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Abstract

In bottom-up discovery proteomics, target-decoy competition (TDC) is the most popular method
for false discovery rate (FDR) control. Despite unquestionable statistical foundations, this method has
drawbacks, including its hitherto unknown intrinsic lack of stability vis-à-vis practical conditions of
application. Although some consequences of this instability have already been empirically described,
they may have been misinterpreted. This article provides evidence that TDC has become less reliable
as the accuracy of modern mass spectrometers improved. We therefore propose to replace TDC by a
totally di�erent method to control the FDR at spectrum, peptide and protein levels, while bene�ting
from the theoretical guarantees of the Benjamini-Hochberg framework. As this method is simpler
to use, faster to compute and more stable than TDC, we argue that it is better adapted to the
standardization and throughput constraints of current proteomic platforms.

1 Introduction

Most projects involving mass spectrometry (MS)-based discovery proteomics use data-dependent acqui-
sition work�ows in which tandem mass (MS/MS) spectra are produced from isolated peptides. Then,
peptide identi�cation is performed by database search engines which match the experimental spectra
acquired with theoretical spectra derived from a list of protein sequences. This methodology has been
widely adopted, and it has been accepted that it could lead to false positive identi�cations. Indeed, among
the tremendous number of spectra generated by a peptide mixture prepared from a complex biological
sample at least a few of them are expected to match an erroneous sequence, by chance. To avoid cor-
rupting the biological conclusions of the analysis, researchers have come to rely on statistical procedures
to limit the False Discovery Proportion (FDP) � i.e. the proportion of random mismatches among all
the peptide spectrum matches (PSMs) which look correct. As this quality control problem is ubiquitous
in science, statisticians have extensively studied it. The main conclusions of these studies (See [1] for
a proteomic-oriented summary) are as follows: (i) Due to the random nature of the mismatches, it is
impossible to precisely compute the FDP; (ii) However, it can be estimated, as an FDR (False Discovery
Rate); (iii) Depending on the experiment, the FDR will provide a more or less accurate estimate of the
FDP; (iv) Therefore, practitioners should carefully select the FDR methodology, and interpret its result
cautiously, making an educated guess (e.g., like a political poll before an election).

Target-decoy competition (TDC) has emerged as the most popular method to estimate the FDP in
MS-based discovery proteomics [2]. Its success is a marker both of its conceptual simplicity and of its
broad scope of application. The principle of TDC is to create arti�cial mismatches by searching a speci�c
(�decoy�) database of random sequences which di�er from the sequences of interest (or �target� sequences)
and to organize a competition between target and decoy assignments. Under the so-called Equal Chance
Assumption [2] (stating that target mismatches and decoy matches are equally likely), it is possible, for
any given cut-o� score, to estimate the number of target mismatches that will be validated. Like any
other estimator, TDC-FDR can lead to inconsistent estimates if the theoretical assumptions on which it
is based do not hold in practice. Notably, the quality of TDC-FDR is strictly linked to the validity of
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the Equal Chance Assumption, i.e. the decoy's capacity to adequately fool the database search engine.
If it fools it too much, the TDC-FDR will overestimate the FDP; whereas if it is too unrealistic to fool
the search engine, the FDP will be underestimated [3]. For this reason, decoy database construction
and conditions of application have been extensively studied. Results from these studies indicate that:
(i) the search engine must be compliant with TDC [4]; (ii) In theory, the larger the decoy database,
the more precise the mismatch score distribution [5, 6] (like political polls, accuracy depends on the
number of citizens surveyed); (iii) The decoys must respect the cleavage sites [7] to avoid systematic
target matching regardless of spectrum quality; (iv) The in�uence of randomness in the construction of
the decoy database can be counter-balanced by boosting strategies, leading to less volatile FDRs [8]; (v)
Decoy counting also has an in�uence [6]. In addition to these restrictions, numerous parameters have
been reported and discussed to control their relative importance [9]. This extensive body of literature
has notably contributed to installing the competition step of TDC as essential, and today, target-decoy
searches without competition [10] are scarcely ever reported. Despite TDC wide acceptance, a series
of letters from Bret Cooper [11, 12] initiated a controversy regarding the observed downfall of TDC
validation levels with higher resolution instruments. He provided experimental arguments to reject the
idea that such downfall was simply a positive consequence of instrument evolution, leading to an increase
in the numbers of peptides identi�ed. Notably, he pointed out that very low-quality spectra incompatible
with con�dent peptide identi�cations could be validated despite application of a stringent FDR cut-
o�. Moreover, as this phenomenon was observed with multiple widely-used search engines (Mascot,
X!tandem and MS-GF+), he concluded that there was an �inherent bias� of �peptide presumption� (i.e.,
only peptides already listed in a target database could be identi�ed). As this stance contradicted both
empirical and theoretical evidence, few articles were published arguing against this view [13, 14] while
others con�rmed [15, 16], maintaining the statu quo.

However, Cooper's observations can be reconciled with statistical theory. In fact, the correctness of any
statistical estimate is only asymptotic: if the quality of the empirical model depicting the mismatches is
improved (for instance, by increasing the size of the decoy database [5, 6] or by averaging a growing number
of TDC-FDRs resulting from randomly generated decoy databases, in a boosting-like strategy [8]), we
should end-up with a series of estimates that theoretically converges towards the FDP. Although essential,
this asymptotic property is unfortunately not su�cient for practitioners, who work with a �nite number of
decoy databases of �nite size (classically, a single decoy database of the same size as the target database).
Thus, the convergence speed and stability of the TDC estimator must be veri�ed: If the convergence
is very slow or if the TDC provides volatile estimates (when two slightly di�erent conditions provide
estimates of very di�erent quality), it is possible, in given application conditions, to obtain inaccurate
FDRs in practice.

In this article, we �rst present results that seriously question how MS/MS identi�cation results for
discovery proteomics assays are generally validated using TDC. We notably shed new light on Cooper's
observations, which reconcile opposing opinions: While we believe target and decoy searches can be
used to accurately compute FDRs, we uphold his concerns by showing that, with state-of-the-art high-
resolution instruments, the risk that the TDC strongly underestimates the FDP increases. We then de-
scribe a series of mathematical transformations of classical identi�cation scores, to which the well-known
Benjamini-Hochberg (BH) procedure [17] and its numerous variants [18] can be applied at spectrum, pep-
tide and protein levels. This leads to an original and powerful framework that demonstrably controls the
FDR without requiring construction and searching of decoy databases. Altogether, the results presented
demonstrate that making TDC-FDR compliant with instrument improvements requires unexpected ef-
forts (careful implementation, �ne-tuning, manual checks and computational time), whereas proteomics
results can be simply and accurately validated by applying alternative strategies.

2 Results

2.1 TDC accuracy depends on mass tolerances set during database searching

The mechanism underlying the mass tolerance problem raised in [12] is as follows: Depending on the
instrument's accuracy when measuring the precursor mass, due to variable resolving powers, and assuming
the search engine is tuned accordingly, a larger or smaller number of decoys are considered possible
competitors for a given spectrum. Thus, MS data acquired with high-resolution mass spectrometers
and analyzed using search engines in which narrow mass tolerances are set de facto leads to smaller
numbers of decoy matches, and therefore, to lower FDR thresholds. Cooper highlighted this mechanism,
and concluded that �there may be no remedy�. In contrast, it is well-established that from a theoretical
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viewpoint, TDC provide a good estimate of the FDP [19, 5, 20].
To the best of our knowledge, TDC stability with respect to preliminary �lters applied to reduce

the number of decoy competitors in a non-uniform manner, has never been demonstrated. We would
therefore like to defend an intermediary viewpoint: If used appropriately, decoy searches could lead to
accurate estimates, even with high-resolution instruments; However, the lack of demonstrated stability
of TDC is consistent with potential inaccurate FDRs, as reducing the mass tolerance during database
searching would increase the chance that the Equal Chance Assumption [2] no longer applies.

