4 
biases in dN/dS calculations. Observed mutations and their 3-nucleotide context is 5 
shown in a solid gray bar. Permuted mutations with the same 3-nucleotide context are 6 
shown in dashed gray lines. Note that permutations do not preserve the codon position 7 
of a mutation and can alter protein coding effect (nonsynonymous vs. synonymous). 8 

 9 
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Supplemental Figure 2. Permutation-based null model of mutagenesis corrects 2 
for mutational biases in dN/dS calculations. A. Simulations (N = 100) of negative 3 
selection under extreme mutational bias scenarios where all mutations are generated 4 
from a single Mutational Signature (e.g. APOBEC or smoking, COSMIC Signatures 1-9, 5 
grey titles). Bias-corrected dN/dS values calculated from these simulations are 6 
compared to simulated levels of negative selection. Colors denote bias-corrected dN/dS 7 
before negative selection was simulated, which is expected to be neutral (~1). Negative 8 
selection is simulated as the probability of randomly removing nonsynonymous 9 
mutations, (e.g. a simulated ‘true’ dN/dS of 0.1 defines simulations where each 10 
nonsynonymous mutation had a 90% probability of removal). Shapes correspond to 11 
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different numbers of sites simulated. Black line identifies perfect correspondence 1 
between bias-correct dN/dS and simulated (true) dN/dS. B. 95% confidence intervals of 2 
dN/dS in passenger mutations randomly sampled in blue (N=1000) from high mutational 3 
burden tumors (> 10 substitutions) in the same proportion of sites as binned in Fig. 2A. 4 
Red line denotes observed dN/dS of passengers in ICGC and TCGA as depicted in Fig. 5 
2A. C. dN/dS of weakly expressed genes (defined as having < 1 TPM across all 6 
samples in GTEx) in tumors stratified by the total number of substitutions within ICGC 7 
and TCGA. Solid black shows dN/dS values of 1, expected under neutrality. Error bars 8 
are 95% confidence intervals determined by bootstrap sampling. 9 

 10 

  11 
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Supplemental Figure 3. Patterns of attenuated selection persist across mutation 2 
burden metrics, sequencing platforms, mutation calling algorithms, data 3 
repositories, and choice of driver gene set. (A-C) dN/dS calculations within 4 
passenger and driver gene sets for various burden metrics, sequencing platforms, 5 
mutation calling algorithm, choice of driver gene set, and data repository. The solid 6 
black line (dN/dS = 1) annotates expected dN/dS under neutrality in all panels. Error 7 
bars are 95% confidence intervals determined by bootstrap sampling. (A) Tumors in 8 
ICGC stratified by either the total number of intergenic mutations, intronic mutations or 9 
substitutions. (B) dN/dS calculations for various pan-cancer driver gene sets stratified 10 
by the total number of substitutions. Shown are tumors within TCGA called by different 11 
mutation callers (Mutect2 vs consensus, MC3 SNP calls), and SNV calls from COSMIC. 12 
(C) dN/dS calculations within passenger and driver gene sets within tumors in ICGC 13 
and TCGA stratified by the total number of substitutions. Instead of using our 14 
nonparametric null model, we calculate dN/dS using dNdScv1 as a null model of 15 
mutagenesis (with default parameters and unrestricted quantities of coding mutations 16 
per gene). Grey dashed line represents global dN/dS values of all tumors without 17 
stratifying by mutational burden. (D) Validation of dN/dS calculations within passenger 18 
and driver gene sets in primary untreated tumors, distinct from ICGC and TCGA, 19 
stratified by the total number of substitutions. (E) dN/dS of tumors in TCGA and ICGC 20 
stratified by the total number of substitutions after removing short genes, i.e. genes with 21 
fewer than 10 permutations. (F). ABSOLUTE purity estimates in TGCA from the GDC in 22 
tumors stratified by the total number of substitutions.   23 
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Supplemental Figure 4. Mutation burden metrics, used as a proxy for the tumor 2 
mutation rate, are correlated across datasets. (A) Correlation between the total 3 
number of substitutions and the total number of intergenic or (B) intronic mutations 4 
within tumors in TCGA (WES). (C) Correlation between the total number of mutations 5 
(TMB) and total number of substitutions for tumors in ICGC (WGS) and (D) and TCGA 6 
(WES). Because all mutational burden metric are highly correlated, general patterns of 7 
selection are unaffected by choice of mutational burden metric.  8 