To illustrate TDC instability, we compared the behavior of the TDC estimate with another estimate
for which stability has been established, the Benjamini-Hochberg (BH) FDR [17]. This comparison has
already been performed (e.g. [21, 22]), but the discrepancies observed were not studied in terms of estimate
stability. To compute a BH-FDR, the search engine must provide PSM scores which can be related to
p-values. Fortunately, numerous state-of-the-art search engines do so [23]: For instance, Mascot provides
scores in the form

S = −10 · log10(p) or p = 10−
S
10 (1)

where p is a p-value. Andromeda provides a similar calculation, although the score is not directly acces-
sible as it is only an intermediate computation (see Methods 4.3). PepProbe, InsPecT and MyriMatch
directly provide p-values as scores, and SEQUEST scores can be transformed into p-values through the
application of dedicated wrappers e.g. [21, 22]. More generally, p-values can be derived from any scoring
system by using a decoy search which is not in competition with the target search [10]. Moreover, for the
BH-FDR to be accurate, the p-values must be well-calibrated � i.e., mismatch p-values should uniformly
distribute across the [0,1] interval [1]. According to [24, 25], it is possible to assess how well a search
engine is calibrated by using entrapment databases. Using these databases, it is possible to empirically
estimate the quantiles of the mismatch p-value distribution thanks to artefactual amino acid sequences,
as described in [10].

We applied both TDC and BH methodologies to results acquired with a Q-Exactive Plus instrument
on ten analytical replicates of an E. coli lysate, which is classically used as a quality control sample on our
platform (see Methods 4.1 and 4.2). PSMs were identi�ed using Mascot and a reverse database to perform
TDC. Figure 1A shows the score thresholds (see Methods 4.3) obtained at an FDR of 1% as a function
of the various mass tolerances set during database searching (see Supplementary Table 1 for numerical
values). MS and MS/MS spectra were acquired at relatively high resolutions (70,000 and 17,500 at m/z
200, respectively), and we considered four combinations of mass tolerance tuning at the precursor and
fragment levels: LL, HL, LH and HH (where L stands for low precision or large tolerance, and H for high
precision or narrow tolerance), the �nal combination (HH) corresponds to the tolerance levels generally
used on our platform for Q-Exactive data. Several conclusions can be drawn from the results obtained:
First, for each tuning taken individually, the TDC threshold is less stable than its BH counterpart (the set
of ten cut-o� scores was more dispersed with TDC). Second, the TDC threshold is always less conservative
than its BH counterpart. Third, depending on the mass tolerances applied during database searching,
the TDC threshold on the Mascot score varied from 1.11 to 20.73, whereas its BH counterpart was
more stable (between 20.67 and 23.43). Fourth, if the di�erent database search sets are interpreted as
surrogates for the recent evolution of instrumental capabilities, the discrepancy between TDC and BH
is seen to increase. Thus, when TDC was �rst applied to data from low-resolution instruments, and for
which TDC and BH led to roughly similar results, the resolution of mass spectrometry instruments has
progressively increased, and now TDC and BH diverge considerably. To guarantee that modifying how
mass tolerance is tuned allows results obtained with lower resolution instruments to be approximated,
we analyzed another batch of ten analytical replicates of the E. coli lysate using a LTQ-Orbitrap Velos
Pro, on which it is possible to use mixed resolutions: high resolution in MS mode (Orbitrap analysis)
and lower resolution in MS/MS mode (linear ion trap analysis). Database searches were conducted
using the HL and LL tunings, and FDR thresholds were computed as above. Interestingly, the mapping
between the thresholds is excellent, which justi�es our methodology: from an FDR viewpoint, switching
to analysis of a lower resolution dataset using an appropriately-tuned search engine, or retaining the
higher resolution data while substantially increasing the mass tolerance, produces roughly equivalent
outputs. To better capture the in�uence of mass tolerance tuning, we then conducted more detailed
experiments: Starting from the HH setting, we progressively broadened the mass tolerance range, either
for the precursor (Figure 1B) or for fragment masses (Figure 1C). The results obtained support the four
conclusions derived from the results shown in Figure 1A.

A part of the TDC's relative instability can naturally be explained by the random nature of decoy
sequence generation [8], regardless of the search engine used. However, at �rst glance, there is no reason
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Figure 1: Score thresholds obtained when applying TDC (Orange) and BH (Blue) �ltering at an FDR
of 1%, as a function of the search engine mass tolerance parameters, for 10 samples analyzed with a Q-
Exactive Plus (Qex) instrument. (a) Precursor and fragment mass tolerances are tuned to the LL, LH, HL
and HH settings: LL assumes the MS and MS/MS data were acquired at low resolutions for the precursor
and fragment masses (1 Da and 0.6 Da, respectively); HL uses mass tolerances of 10 ppm and 0.6 Da,
respectively; LH uses mass tolerances of 1 Da and 25 mmu; and �nally, HH uses mass tolerances of 10 ppm
and 25 mmu (which corresponds to classical parameters for database searches performed with Qex data).
The black lines encompass thresholds resulting from similar analyses performed on an LTQ-Orbitrap
Velos Pro (Velos) with LL and HL settings. (b) Re�ned analysis of the FDR threshold's sensitivity to
precursor mass tolerance tuning (Qex data, fragment tolerance= 25 ppm). (c) Re�ned analysis of the
FDR threshold's sensitivity to fragment mass tolerance tuning (Qex data, precursor tolerance= 10 ppm).
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to assume that the remaining reported instability (notably the drop in score) is speci�cally linked to the
TDC. Consequently, it could also make sense to question the algorithmic speci�cities of the search engine
(here Mascot) (see Methods 4.3). Unfortunately, similar pitfalls (at least for the precursor tolerance
parameter) were reported in the supplementary materials of [12] with X!tandem and MS-GF+ (formerly
referred to as MS-GFDB). In addition, we discovered similar e�ects with Andromeda (Maxquant envi-
ronment, see Supplemental Materials B). Consequently, we believe that it is legitimate to question the
TDC procedure itself.

In conclusion, our benchmark con�rms the collapse of validation thresholds described by Cooper.
Moreover, it proves that not only the precursor mass tolerance, but also, the fragment mass tolerance
is involved. More generally, any instrumental or software tuning that could reduce the number of fair
decoy competitors in the matching process should be investigated to ensure it does not have spurious
consequences. In addition, the TDC-FDR appears to be more sensitive than the BH-FDR, in the sense
that reducing the mass tolerances increases its anti-conservativeness faster. Finally, the relative instability
of TDC-FDR with respect to BH-FDR is obvious.

2.2 Recovering stable target decoy FDR is possible, but cumbersome

Let us extrapolate an extreme case where, for a long peptide, the precursor mass tolerance window is so
narrow that only a single target sequence is eligible, albeit incorrect. Then, in any random case where
the single decoy sequence generated within the corresponding precursor mass window is too unrealistic,
it is possible to end up with an almost systematic target assignment relying on only a poor recovery
of fragment matches, just because the decoy alternative produces even fewer fragment matches. In this
situation, the Equal Chance Assumption is clearly violated. Thus, to increase the chances of obtaining
decent decoys despite excess narrow mass tolerance parameters, it intuitively makes sense to enlarge the
decoy database. Although the link between mass tolerance and decoy database size can be e�ciently
exploited to limit the computational cost of repeated searches [26], it will, unfortunately, be ine�cient in
our case: In principle, if d (resp. t) stands for the number of decoys (resp. targets) that have passed the
validation threshold, and r is the ratio between the sizes of the whole decoy and target databases, the
FDR should read d+1

r×t . However, as demonstrated in the supplemental material to [6], this approximation
only holds when t→∞ and d/t ≤ 5%. Consequently, when the validation threshold is set to an FDR of
1%, r must be smaller than 5. Therefore, to increase r in proportion to the reduction in precursor mass
tolerance, the FDR should only be controlled at immaterial levels. Alternatively, the TDC can be re�ned
by a procedure akin to empirical null estimation [27]. This type of approach has been termed entrapment
FDRs in the proteomic context [28, 29], because they rely on the quantile distribution of mismatches in an
entrapment database to estimate the FDR [24, 25]. We implemented this type of strategy (see Methods 4.4
for details) and found that a fair (but still unstable) empirical estimate of the null distribution could be
obtained by performing a separate decoy search, without competition. To stabilize the estimations, we
averaged 10 repetitions, each based on a di�erent shu�ed database, thus performing a mixed strategy
between [10] and [8]. For this reason, for each of the 10 sample replicates of E. coli lysate analysed
with the Q-Exactive Plus, Figure 2 shows the 10 entrapment FDRs corresponding to the cut-o� scores
obtained using the two validation methods (BH and TDC, cf. Figure 1A and Supplementary Table 1) in
the HH setting.

The di�erence is striking: although BH thresholds (Mascot scores between 20.67 and 20.84) produce
entrapment FDRs slightly below 1% (between 0.53% and 1.29%, with an average ≈0.84%), those obtained
with TDC (scores between 1.11 and 2.37) lead to 10-fold larger entrapment FDRs (between 7.72% and
11.71%, with an average ≈9.1%). This result is insightful for three reasons: (i) it con�rms that TDC can
lead to considerable under-estimations of the FDR if used inappropriately; (ii) it shows that in contrast
to Cooper's concerns, the concept of �peptide presumption� is not inherently biased, since by applying
an appropriate decoy search strategy, it is possible to recover coherent FDRs; (iii) Using an appropriate
strategy is more complex than determining a simple TDC-FDR from a reverse or shu�ed database, or than
performing a BH procedure. Beyond these observations, if one compares the entrapment FDRs derived
from the BH-thresholds with the directly obtained BH-FDR (i.e. 1%), BH estimates appear overall to be
slightly larger than entrapment estimates. This result is most probably due to the conservative property
of the BH estimator. Note that many methods can be used to limit over-conservativeness [18]. Finally,
let us observe that the entrapment FDRs are highly dependent on the entrapment databases: From one
randomly generated version to another, the FDR estimated varies signi�cantly. At �rst glance, FDRs
around 1% seem slightly more stable than those around 10%. However, after normalization relative
to the mean FDR value, it is actually the opposite that occurs (mean coe�cient of variation of 13.90%
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Figure 2: (a) Entrapment FDRs computed for each replicate matched against 10 randomly generated
(shu�ed) entrapment databases, according to its 1% FDR validation score threshold (gray dash line),
computed by applying BH (blue) and TDC (orange) methodologies; The black continuous lines depict
the average of the 10 entrapment FDRs (boosted estimate). (b) and (c) Zooms of the two framed areas
in (a), with di�erent shades of blue (resp. orange) and of line types (dot or dash) for better shu�e
discrimination.

around 1% entrapment FDR, versus 5.82% around 10% entrapment FDR). This observation can be easily
explained: With lower FDR thresholds, fewer decoys passed the threshold, and as a result, the statistics
were computed on smaller sample sizes, which are more sensitive to randomization. This conclusion
explains why it is necessary to rely on a boosting strategy (i.e. averaging multiple runs, see above),
despite its additional computational complexity.

In conclusion, these experiments show that target and decoy searches can be implemented to deliver
accurate FDRs. However, to do so requires a number of strategies to be re�ned (notably omitting the
competition step of the TDC while stabilizing the FDR by averaging multiple independent estimates).
These strategies are in fact less intuitive, more hand-crafted and more computationally demanding. The
BH procedure, in contrast, is appealing for its simplicity and stability.

2.3 FDR control at peptide and protein levels using the BH procedure

The di�culty of inferring peptide- and protein-level knowledge from spectrum-level information, while
applying quality control criteria, has been widely addressed in the literature (see e.g. [30, 31] for surveys).
However, to our knowledge, all available inference systems require a preliminary decoy search to propose
a peptide- or protein-level FDR. Today, combining multiple levels of FDR control has become accepted
standard good practice. We therefore propose a generic procedure to extend the BH-FDR approach
to peptide and protein levels. Moreover, the proposed method is independent of the chosen inference
rules (see Methods 4.5). Hereafter, we assume that the inference rules selected unambiguously de�ne
which PSMs should be used in peptide scoring, as well as which peptides contribute to protein group
scoring [32, 28, 29], and we focus on the scoring methods applied.

The most classical peptide scoring methods assume that each peptide is identi�ed by the spectrum
with the highest PSM score amongst the Q matching spectra [25, 33, 28, 29]. In this setting, it makes
sense to de�ne the peptide score as equal to the best PSM score [25]. Formally, if the PSM score between
peptide sequence seqi and spectrum q is referred to as Siq, then, the best-PSM score can be de�ned as

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 16, 2019. ; https://doi.org/10.1101/765057doi: bioRxiv preprint 

https://doi.org/10.1101/765057
http://creativecommons.org/licenses/by-nc-nd/4.0/


maxq∈[1,Q] Siq. This score can potentially be used to compute a TDC-FDR, but not a BH-FDR. Indeed,
its probabilistic counterpart cannot be well-calibrated (the minimum of several calibrated p-values is non-
uniformly distributed, as illustrated in Supplementary Figure 1). Fortunately, it is possible to modify
the best-PSM score by applying a formula conceptually similar to the �idák correction [34] (although it
relies on di�erent mathematical hypotheses), and thus to recover correct calibration:

Proposition 1 Let S1, . . . , Sn be a set of n scores of the form S` = −10 log10(p`), (` ∈ [1, n]) where p`
is realizations of n i.i.d. R+ random variables, X1, . . . , Xn. If X` ∼ U [0, 1] ∀`, then,

Y = 1−
(
1− 10−

max` (S`)

10

)n
uniformly distributes over the range [0, 1].

Proof: See Methods 4.6.

Therefore, (See Methods 4.6 for the full derivations), the peptide p-value of peptide sequence seqi can
be de�ned as:

p�i = 10−
S�i
10 (2)

and its peptide score as:

S�i = −10 · log10

(
1−

(
1− 10−

maxq (Siq)

10

)Q)
(3)

To de�ne protein-level scores and p-values, fragment matches for PSM scores were considered equiv-
alent to what peptide matches are for protein scores. This equivalence led us to rely on Fisher's test to
de�ne protein scores/p-values from the scores for the best subset of peptides. Similar approaches have
frequently been investigated in the literature (see [26, 32, 28, 29]), and the full derivation is presented
in Methods 4.8. To the best of our knowledge, we are the �rst to discuss the adaptation of Fisher's
methodology from its original context (meta-analysis) to proteomics by explicitly considering (i) risks of
anti-conservativeness due to dependent peptides (see Methods 4.9); (ii) the impact of the poorly con-
clusive peptide-level evidence in an open-world assumption context (see Methods 4.10). Finally, for a
protein sequence seqπ identi�ed by k speci�c peptides with scores S�1 , . . . , S

�
K , the protein p-value is

de�ned as:
p?π = 10−

S?π
10 (4)

and the protein score S?π as:

S?π = −10 log10

(
min

A∈2{1,...,K}

[∫ ∞
0.2 ln(10)·

∑
k∈A S

�
k

f2·|A|(x)dx

])
(5)

where: 2{1,...,K} is the powerset of the set of K peptides identi�ed; A is a peptide set with cardinality
|A| ≤ K; and f2·|A| is the density function of the χ2 distribution with 2 · |A| degrees of freedom.

The ten replicate analyses of E. coli lysate were validated at 1% FDR by applying the BH procedure
to the PSM, peptide and protein scores. To do so, only a target database search was necessary. However,
and because it delivered a striking illustration of the capacity of the proposed framework to distinguish
false identi�cations, we introduced shu�ed sequences in the searched database to assess the results (see
Methods 4.4). We considered a challenging scenario where the number of decoys was set to �ve times the
number of target sequences. Table 1 summarizes the average (across the 10 replicates) cut-o� scores as
well as the average counts for validated PSMs, peptides and proteins in both target and �vefold shu�ed
databases (see Supplementary Figure 2 for detailed values). Although the corresponding proportion
must not be interpreted as FDRs, it is interesting to discuss them: First, despite the �vefold decoy
over-representation, each of the three validation levels (PSM, peptide or protein) taken individually was
su�cient to provide a decoy ratio below the FDP expectation of 1% at any level. Second, the three
validation strategies provided broadly concurring �lters and validated protein list sizes. Third, some
discrepancies between the three validation strategies exist (for instance, when �ltering at protein level,
PSMs with low score are validated because they belong to proteins which are con�rmed by other high
scoring peptides), leaving room to re�ne validation with appropriate multi-level �lters, as discussed below.
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No validation PSM validation Peptide validation Protein validation
PSM Pep. Prot. PSMs Pep. Prot. PSM Pep. Prot. PSM Pep. Prot.