 34 

 1 

Supplemental Figure 5. Stratification of dN/dS by mutational burden (defined as 2 
dN + dS) does not bias dN/dS values and correlates well with mutation rate in 3 
simulations. (A) Theoretical bias of dN/dS (Mean Absolute Deviation from neutrality) of 4 
mutational burden metrics that contribute to dN/dS calculations. dN + dS (i.e. Total 5 
Substitutions) imparts less bias than dS (i.e. Total Synonymous Substitutions). Bias 6 
determined by analytical model of dN/dS with ratios of Poisson-sampled mutation tallies 7 
(Methods). Bias rapidly decreases with mutational burden for dN + dS. Total 8 
Substitutions (dN + dS) exhibit less bias than Total Synonymous Substitutions (dS).  (B) 9 
Patterns of selection persist when independent mutation counts (completely orthogonal) 10 
were used for estimating selection (dN/dS) and mutational burden (dN + dS). 11 
Independent accounts were achieved by randomly partitioning mutations into two halves 12 
and using one half to calculate dN/dS and the half to calculate Total Number of 13 
Substitutions separately. Tumors were from TCGA. dN/dS and Error Bars (95% 14 
Confidence Interval) are same as in Figure 2. Solid black line of 1 denotes dN/dS 15 
expected under neutrality.  (C) Pearson correlation of both mutational burden measures 16 
with mutation rate in computational model of tumor evolution (Methods). The mutational 17 
burdens of ~4 million simulated cancers were compared to their programmed mutation 18 
rate. dN + dS correlated well with mutation rates across a range of evolutionary 19 
parameters and was more highly correlated with mutation rate than dS alone. (D) Same 20 
as in Figure 2A of the main text, except tumors with no synonymous mutations and 21 
tumors with no nonsynonymous mutations are included. dN/dS values at low Mutational 22 
Burdens are not appreciably altered by these filters.  23 
 24 
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Supplementary Figure 6. Attenuation of selection with increasing mutational 3 
burden in both Oncogenes and Tumor Suppressors. dN/dS of passenger and driver 4 
gene sets16 within tumors in TCGA stratified by the total number of substitutions present 5 
in the tumor (dN + dS). Tumor suppressors (purple), oncogenes (blue) and pan-cancer 6 
driver (green) gene sets are shown. Solid black shows dN/dS values of 1, expected 7 
under neutrality. Error bars are 95% confidence intervals determined by bootstrap 8 
sampling. 9 
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Supplemental Figure 7. No common germline polymorphisms observed in low 3 
mutation rate cancers. (A) Fraction of mutations that overlap all germline 4 
polymorphisms in the 1000 Genomes Project within tumors stratified by the total 5 
number of substitutions. (B-D) Fraction of mutations that overlap only common (MAF > 6 
0.05, 0.01 or 0.005) polymorphisms in the 1000 Genomes Project within tumors 7 
stratified by the total number of substitutions. WGS and WES datasets are shown. 8 
Colors denote mutations that are synonymous (blue) or nonsynonymous (red). Strong 9 
negative germline selection is expected only within common polymorphisms. No 10 
mutations within low mutational burden cancers (≤10 substitutions) overlap common 11 
polymorphic sites (when MAF > 0.1). Note that there are no synonymous mutations at 12 
MAF > 0.05 within low mutational burden cancers that could lower dN/dS rates through 13 
germline contamination.  14 
 15 
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 3 
Supplemental Figure 8. Weaker signals of positive selection within cancer-4 
specific drivers. dN/dS values of passenger and different driver gene sets within 5 
tumors in TCGA stratified by the total number of substitutions present in the tumor (dN + 6 
dS). Pan-cancer driver (lime) and cancer-specific (blue) driver gene sets identified by 7 
Bailey et al. 201816 are shown. Pan-cancer driver genes identified in this study also 8 
exhibited stronger signatures of positive selection than driver genes identified by 9 
COSMIC84 (light green) and Intogen17 (forest green). Hence, pan-cancer drivers from 10 
Bailey et al. 2018 were used throughout this study. Cancer-specific gene sets are 11 
defined as the top 100 recurrently mutated genes within the particular cancer type, and 12 
used separately for each of the 33 cancer types in TCGA. Solid black shows dN/dS 13 
values of 1, expected under neutrality. Error bars are 95% confidence intervals 14 
determined by bootstrap sampling. 15 
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Supplemental Figure 9. Patterns of attenuated selection persist across tumor 3 
purity thresholds. (A). Correlation between tumor purity (calculated by GDC using the 4 
ABSOLUTE69 algorithm, Methods) and the total number of substitutions in all TCGA 5 
samples (r = -0.0008, R2 = 7 x 10-7). Blue line denotes a linear regression fit and grey 6 
colors denote the 95% confidence intervals for the fit of this linear model. (B). Boxplot of 7 
tumor purity in TCGA samples stratified into low mutation rate bins (1-3 and 3-10 8 
substitutions) and high mutation rate bins (10-10,000 substitutions).(C). dN/dS in driver 9 
(green) and passenger (red) gene sets of tumors in TCGA stratified by the total number 10 
of substitutions after removing tumors below various purity thresholds. Values at the top 11 
denote the threshold of tumors removed from the analysis. (e.g. 0.3 shows dN/dS of 12 
tumors with a purity >= 0.3.) (D) Number of mutations in each bin within (C) after 13 
removing tumors at increasing purity thresholds. Error bars are 95% confidence 14 
intervals determined by bootstrap sampling. 15 
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Supplemental Figure 10. Comparison of dN/dS to results in Martincorena et al. 3 
(2017) for tumors stratified by mutational burden. (A). dN/dS in driver (green), 4 
passenger (red) and all gene sets (grey) of tumors in TCGA stratified by the total 5 
number of substitutions using 9 bins of equal width (log-scale TMB), as depicted in 6 
Figure 2. Left panel uses our non-parametric null model of mutagenesis to calculate 7 
dN/dS, while the right panel uses dNdScv (from Martincorena et al. 2017) as a null 8 
model of mutagenesis. Error bars are 95% confidence intervals determined by bootstrap 9 
sampling. (B). dN/dS of driver (green), passenger (red) and all gene sets (grey) of 10 
tumors in TCGA stratified by the total number of substitutions using 20 bins of equal 11 
sample sizes, as was done in Figure 5 of Martincorena et.al. 2017. The binning scheme 12 
and linear axes compress results at low TMB. To replicate Martincorena et.al. 2017, 13 
three tumor types were also excluded in this analysis: UVM, CHOL, and DLBC. DNdScv 14 
was used as a null model of mutagenesis. dN/dS for driver and passenger genes sets 15 
was not calculated in Figure 5 of Martincorena et al (2017). Error bars are 95% 16 
confidence intervals derived from dNdScv. 17 
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Supplemental Figure 11. Fractional overlap of CNAs within exomic regions (dE) 2 
relative to intergenic regions (dI) exhibits similar patterns of selection as 3 
Fractional Overlap. Calculations of fractional overlap20 of exomic regions (dE) to 4 
intergenic (dI) regions within passenger and GISTIC68 driver gene sets in tumors 5 
stratified by the total number of CNAs present. dE/dI is shown separately for CNAs 6 
greater than 100Kb in length (right) and smaller than 100Kb in length (left). Solid black 7 
line of 1 denotes values expected under neutrality.  Error bars are 95% confidence 8 
intervals determined by bootstrap sampling. 9 