Min score 0.002 0.002 0.002 21 19.676 21.187 0.023 20.963 21.163 0.013 0.021 22.534

#Targets 12020.2 9351.3 1466.5 10233.6 8180.3 1297.7 10736.2 8159.5 1297.9 11836.6 9169.4 1294.6

#Decoys 873.3 817.2 786 11.5 10.9 10.7 11.1 10.2 10 13.8 12 9.2

Table 1: Average (across the 10 E. coli replicates) minimum score and PSM, peptide and protein counts
assigned as target and decoy in the raw dataset (No validation), as well as after validation by one of the
three following rules: 1% BH-FDR at PSM level (PSM validation), 1% BH-FDR at peptide level (Peptide
validation) and 1% BH-FDR at protein level (Protein validation).

3 Discussion

As a whole, this work sheds new light on a crucial step in bottom-up proteomics experiments: the
validation of identi�cation results. First, it illustrates that the TDC and BH estimates of the FDP have
progressively diverged as MS accuracy has improved. Our results demonstrated that this divergence
originated in the TDC's lack of stability with respect to the precursor and fragment mass tolerances set
during database searches. Although this lack of stability can be partially counteracted by suppressing
the competition step of TDC [10], the instability induced by the random generation of decoy sequences
remains [8]. Therefore, even though target-decoy strategies can be re�ned to partially cope with this
instability, the results are not satisfactory as these strategies: (i) are not as stable as BH, in particular
at lower FDRs; (ii) are more complex to organize (implementation, computational cost) and require
additional manual checks; (iii) do not provide any guarantee of reliable FDR estimates in the future
(on datasets acquired with even higher resolution next generation instruments for which narrower mass
tolerances can be expected); (iv) fail to provide any guarantee with respect to pipeline modi�cations that
change the number of target and decoy candidates (e.g. [35]).

Second, this work provides new peptide and protein scores which demonstrably respect the calibration
conditions of the BH procedure. Indeed, implementing BH-FDR at PSM-, peptide- and protein-level is
straightforward (see Code Availability 5) and its practical use within a preexisting platform pipeline
requires no precise tuning. Moreover, our results highlighted that, despite slightly di�erent behavior, any
of these scores alone is su�cient to conservatively validate a proteomics dataset at PSM, peptide and
protein levels. This �nding suggests that various strategies could be developed to comply with di�erent
objectives: If the expected output is a protein list, then it is probably most appropriate to control the FDR
at protein-level. However, in studies seeking to re�ne discrimination between proteoforms sharing many
subsequences, it may be more relevant to validate at peptide level. Finally, when quantifying proteins,
extracting the ion current for misidenti�ed spectra produces erroneous results, making validation at PSM
level necessary. Beyond these considerations, acting at di�erent levels of �ltering may also improve the
quality of the validated identi�cations, although this assertion requires further investigation. For example,
multiple FDRs are classically used sequentially, following the inference process (starting at PSM level
and ending at protein level); using a reverse order or parallel �ltering may also be of interest to preserve
the distribution assumption of the BH procedure.

Based on these results, we propose an overhaul of how FDR is estimated in discovery proteomics
using database searching and suggest replacing TDC by BH-FDR. Nevertheless, as a theoretical research
�eld, TDC remains of interest. The original idea proposed by Elias and Gygi [2] has stimulated the �eld
of theoretical biostatistics and led to the idea that simulating null tests from the data could produce
e�cient alternatives to BH procedures, which demonstrably control the FDR [19, 20]. Transferring these
theoretical results into biostatistics routines that can be applied on a daily basis still requires some
investigation [36]. However, they will hopefully contribute to computational proteomics in the future, as
an example of an interdisciplinary virtuous circle.

4 Methods

4.1 Sample preparation and nanoLC-MS/MS analyses

For this work, we used the data obtained with a quality control standard composed of E. coli digest,
analyzed very regularly in our platform to check instrument performances.

Brie�y, competent E. coli DH5α cells transformed with pUC19 plasmid were grown at 37◦C in LB
medium containing carbenicillin before harvesting during exponential phase (OD600 ∼ 0.6). After cen-
trifugation at 3′000× g during 10 min, the pellet was washed 3 times with cold PBS before lysis of cells
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using Bugbuster Protein Extraction Reagent (Novagen) containing cOmpleteTM, EDTA-free Protease
Inhibitor Cocktail (Roche) and benzonase (Merck Millipore). After centrifugation at 3′000× g during 30
min and at 4◦C, the supernatant was recovered and the protein amount was measured, before protein
solubilisation in Laemmli bu�er.

Proteins were stacked in a single band in the top of a SDS-PAGE gel (4-12% NuPAGE, Life Technolo-
gies) and stained with Coomassie blue R-250 before in-gel digestion using modi�ed trypsin (Promega,
sequencing grade) as described in [37].

Resulting peptides were analyzed by online nanoliquid chromatography coupled to tandem MS (Ul-
tiMate 3000 and LTQ-Orbitrap Velos Pro, or UltiMate 3000 RSLCnano and Q-Exactive Plus, Thermo
Scienti�c). The equivalent of 100 ng of starting protein material was used for each injection. Peptides
were sampled on 300 µm × 5 mm PepMap C18 precolumns (Thermo Scienti�c) and separated on 75 µm
× 250 mm C18 columns (Reprosil-Pur 120 C18-AQ, Dr. Maisch HPLC GmBH, 3 µm and 1.9 µm porous
spherical silica for respectively UltiMate 3000 and UltiMate 3000 RSLCnano). The nanoLC method
consisted of a linear 60-min gradient ranging from 5.1% to 41% of acetonitrile in 0.1% formic acid.

For LTQ-Orbitrap Velos Pro analyses, the spray voltage was set at 1.5 kV and the heated capillary
was adjusted to 200◦C. Survey full-scan MS spectra (m/z = 400− 1600) were acquired with a resolution
of 60'000 at m/z 400 after the accumulation of 106 ions (maximum �lling time 500 ms). The twenty
most intense ions from the preview survey scan delivered by the Orbitrap were fragmented by collision-
induced dissociation (collision energy 35%) in the LTQ after accumulation of 104 ions (maximum �lling
time 100 ms). MS and MS/MS data were acquired using the software Xcalibur (Thermo Scienti�c). For
Q-Exactive Plus analyses, the spray voltage was set at 1.5 kV and the heated capillary was adjusted
to 250◦C. Survey full-scan MS spectra (m/z = 400 − 1600) were acquired with a resolution of 60'000
at m/z 400 after the accumulation of 106 ions (maximum �lling time 200 ms). The ten most intense
ions were fragmented by higher-energy collisional dissociation (normalized collision energy 30%) after
accumulation of 105 ions (maximum �lling time 50 ms) and spectra were acquired with a resolution of
15'000 at m/z 400. MS and MS/MS data were acquired using the software Xcalibur (Thermo Scienti�c).

4.2 MS data analysis

Data were processed automatically using Mascot Distiller software (version 2.6, Matrix Science). Peptides
and proteins were identi�ed using Mascot (version 2.6) through concomitant searches against Escherichia
coli K12 reference proteome (20180727 version downloaded from Uniprot), and/or custom made decoy
databases (reversed or shu�ed sequences - see Methods 4.4 for details). Trypsin/P was chosen as the
enzyme and 2 missed cleavages were allowed. Precursor and fragment mass error tolerance has been
variably adjusted as described in the manuscript. Peptide modi�cations allowed during the search were:
carbamidomethylation (C, �xed), acetyl (Protein N-ter, variable) and oxidation (M, variable). The
Proline software (http://proline.profiproteomics.fr) was used to �lter the results: conservation of
rank 1 peptide-spectrum match (PSM) and single PSM per query. 1% FDR control was performed with
various methods, according to the Results (see Section 2).

4.3 Selection of the adequate score

Initially, TDC was designed to operate on raw PSM scores (see De�nition 1 in Methods 4.6), i.e. on
scores which individually quantify the similarity between an experimental spectrum and a theoretical
one; irrespective of any additional information concerning the distribution of other (real or tentative)
matches. However, the last decade has witnessed the publication of many �contextualized scores�: De-
spite being rather diverse, these scores all leverage the same idea of relying on the target and the de-
coy score distributions to improve the discrimination between correct and incorrect matches. This can
be concretely achieved by de�ning a delta score, i.e. a di�erence between the best PSM score and a
statistics summarizing the score distribution (the second best candidate in MS-GF+ [38] and in An-
dromeda/Maxquant, the homology threshold in Mascot) an e-value (X!tandem) [39] or a posterior prob-
ability (in Andromeda/Maxquant or in the Prophet post-processing tool suites [40]). Many comparisons
have experimentally assessed the improved discrimination capabilities of these thresholds. In a nutshell,
by helping discarding the high scoring decoy matches, lower FDRs can be achieved.

Among these contextualized scores, it is not clear which ones require a TDC, which ones require a
decoy database but not necessarily a competition step, and which ones are only de�ned on the target
match distribution. This is not necessarily an issue, as long as TDC is assumed to fairly represent the
mismatch distribution. However, in this work we hypothesized that the Equal Chance Assumption could
be violated in some practical conditions, so that no assumption can be made on the decoy distribution
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correctness. This is a real issue for our experiments: If one uses a contextualized score to assess the
quality of the TDC-FDR, while the contextualized score is built on top of TDC, one faces a self-justifying
loop: It is essentially the same issue as over-�tting some data or as using the same dataset to learn and
to test a machine learning algorithm.

To cope for this, we have decided to evaluate the quality of TDC-FDR by relying on individual / raw
scores. The rational is the following: If TDC-FDR is stable with respect to the tuning of various mass
tolerance parameters in the search engine, then, the validated PSMs with the lowest scores should have
roughly the same �absolute� quality (i.e. irrespective of the other scores) whatever the search engine
tuning. Contrarily to a well-spread belief, when one �lters a PSM list at 1% FDR, it does not mean that
we allow 1% of poor matches in the dataset. On the contrary, it means that, despite all the validated
PSMs apparently depict matches of su�cient quality, 1% of them are spurious. In other words, the
validated PSMs with the lowest scores are not randomly selected mismatches that make the list longer
because 1% of false discoveries are tolerated; but borderline PSMs that nonetheless meet the quality
standard of a 1% FDR validation. In this context, it makes sense to assume their quality should remain
roughly constant whatever the search engine tuning.

Once it has been decided to use the lowest individual PSM scores to evaluate the stability of TDC
across various conditions of applications, one has to select a subset of search engines to perform the
experiment. This is a touchy subject as any TDC criticism can be read as a strike against a given
search engine [11, 41, 12]. In our view, the �ve most widely used search engines are the following [23]:
Andromeda (from Maxquant suite), Mascot, MS-GF+, SEQUEST and X!tandem. Among them, Sequest
is more a core algorithm that derives in a multitude of tools [42] which have di�erent implementations,
optimizations and control parameters. As for Andromeda, it possesses many layers of scores that cannot
be accessed, and which results in behaviour that should be questioned before using it in a TDC evaluation.
Notably in case of very long peptides, it is customary to observed validated PSMs with fairly high posterior
probability, while the similarity score is zero. Obviously, this questions the prior distributions which are
involved in turning a zero score into an almost certain match, and consequently the possible construction
of these posteriors from decoy matches. Finally, the last three search engines (i.e. X!tandem, MS-
GF+ and Mascot) have already been reported to lead to similar score downfalls [12]. As a result, we
have focused on Mascot (which is the most popular among the three of them and for which p-values
can be straightforwardly derived) and we have postponed the study of Andromeda (see Supplemental
Materials B).

As a side note, let us stress that this evaluation protocol should not be over-interpreted. Its context of
use is the following, strictly: We aim at evaluating the stability of TDC, independently of the search engine
or the scoring methodology. Considering, the presented evaluation protocol should not be understood as
a prejudiced view on any search engine, or on any contextualized score. Notably, some contextualized
score could as-a-matter-of-factly over-exploit TDC, de facto leading to larger FDR under-estimations
(as demonstrated by [14]), while on the contrary, some others may partially cope for the problem by
stabilizing the FDR. Although these questions are of interest, they stand beyond the scope of this work.

4.4 Decoy database generation

For classical TDC experiments (Figure 1), we used the following procedure: The target database was
reversed by using the Perl script (decoy.pl) supplied with Mascot software and the generated decoy
database was appended to the target one before concatenated search. From our observations, slightly
di�erent procedures (shu�ed vs. reversed, accounting for trypsic cleavage site, etc.) yields similar results,
which concurs with the observations described in [9].

To compute an entrapment FDR, we simpli�ed the various methods developed in the recent years [24,
43, 44, 25, 28, 29], for in our case, we did not need an assessment of the calibration of the search engine
(as in [25]), nor a combined estimation of a classical TDC-FDR and of an entrapment FDR (as in [28]).
Concretely, we only needed a su�ciently realistic empirical model of the null distribution [10, 26, 24,
27], notably one which accounts for the increment of the search engine scores as a consequence of the
competition between several decoy sequences (and which presence was the justi�cation to design a tool to
entrap them). However, this competition being of di�erent nature than the competition between target
and decoy assignments, avoiding interferences between both types of competition is crucial to accurate
FDR computation. In this context, we have followed the proposal from [10], [26] and [14] which have long
ago pinpointed that a realistic empirical model of the null distribution could be derived from a classical
decoy database search; and that this derivation was straightforward in absence of competition between
the target and decoy assignments. Although this observation blurs the line between the entrapment
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procedure and classical decoy search, the proximity of the two concepts has already been mentioned
in [43].

However, we remarked that this strategy was successful only if the decoy database was of exactly
the same size of the target. Otherwise, the competition model was not exactly the same (roughly, the
larger the database, the greater the chances that the best mismatch score increases), leading to a biased
empirical estimate of the null. A practical consequence of using a decoy database of the same size as
the target is that the resulting (discrete) null distribution is rather unstable [10]. Thus, to cope for this
instability we have relied on a boosting strategy [8] where one averages the FDR estimates of multiple
shu�e decoy databases. In our case, we used 10 shu�es, and the shu�ing procedure respects the cleavage
site so as to respect the precursor mass distribution [7].

4.5 Inference rules

Peptide inference or protein inference are umbrella terms which encompass several distinct notions:
Inference rules, scoring methodologies and quality control metrics. The inference rules de�ne which
pieces of information should be considered and how they should be used in the inference process, regardless
of their quality or reliability. For the spectrum-to-peptide inference, this notably refers to the possibly
multiple ranked interpretation of a spectrum. For the peptide-to-protein inference, this refers to the
minimum number of peptides per protein, the processing of shared peptides and the de�nition of protein
groups. The scoring methodology refers to the de�nition of a con�dence value for each entity (de�ned
thanks to the inference rules), in order to rank them from the most con�dent to the least one. Finally, the
quality control metrics is used to �lter out some insu�ciently reliable entities so as to keep a shorter
list of validated ones. The metrics can either be individual (each entity is considered independently of the
others) such as with Posterior Error Probability [45, 40]; or associated to the entire �ltered list (typically,
an FDR, but other multiple test corrections methods exist [46]).

Although conceptually distinct, these notions can overlap in practice, see [32, 28, 29]: Some inference
rules directly involve the scoring methodology; Quality control metrics may tightly relate to the scoring
methodology; Inference rules and scoring systems are compared so as to �nd the combination leading to
the lowest FDRs; Etc. However, for sake of generality, we kept here a clear distinction. Concretely: (i)
We did not address the de�nition of inference rules, and we considered the most simple one (i.e. a single
peptide interpretation per spectra and only protein-group speci�c peptides, regardless their number and
the protein grouping), and leave to future work (or to any inspired reader) the application of our procedure
to more elaborated inference rules; (ii) We focused on the scoring methodology, with the objective to
preserve the [0, 1]-uniform distribution, so as to call them well-calibrated peptide/protein p-values; (iii)
Regarding the quality control metrics, we obviously relied on BH procedure, which becomes possible
thanks to the calibration correctness.

This complete separation provides two advantages. First, it makes it possible to reason on each step
independently of the others. Notably, this article focuses on the scoring methodology independently of
the inference rules and the quality control metrics. Second, it enables a distinction between the quality
control level and and the nature of the controlled entities: While it is customary to validate a list of
proteins with an FDR of 1%, it is not as classical to validate a list of PSMs with the criterion that
less than 1% of the proteins they map on are putatively false discoveries. However, as illustrated in the
Discussion (see Section 3), such options are really insightful.