  10 
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Supplemental Figure 12. Signal of negative selection in subclonal mutations are 3 
robust to VAF threshold. dN/dS calculations within clonal and subclonal passenger 4 
and driver gene sets within tumors in TCGA stratified by the total number of 5 
substitutions. Title of each graph corresponds to increasing VAF threshold value used to 6 
define ‘subclonal’ (e.g. mutations with a VAF > 0.2 are clonal; mutations with a VAF < 7 
0.2 are subclonal). Darker colors denote clonal passengers and drivers, while lighter 8 
colors denote subclonal passengers and drivers. Solid line of 1 is shown  of dN/dS 9 
values expected under neutrality. Error bars are 95% confidence intervals determined 10 
by bootstrap sampling. 11 
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Supplemental Figure 13. Attenuation of negative selection within different 3 
functional gene sets. dN/dS of passengers within different functional gene sets in low 4 
and high mutational burden tumors (dN + dS < 10 for low, grey; dn + ds > 10 for high, 5 
black). Both TCGA and ICGC genomic data were used. Dotted line denotes genome-6 
wide dN/dS of passengers for all mutation rates. Error bars are 95% confidence 7 
intervals determined by bootstrap sampling. Patterns of negative selection are not 8 
specific to any particular functional category (e.g. Essential or Housekeeping genes).  9 