4.6 Peptide score de�nition

De�nition 1 Let us have a peptide sequence seqi, a spectrum specj and a score reading

S◦ij = Score(seqi, specj) (6)

that is provided by a search engine. The triplet (seqi, specj , S
◦
ij) formally de�nes a Peptide-Spectrum-

Match (or a PSM). To avoid ambiguity with other scoring system, S◦ij is referred to as the PSM score.

In the rest of this article, we make the following assumption:

Assumption 1 The search engine provides a PSM score S◦ij of the form S◦ij = −10 log10(p◦ij) where p◦ij
is probability of a random match.

In the setting of Ass. 1, by construction, p◦ij is the p-value of a test with the following null hypothesis:

Hij
0 : specj 6= seqi
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which simply means that the peptide sequence and the observed spectrum do not correspond. A direct
consequence of Ass. 1 reads:

Corollary 1 Under Hij
0 ( i.e. when considering only false PSM), p◦ij is known to distribute uniformly.

Remark 1 See [1] for justi�cations of Cor. 1.

In other words, if symbol ≈ is used to represent the term �look like�, then p◦ij corresponds to the following
conditional probability:

p◦ij = P(specj ≈ seqi | specj 6= seqi).

In practice, several spectra are acquired for each precursor ion, so that several PSMs participate to the
identi�cation of a same peptide sequence. This is why, one classically de�nes the best-PSM score of
sequence seqi (noted S

>
i ) as the maximum PSM score among the PSMs involving that peptide sequence:

S>i = max
q∈[1,Q]

S◦iq (7)

where Q is the number of spectra that are possibly considered for a match onto seqi. Let us denote by
p>i the corresponding probability, linked to S>i by Ass. 1. It rewrites as:

p>i = min
q∈[1,Q]

p◦iq (8)

In other words, p>i is the minimum value of a set of p-values. We would like to interpret p>i as the p-value
resulting from testing of the following null hypothesis:

Hi
0 : ∀q ∈ [1, Q], specq 6= seqi

or with a more compact notation,
Hi

0 : seq?
i

the interrogation mark simply indicating that seqi does not corresponds to any observed spectrum.
Unfortunately, this is not possible: taking the minimum promotes small p-values, so that one should not
expect the p>'s to distribute uniformly under the null hypothesis, which is required to have well-calibrated
statistical test and to apply BH procedure. Fortunately, it is possible to recover exact calibration thanks
to Prop 1.

Proposition 1 Let S1, . . . , Sn be a set of n scores of the form S` = −10 log10(p`), (` ∈ [1, n]) where the
p`'s are realizations of n i.i.d. R+ random variables, X1, . . . , Xn. If X` ∼ U [0, 1] ∀`, then,

Y = 1−
(
1− 10−

1
10 ·max` S`

)n
uniformly distributes in [0, 1].

Proof:

P[Y ≤ t] = P
[
1−

(
1− 10−

1
10 ·max` S`

)n
≤ t
]

= P
[
1−

(
1−min

`

[
10−

S`
10

])n
≤ t
]

= P[1− (1−min
`

[p`])
n ≤ t]

= P[1− (max
`

[1− p`])n ≤ t]

= P[(max
`

[1− p`])n ≥ 1− t]

= 1− P[(max
`

[1− p`])n < 1− t]

= 1− P[max
`

[1− p`] < (1− t)1/n]

= 1− P

[⋃
`

{
(1− p`) < (1− t)1/n

}]

= 1−
n∏
`=1

P[1− p` < (1− t)1/n]

= 1−
n∏
`=1

P[p` ≥ 1− (1− t)1/n] (9)
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As each p` is the realization of a U [0, 1] random variable, one has, ∀`:

P[p` ≥ 1− (1− t)1/n] = 1− (1− (1− t)1/n)
= (1− t)1/n (10)

So that

P[Y ≤ t] = 1−
n∏
`=1

(1− t)1/n

= t (11)

Consequently, the cumulative distribution function of Y is that of a uniform random variable. More-
over, Y takes its value in [0, 1], strictly. �

As well-calibration is equivalent to uniform distribution of mismatch scores, if the PSM scoring system
is well-calibrated, then according to Prop 1, the best-PSM probability can be transformed to be well-
calibrated too. Concretely, uniformity under the null is thus recovered by applying a transform akin to
that of �idák correction [34] to p>, where one de�nes the peptide p-value of peptide sequence seqi as:

p�i = 1− (1− p>i )Q (12)

The corresponding peptide score (de�ned under Ass. 1) is noted S�i .

4.7 Accounting for fragmentation multiplicity

To the best of our knowledge, the peptide score resulting from Prop. 1 has never been proposed so far.
However, similar mathematical derivations (i.e. also rooted in the �idák correction for multiple testing)
have already been applied in the proteomic context, notably to recalibrate scoring systems in a context
of multiple peptide interpretations of spectra [24] � which di�ers from the present context. Besides,
the aggregation of PSM scores into well-calibrated peptide-level scores has been already addressed by
almost the same authors, notably in [25]. This article focuses on controlling the FDR at peptide-level
within a TDC context, which probably explains the numerous discrepancies between their work and
ours. Essentially, the article compare three di�erent approaches: ETWO, WOTE and Fisher's combined
probability test. ETWO and WOTE are both based on the best-PSM score, their di�erence relying in
how the �ltering of the non-best PSMs interplays with the TDC. As for Fisher's method, one converts
all the PSM scores into PSM p-values (using Eq. 1 or a similar formula, depending on the search engine),
before applying Fisher's combined probability test [47], which returns p-values at peptide level (that can
�nally be transformed back into peptide level scores). As a result of the comparisons, it appears that
the WOTE method is the best calibrated one, tightly followed by ETWO, while Fisher method provides
miscalibrated p-values. As by construction, Fisher method should provide well-calibrated p-values when
combining independent tests, the authors explain this miscalibration by underlying that di�erent PSMs
pointing toward a same peptide cannot be considered as independent. We agree with this explanation
and we believe it is possible to go further. Due to the the strong dependence of PSMs, using Fisher
method should lead to dubious peptide scores, because of the following undesirable e�ect: several PSMs
with intermediate scores pointing toward a given peptide are practically considered equivalent to a single
PSM with an excellent score, as illustrated in the following example:

Example 1 Consider six spectra pointing toward a peptide sequence seq1, all with a Mascot scores of
18. Besides, one has another peptide sequence seq2 identi�ed by a single PSM with a Mascot score of
58.084. According to Fisher method, the peptide scores of seq1 and of seq2 are equal, indicating similar
con�dence in both peptide identi�cations.

This example contradicts with peptide scoring expectations. In fact, the PSM/peptide relationship is not
the same as the peptide/protein one, so it is not surprising that that Fisher method, which is helpful to
switch from peptide to protein level is not to switch from PSM to peptide level.

It is interesting to note that according to our proposal, the mathematical tool suggested in [24] is of
interest to solve the question raised in [25], even though bridging them has never been proposed so far.
This can be explained by a noticeable drawback of the proposed peptide score: The greater the number
Q of PSMs pointing toward a given peptide, the smaller the score (see Figure 3). As this contradicts
with the intuition that the more observed spectra, the likelier the peptide presence, a re�ned analysis is
necessary.
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Figure 3: Peptide scores versus best-PSM scores for the E. Coli dataset: In the logarithmic scale induced
by the conversion from p-values, the scores are de�ated by a constant that is proportional to the number
of matches. Relatively, the con�dently identi�ed peptides are less impacted than other ones.

From a statistical viewpoint, this penalty is well motivated: Let us consider two ions I1 and I2. If I1 is
fragmented two times more than I2, it is two times more likely to reach a higher score thanks to random
�uctuations (by analogy, it is easier to obtain a high score when taking the best out of 2 dices than
when throwing a single dice). Thus, our �idák-like correction is essential to avoid an increment of the
peptide scores which would only result in the repetition of multiple randomized tests. Contrarily to Fisher
method (discussed above through Ex. 1), the mathematical assumption underlying our correction is not
that PSMs are independent; but only that their random �uctations are, i.e. a weaker and more realistic
assumption. However, from an analytical viewpoint, this assumption is still unrealistic. In the case of
high-�ying ions with long elution pro�les, it is possible to obtain a large number of repeated fragmentation
spectra (up to 50 or 80, depending on the dynamic exclusion tuning of the mass spectrometers, on the
LC length and on the complexity of the sample) with limited (and consequently correlated) random
�uctuations. In such a case, the assumption on which our �idák-like correction is based does not hold so
that it should not be used to deteriorate the identi�cation scores.