 10 
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Supplemental Figure 14. Attenuation of selection in SNVs persists across cancer 5 
subtypes and broad cancer group categories. (A) dN/dS in passenger and driver 6 
gene sets within tumors stratified by the total number of substitutions in broad tumor 7 
subcategories. Error bars are 95% confidence intervals determined by bootstrap 8 
sampling. (B) Log-scale heatmap of dN/dS values in passenger and driver gene sets of 9 
tumors stratified by the total number of substitutions within all 50 cancer subtypes in 10 
ICGC and TCGA. dN/dS of the lowest and highest mutational burden bin for each 11 
cancer subtype are shown. 12 

 13 
 14 
 15 
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Supplemental Figure 15. Attenuation of selection in CNAs is robust to cancer 3 
subtypes and broad cancer group categories. (A) Normalized fractional overlap 4 
(dE/dI) of driver (green) and passenger (red) Copy Number Alterations (CNAs) with the 5 
human exome for the six most commonly sequenced cancer subtypes (presented in 6 
Fig. 2). dE/dI > 1 suggests positive selection, while dE/dI < 1 suggests negative 7 
selection. Tumors are stratified by Mutational Burden (Total CNAs). (B) Same as in (A) 8 
for cancer subtypes with >200 genotyped samples that were not presented above (nine 9 
subtypes). (C-D) dE/dI of normalized breakpoint frequency stratified by Mutational 10 
Burden and segregated by cancer subtype. Subtype groupings are same as (A-B). In 11 
general, both dE/dI measures exhibit positive selection on drivers that attenuates with 12 
mutational burden as well as negative selection on passengers that also attenuates with 13 
mutational burden across tumor subtypes. However, several exceptions are evident – 14 
especially for less-sequenced subtypes (bottom row of B & D). 15 
 16 
 17 
 18 
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Supplemental Figure 16. dN/dS rates of drivers and passengers in simulated 1 
cancers with various fitness coefficients. 10,000 simulated tumors were generated 2 
for various combinations of mean driver fitness benefits (sdrivers) and mean passenger 3 
fitness costs (spassengers, Methods). For some parameter combinations, the combined 4 
fitness cost of passengers overwhelmed the fitness benefit of drivers and prevented 5 
cancer progression within 100 years (dark grey). dN/dS values of simulated mutations 6 
were calculated for drivers (left) and passengers (right) at various mutational burden 7 
(Total number of nonysnonymous and synonymous mutations). Top row is a mutational 8 
burden of 1 – 10 ; middle row is 11 – 100, and bottom row is 100 – 1,000. Some 9 
parameter combinations did not produce any tumors with low mutational burdens (light 10 
grey). Across all parameters, positive selction on drivers and negative selection against 11 
passengers attenuates with mutational burden. Passengers exhibit minimial negative 12 
selection in general, despite a collective burden that often prevented tumor progression, 13 
because of strong Hill-Roberston interference in asexual populations.  14 
 15 
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Supplementary Figure 17. Probability of cancer by age and mutational burdens in 3 
simulated cancers at various fitness coefficients. Clinical summary statistics of 4 
simulated tumors at various combinations of mean driver fitness benefits (sdrivers) and 5 
mean passenger fitness costs (sp, Methods). (A) Initial population size N0 of simulated 6 
tumors. Initial population size approximates the equilibrium population size of a tumor 7 
following an initiating driver. Large population sizes are necessary for tumor progression 8 
when passenger deleteriousness is large compared to driver advantageousness – 9 
otherwise natural selection cannot drive carcinogenesis. Eventually, tumor progression 10 
is not possible for any reasonable initial population size (grey area). (B) MLE of Gamma 11 
distribution shape parameters describing the cancer age-inicidence rates of simulated 12 



 48 

tumors. A Gamma distribution of age-incidence is expected from the Armitage-Doll 1 
multistage model of tumorigenesis and describes human age-incidence rates well 2 
(Methods)30. Larger values correspond to a steeper increase in rate with age; human 3 
patient rates are ~5 pan-cancer. Scale parameter of the parametric fit is not informative 4 
because of a Gauge freedom in the model. (C) MLE of shape and (D) scale parameters 5 
of Negative Binomial distributions describing the mutational burdens of simulated 6 
tumors. Smaller values of shape parameter correspond to broader distributions of 7 
mutational burden; human tumors exhibit a value of ~2 pan-cancer. Smaller values of 8 
scale parameter correspond to a larger mean mutational burden; human tumors exhibit 9 
a value of ~1/50 (i.e. 50 passengers per rate-limiting driver). 10 

  11 
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Supplementary Figure 18. Implementation and use of ABC for model selection 2 
and parameter estimation. (A) Leave-one-out Cross Validation (CV) on the simulated 3 
data was used to select an optimal Rejection Tolerance and optimal rejection method. 4 
Observed data can be compared to simulated data using model rejection alone (left), or 5 
by comparing observed data to a (middle) local-linear regression or (right) Feed-6 
Forward Neural Network single-layer model trained on the simulated data. In general, 7 
unsupervised training of a neural network on simulated data will often improve 8 
prediction accuracy by denoising stochasticity in the simulations (via kernel prediction.) 9 
A neural network with a rejection tolerance of 0.5 minimized prediction error of both 10 
driver and passenger fitness effects (illustrated by dotted lines) and was used to infer 11 
selection coefficients. This Cross Validation optimization procedure for ABC is 12 
advised82. (B) Posterior probability of models of tumor evolution incorporating 13 
synonymous drivers. The prior distribution of synonymous driver fractions (uniform from 14 
0% to 20%) is nearly-identical to this posterior distribution. This suggests that nearly all 15 
models incorporating synonymous drivers can explained observed dN/dS patterns with 16 
the right combination of fitness parameters. (C) Posterior distribution of fitness effect of 17 
driver fitness benefits (sdrivers) and passenger fitness costs (spassengers) after synonymous 18 
drivers are incorporated. MLE (circles) and 95% Confidence Intervals (lines) are 19 
reported. Similar to (B), incorporation of synonymous drivers undermines the ability of 20 
ABC to accurately infer fitness coefficients. (D) Comparison of dN/dS rates from one 21 
million simulated tumors (using ML estimates of sdrivers and spassengers, dark smooth lines) 22 
to observed dN/dS patterns (light, stepped lines). Both observed and simulated dN/dS 23 
rates of passengers rapidly approach 1 as mutation burden increases. This is 24 
presumably because, for populations near mutation-selection balance, the size of the 25 
fittest class of cells declines exponentially with the mutation rate (discussed in 33).   26 

 27 
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Supplementary Figure 19. Evidence of positive selection on synonymous 2 
mutations within driver genes at low mutational burdens. (A) The quantity of 3 
synonymous mutations within driver genes was compared to the quantity of 4 
synonymous mutations within passenger genes and both were normalized by their 5 
expected frequencies using dNdScv. Black line denotes the genome-wide ratio of 6 
synonymous drivers to synonymous passengers (~2%, i.e. driver genes are ~2% of the 7 
human coding genome). At low mutational burdens, a non-significant increase in the 8 
quantity of synonymous drivers is observed, suggestive of positive selection for these 9 
mutations. (B) The change in codon usage imparted by all synonymous mutations was 10 
calculated for oncogenes, tumor suppressors, and passenger genes. Bias in codon 11 
usage suggests a functional effect of synonymous mutations. Increase in codon usage 12 
is expected to increase translational efficiency and increase protein abundance. 13 
Oncogenes are expected to exhibit positive selection for increased codon usage and 14 
exhibit a non-significant increase as mutational burden declines – consistent with 15 
positive selection for synonymous mutations within oncogenic drivers that is attenuated 16 
by Hill-Robertson interference. Similarly, tumor suppressors are expected to exhibit a 17 
decrease in codon usage at low mutational burdens, which is indeed significant (p = 18 
0.03) presumably because there are more annotated tumor suppressor genes.  19 