Finally, one has to �nd a trade-o� between the necessity of correcting for multiple testing, while
avoiding too systematic corrections. From our experience, such deterioration only marginally occurs and
only impact ions with excellent scores which are validated regardless of a small score reduction (in fact,
the higher the best-PSM score, the weaker the correction, as illustrated on Figure 4). As a result, the
increased conservativeness of the correction has globally a positive e�ect on validation (see Section 2.3),
even though more investigating for re�ned strategies can be of interest.

4.8 Fisher combined probability test

To de�ne the protein-level counterpart to PSMs and peptides, we leverage the intuition that fragment
matches are for PSM scores what peptide matches are for protein scores. Instead of peptide sequence
seqi, one simply has a protein sequence seqπ. As for spectrum specj , one has a collection of spectra
{specj}j∈N that could potentially match to any of K subsequences of seqπ. The goal is thus to derive
score and p-value for protein sequence seqπ as counterparts to peptide score and p-value (each score/p-
value couple being linked by the −10 log10(.) transform). However, let us �rst make another assumption:

Assumption 2 The protein sequence seqπ does not share any subsequence with other proteins. As a
result, any identi�ed peptide sequence corresponds to a protein-speci�c peptide.

Remark 2 Ass 2 is rather strong. In practice, one can simply restrict the analysis to peptides that are
speci�c to a protein and discard the others, as done in many proteomic software tools. It is also classical
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Figure 4: Peptide score expressed as a percentage of the best-PSM score in function of the number Q of
PSMs: Each curve corresponds to the evolution of a given score, written in orange on the right hand side
of the curve. The plot reads as follow: for Q=1, the correction is idle, so that the peptide score equates
the best-PSM score (100%). The peptide score diminishes as Q grows (the plots stopped at Q=100,
depicting an already extreme situation where 100 PSMs point toward the same peptide). For instance, if
the best-PSM has a score of 80 (fourth curve form the top), and if reaching such a high score has required
39 additional PSMs with lower or equal scores, the peptide score is equal to 80% of the best-PSM score,
i.e. 64.

to de�ne equivalence classes on the peptide-protein graph, leading to so-called protein-groups.

The next step is to de�ne Hπ
0 , the null hypothesis which testing would result in the desired p-value.

Intuitively, if the protein seqπ is in the sample, one expects at least one spectrum to match on one of
the K peptide sequences; and the more matched peptide sequences, the better. However, one should
not expect that all the K peptide sequences are con�dently matched: For example some sequences may
correspond to chemical species that are di�cult to ionize. Conversely, if the protein is not in the sample,
only random match(es) should occur on one or few peptide sequence(s). This leads to the following null
hypothesis:

Hπ
0 : ∀k ∈ [1,K], seq?

π,k

or
Hπ

0 : ∀k ∈ [k,K],Hk
0 is true,

where seqπ,k represents the kth subsequence of seqπ. The corresponding alternative hypothesis Hπ
1 is

that among the K subsequences, at least one is matched. This reads:

Hπ
1 : ∃k ∈ [1,K] such that Hk

0 is false.

As a matter of fact, these null and alternative hypotheses are those of a combined probability test built on
the K peptide p-values p�1, . . . , p

�
K . In other words, a p-value at protein level can be computed according

to Fisher's method [47] (or possibly a related test, see [26, 32]), which relies on the fact that:

−2
K∑
k=1

ln(p�k) ∼ χ2
2K ,

where χ2
2K is the Chi-squared distribution with 2K degrees of freedom. This is equivalent to:

ln(10)

5

K∑
k=1

S�k ∼ χ2
2K .
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Thus, if f2K denotes the density function of χ2
2K and S⊕π =

∑K
k=1 S

�
k (i.e. the sum of the K peptide

scores for protein π), then the p-values of the combined probability test reads:

p†π =

∫ ∞
0.2 ln(10)S⊕π

f2K(x)dx (13)

Let us call p†π the Fisher p-value and S†π = −10 log10(p†π) the Fisher score.

4.9 Enforcing the conservativeness of Fisher method

The accuracy of Fisher's method is known in the case where theK p-values derive from independent tests.
However, in case of dependent tests, it can possibly be anti-conservative, i.e. p†π can be underestimated
(or conversely S†π can be overestimated), leading to too optimistic decisions. For instance, providing a
too great score to a given protein makes the practitioner overly con�dent on the presence of the protein.

Therefore, let us analyze the possible dependencies between two tests with null hypothesesHi
0 andHj

0,
respectively. In the case where protein seqπ is not in the sample, which corresponds to being under Hπ

0 ,
the two tests are clearly independent: The quality of any random match is not related to the existence of
other spectra matching on any other sequence of the same protein. However, if protein seqπ is present
in the sample, the two tests should tend to reject Hi

0 and Hj
0, respectively: independence cannot be

assumed. Therefore, the independence assumption necessary to the conservativeness of Fisher's method
only holds under the null (in fact, this can be easily observed in practice: false PSMs are spread on
numerous proteins while true ones tend to concentrate).

As explained above, in general, anti-conservative tests cannot be used, for they lead to too optimistic
decision making. This is notably why, when using Fisher's method to combine di�erent statistical analyses
into meta-analysis, the independence of the analyses is of the utmost importance: In the case were the
meta-analysis con�rms the discovery of the analyses (which means rejecting their null hypothesis), it
may do so with a too great con�dence. This is also why, numerous alternatives to Fisher's method are
available in the literature, such as for instance [48, 49].

However, in proteomics, one is seldom interested in providing a con�dence level for each protein
separately: Or at least, if one is, then, other tools exists, such as PEP / local FDR [45]. Most of the
time, the practitioner needs to provide a list of con�dently identi�ed proteins, endowed with a quality
control metric, such as the FDR. If within this list, all the Fisher scores are in�ated, it is ultimately not a
problem, as long as the FDR is well-controlled. In other words, it is not important to be overly optimistic
with true identi�cations, as long as one is not with false identi�cations. In fact, being anti-conservative
with true identi�cations while conservative with the false ones may be a good way to help discriminating
them, and thus, reduce the FDP induced by the cut-o� score (roughly, this leads the score histograms of
true and false discoveries to have a smaller overlap).

As a conclusion, despite the independence assumption only holds under Hπ
0 , Fisher score will not lead

to an increment of false discoveries; at least, as long as one validates the protein identi�cation list with
an FDR only.

4.10 Accounting for poorly identi�ed peptides

A deeper look on Fisher's combined probability test behavior pinpoints an undesirable e�ect for pro-
teomics: A very low p-value can be moderated by greater p-values. This concretely makes sense in a
meta-analysis setting, where two poorly conclusive analyses will soften the conclusion of a third very
conclusive analysis. However, in proteomics, two poorly reliable peptide identi�cations should not soften
the parent protein identi�cation, if the latter is supported by a third highly reliable (speci�c) peptide.
Let us illustrate this on an example:

Example 2 Consider a protein π with 4 peptides with score S�1 = 44.09, S�2 = 1.59, S�3 = 1.59 and
S�4 = 1.59. The corresponding Fisher score is 23.90638. In fact, the 3 last peptides are so unreliable that
they moderate the score resulting from the single observation of the best peptide. Intuitively, a score of
44.09 (related to highest protein evidence) would have been preferable.

Concretely, peptides 2, 3 and 4 in Ex. 2 having small scores does not mean they are not present in the
sample, but only that one did not have su�ciently good spectra.