  20 
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Supplementary Figure 20. Distribution of Mutation Rates of simulated tumors. (A) 2 
Mutation rates of all simulated tumors were randomly-sampled from a uniform 3 
distribution (in log-space) from 10-12 to 10-7 nucleotide-1 • generation-1. (B) In simulations 4 
that best agreed with observed data (MLE of sdrivers = 18.8%, spassengers = 0.96%), only 5 
tumors with intermediate mutation rates progressed to cancer within 100 years. Tumors 6 
with lower mutation rates do not progress to cancer within the 100-year time constraint 7 
of simulations, while tumors with exceptionally high mutation rates collapse via 8 
mutational meltdown.  9 
  10 
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Supplemental Figure 21. Relative contribution of Genetic Hitchhiking and Muller’s 2 
Ratchet to fix deleterious passengers. Using analytical theory developed in 7,33,85, we 3 
can estimate the relative rates of genetic hitchhiking and Muller’s Ratchet in our pan-4 
cancer model of tumor evolution. As the relative strength of driver alterations increase 5 
(sdrivers) relative to the selective cost of passengers (spassengers), more passengers 6 
hitchhike with each driver sweep (left). This increases the relative contribution of 7 
observed passengers that accumulate via hitchhiking (right). Using the Maximum 8 
Likelihood Estimates (MLE) of selection for drivers and against passengers, we 9 
estimate that an average of 8 passengers hitchhike with each driver, which account for 10 
5.0% of accumulated passengers (the majority, and remainder, accumulate via Muller’s 11 
Ratchet). 12 

 13 
 14 
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Supplemental Figure 22. Upregulation of heat-shock protein pathways in tumors 2 
with elevated mutational burdens. (A) Z-scores of median gene expression of (i) all 3 
genes, (ii) HSP90, (iii) Chaperonins, and (iv) the Proteasome averaged across tumors 4 
stratified by the total number of CNAs. Expression of HSP90, Chaperonins, and 5 
Proteasome gene sets increases with the mutational burden of tumors (weighted R2 of 6 
0.78, 0.87 and 0.84, respectively). Error bars are 95% confidence intervals determined 7 
by bootstrap sampling. (B) Correlation coefficients (r) of the expression of each gene in 8 
the genome (grey) in tumors stratified by the total number of substitutions. Shown in 9 
arrows are the correlation coefficients for HSP90 (blue), Chaperonins (orange), and the 10 
Proteasome (purple). Dashed lines in intervals of 0.25 are for viewing purposes only. 11 
(C) Median correlation coefficients of 10 million randomly sampled gene sets of the 12 
same size as HSP90, Chaperonins and the Proteasome (n=28) in grey. Red line 13 
denotes the median correlation coefficients of HSP90, Chaperonins, and the 14 
Proteasome (0.88). None of the randomly sampled gene sets have a higher median 15 
correlation coefficient than the observed value (0.88.) (D-E) Log-scale heatmap of 16 
changes in the Z-scores of median gene expression values of gene sets in for tumors 17 
stratified by the total number of substitutions (D) or CNAs (E) for cancer subtypes in 18 
TCGA. Changes in the mean gene expression of all genes, HSP90, Chaperonins, and 19 
Proteasome gene sets in the lowest and highest mutational burden bin for each cancer 20 
subtype are shown. Colors denote whether changes in gene expression from low 21 
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mutational burden bins to high mutational burden bins are positive (green) or negative 1 
(red). Expression of HSP90, Chaperonins, and Proteasome gene sets increases with 2 
the mutational burden of tumors across cancer types stratified by the number of SNVs 3 
(p > 0.05 , p < 6 × 10-4, p < 3 × 10-3 respectively; Wilcoxon signed-rank test) and CNAs ( 4 
p > 0.05 , p < 2 × 10-2, p < 1.5 × 10-2  respectively; Wilcoxon signed-rank test).   5 
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 2 
Supplemental Figure 23. Random permutations of the positions of observed 3 
CNAs exhibit neutral values of dE/dI. The stop and start location of each observed 4 
CNA was randomly permuted, while preserving its length. dE/dI was calculated for 5 
CNAs (with and without non-focal amplifications) using both metrics: breakpoint 6 
frequency and fractional overlap. dE/dI values of random permutations are 7 
approximately 1, as expected for CNAs not experiencing selection.  8 
 9 
  10 
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Supplementary Figure 24. Quantity of mutations within each mutational burden 2 
bin for data depicted in Figure 2. (A-D) all report the total number of samples used in 3 
their respective figure pane within Figure 2. (A) Counts of mutations in passenger (red) 4 
and driver (green) gene sets within tumors stratified by the total number of substitutions 5 
in ICGC and TCGA. (B) Counts of the fraction of pathogenic missense mutations, 6 
annotated by PolyPhen2, in the same driver and passenger gene sets also stratified by 7 
total number of substitutions. (C) Counts of CNAs that reside within putative driver and 8 
passenger gene sets (identified by GISTIC 2.0, Methods) in tumors stratified by the total 9 
number of CNAs and separated by CNA length. (D) Counts of clonal (VAF > 0.2; darker 10 
colors) and subclonal (VAF < 0.2; lighter colors) passenger and driver gene sets in 11 
tumors stratified by the total number of substitutions. 12 
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 2 
Supplementary Figure 25. Patterns of selection when permuting gene sequences 3 
at the transcript or gene level. All panels show dN/dS of passenger and driver genes 4 
in tumors stratified by mutational burden within ICGC and TCGA datasets. (A-B) Gene-5 
level sequences, annotated by Hugo symbols or Ensembl gene IDs, are used to 6 
permute the tri-nucleotide context of a mutation under the null model of mutagenesis. 7 
(C) Transcript level gene sequences, annotated by Ensembl, are used to permute the 8 
tri-nucleotide context of a mutation under our null model of mutagenesis. The solid line 9 
of 1 denotes dN/dS values expected under neutrality. Error bars (shaded area) 10 
represent 95% confidence intervals determined by bootstrap sampling. 11 
  12 
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Supplementary Tables 1 
 2 

Table S1. Broad (meta-categories) of cancer subtypes.  3 

BROAD CATEGORY (N) GDC TUMOR SUBTYPES IN GROUP 
Circulatory (371) LAML, DLBC, CLLE, CMDI, MALY 
Endocrine (925) ACC, THYM, THCA, PAEN, PCPG 
Urinary (1199) BLCA, KICH, KIRC, RECA 
Nervous (1059) LGG, GBM, PBCA 

Reproductive (3328) BRCA, CESC, EOPC, OV, PRAD, UCEC, TGCT, UCS 
Respiratory (1557) LUSC, LUAD, HNSC 

Skeletal (378) SARC, BOCA, MESO 

Digestive (2181) ORCA, LIRI, PAAD, STAD, READ, CHOL, COAD, ESCA, 
GACA, LINC, ESAD, BTCA, LIHC 

Skin (614) UVM, SKCM, MELA 
  4 
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Table S2. Assumptions of model of tumor evolution and anticipated effects 1 
 2 

ASSUMPTION ANTICIPATED EFFECT ON CONCLUSIONS REFS 
Exponential DFE for drivers & 
passengers ABC estimates effective selection coefficients 86 

Cells are well-mixed (no spatial 
structure) Reduced Hill-Robertson interference 24,87,88 

Gompertzian growth dynamics in-
between drivers 

Decreased inferred strength of drivers relative to no 
growth constraints 

33 

Only 50% of tumors progress to 
cancer 

Mutational burdens widen as progression probability 
declines 

33 

No (reciprocal) sign epistasis Stronger fitness benefits of drivers in adaptive contexts 34,89 
Constant mutation rate for each 
tumor Hill-Robertson interference would increase 90 

Simulated tumor is genotyped at 
transformation 

Late (subclonal) mutations are ignored; incidence age 
reduced 

24 

Malignancy occurs at 1,000,000 
(stem) cells 

Reduced variation in cancer incidence times (as true 
detection times varies) 

33 

Subclonal mutations are undetected 
by genotyping 

Lower estimated fitness effects of drivers & passengers 
(subclonal mutations experience less selection) 

91 

No dominance Nearly-unbiased estimate of heterozygous passenger 
fitness cost; underestimation of driver benefit  

92 

  3 
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