This outlines an intrinsic limitation of Fisher score. It originates in the fact that, contrarily to the
setting Fisher's method was originally designed for, mass spetrometry based proteomics relies on the Open
World Assumption (OWA, [50]): an absence of observation does not mean non-existence. Concretely, a
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low score does not mean the peptide is not present in the sample, but only that one does not have a
su�ciently good spectrum. This is why, it intuitively makes sense to consider that, given a protein, its
score should not be the combination of all its peptides, but only the combination of the scores of the
peptide subset which gives the highest Fisher score. This leads to the following de�nition of the protein
score S?π:

S?π = max
A∈2{1,...,K}

S†A (14)

where S†A denotes the Fisher score of the subset A of the set of K peptides that maps onto protein π. If
one de�nes

p?π = 10−
S?π
10 (15)

then, the protein p-value p?π relates to the Fisher p-value by the following formula:

p?π = min
A∈2{1,...,K}

p†A (16)

Elaborating on methods akin to Fisher test to derive a protein level score has already been proposed
in the literature. Conceptually, the method closest to ours is also the oldest [26]: The authors proposed to
apply Stou�er's method [51] (which is akin to that of Fisher) on the best subset of peptides to de�ne the
protein p-value. Several di�erences are noticeable with respect to our proposal: First, their scoring system
is used in a target-decoy context. Second, the anti-conservative behaviour induced by dependencies is not
discussed. Third, the restriction to the best subset of peptides is not interpreted under the open world
assumption, so that it is accompanied with a multiple test correction. Fourth, the protein score is directly
based on the best-PSM score, without any intermediate recalibration at peptide level. This could lead to
miscalibration, however, the speci�c distribution of best-PSM scores is accounted for by a Gumble law
�t. More recently, numerous works have investigated a related path, yet with an objective that seems
closer to the comparison and the design of protein inference rules (a subject that is not investigated in
this article), rather than quality control procedures. Notably, they extensively discuss the involvement of
shared peptides with regards to the protein groups, and simply resort to use TDC to estimate a protein-
level FDR: In [32], authors follow a path similar to that of [26]. However, several di�erences exists: First,
another variant of Fisher method [52] is used, which makes it possible to account for shared peptides
(by down-weighting them in the combination process). Second, the method is directly applied at PSM
level to derive protein-level scores. Third, it does not focus on FDR, but on individual protein-level
metric instead (PEP, E-value, etc.), despite the PSM scoring system remained strongly linked to TDC.
In a similar trend, works from overlapping teams ([28] and [29]) have recently investigated the use Fisher
method as a protein inference rule (rather than a scoring methodology) in a TDC context, and compared
it with other approaches (product of PEP, best-peptide protein surrogate, two peptide rules, etc.).

5 Code availability

Implementing BH-FDR at PSM-, peptide- and protein-level is straightforward. First, if the scores of
all the PSMs indicating a given peptide sequence are stored as a vector, psm.scores, then, the peptide
p-value pep.pval and peptide score pep.score can be determined by applying the following R code:

library(Rmpfr) # to avoid roundings in p-values

psm.pvals <- mpfr(10**(-psm.scores/10), 128)

pep.pval <- 1-(1-min(psm.pvals))^length(psm.pvals)

pep.score <- -10*log10(pep.pval)

Then, the protein score prot.score and p-value prot.pval for a protein for which peptide scores are
stored in a vector pep.scores can be computed using the following code:

pep.scores=sort(pep.scores, decreasing=T)

nb.pep=length(pep.scores)

pep.cumscore=cumsum(pep.scores)*log(10)/5

tmp.scores=rep(0,nb.pep)

for(j in 1:nb.pep){

tmp.scores[j]=pchisq(pep.cumscore[j],2*j,lower.tail=F,log.p=T)

tmp.scores[j]=tmp.scores[j]/(-0.1*log(10))

}

prot.score= max(tmp.scores)

prot.pval= 10**(-prot.score/10)
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Once the Peptide scores and Protein scores are available alongside the PSM scores provided by the
search engine, the BH procedure can simply be run by applying the p.adjust() R function (base func-
tion).

All these scores (and the BH procedure) are implemented in Proline software (http://www.profiproteomics.
fr/proline/), written in Java/Scala, so that any proteomics data analyst can use them whatever their
coding skills.

6 Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via
the PRIDE [53] partner repository with the dataset identi�er PXD016669 and 10.6019/PXD016669.
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Supplementary Information

A Supplementary �gures and tables

Supplementary Table 1: Quantitative summary of the results depicted in Figure 1, completed with the
number of validated PSMs.
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Supplementary Figure 1: Histogram of 15,000 simulated p-values, after taking the minimum out of N
uniformly distributed samples, with N = 1 (upper left), N = 2 (upper right), N = 5 (lower left) and
N = 15 (lower right). Clearly, the uniform distribution is lost because of the minimum operator. The
rationale behind is intuitive: by taking the minimum p-values, one promotes small p-values with respect to
large p-values, so that from a distribution with used to be uniform, one ends up with another distribution
with is shifted to the left.
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Supplementary Table 2: Replicate-wise details of the validation results summarized in Table 1.

#Targets #Decoys min Score #Targets #Decoys min Score #Targets #Decoys min Score

R1 12319 744 0 9293 734 0 1482 712 0

R2 12347 840 0 9286 821 0 1462 795 0

R3 12149 849 0.01 9254 829 0.01 1451 803 0.01

R4 12843 714 0.01 9898 684 0.01 1427 667 0.01

R5 12092 826 0 9465 806 0 1470 775 0

R6 12332 837 0 9422 821 0 1435 784 0

R7 12201 852 0 9408 833 0 1476 807 0

R8 12095 830 0 9418 808 0 1477 780 0

R9 10908 935 0 9026 914 0 1503 869 0

R10 10916 946 0 9043 922 0 1482 868 0

Average 12020.2 837.3 0.002 9351.3 817.2 0.002 1466.5 786 0.002

#Targets #Decoys min Score #Targets #Decoys min Score #Targets #Decoys min Score

R1 10523 9 20.94 8175 9 18.9 1305 9 21.04

R2 10420 8 21.02 8115 8 20.17 1293 8 21.78

R3 10424 11 20.96 8151 11 19.84 1286 11 20.96

R4 11012 29 20.9 8723 23 19.61 1292 22 21.01

R5 10239 11 21.02 8250 11 19.96 1304 11 21.23

R6 10624 10 20.93 8309 10 19.55 1288 10 20.95

R7 10458 10 20.98 8272 10 20.23 1305 9 21.08

R8 10440 10 20.95 8327 10 19.73 1318 10 20.95

R9 9094 9 21.15 7723 9 18.53 1290 9 21.54

R10 9102 8 21.15 7758 8 20.24 1296 8 21.33

Average 10233.6 11.5 21 8180.3 10.9 19.676 1297.7 10.7 21.187

#Targets #Decoys min Score #Targets #Decoys min Score #Targets #Decoys min Score

R1 11073 8 0.04 8151 8 20.92 1304 8 21.04

R2 11032 8 0.02 8089 8 20.97 1293 8 21.78

R3 10926 11 0.02 8126 11 20.95 1286 11 20.96

R4 11537 32 0.02 8705 23 20.85 1292 22 21.01

R5 10755 10 0 8232 10 20.96 1304 10 21.23

R6 11117 9 0.01 8286 9 20.92 1287 9 20.95

R7 10975 9 0.02 8251 9 20.95 1305 8 21.08

R8 10909 9 0.01 8307 9 20.9 1318 9 20.95

R9 9484 8 0.05 7698 8 21.12 1290 8 21.54

R10 9554 7 0.04 7750 7 21.09 1300 7 21.09

Average 10736.2 11.1 0.023 8159.5 10.2 20.963 1297.9 10 21.163

#Targets #Decoys min Score #Targets #Decoys min Score #Targets #Decoys min Score

R1 12123 7 0.04 9099 7 0.08 1300 7 22.54

R2 12163 8 0.02 9103 8 0.03 1293 7 22.7

R3 11964 14 0.01 9070 14 0.01 1282 11 22.45

R4 12702 32 0.02 9760 21 0.04 1293 18 22.25

R5 11912 13 0 9288 12 0.01 1299 9 22.35

R6 12170 16 0.01 9259 14 0.01 1284 9 22.44

R7 12019 13 0 9227 12 0 1306 8 22.48

R8 11924 12 0 9247 11 0 1316 8 22.42

R9 10679 12 0.02 8801 10 0.02 1293 7 22.99

R10 10710 11 0.01 8840 11 0.01 1290 8 22.72

Average 11836.6 13.8 0.013 9169.4 12 0.021 1295.6 9.2 22.534
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B Downfall of Andromeda scores

The TDC lack of stability already observed with Mascot (see Figure 1) can also be illustrated with
Andromeda, even though the conclusions should be cautiously interpreted for the following reasons:
(1) Andromeda code is not accessible, so that it is not possible to check whether the provided scores
are individual or if they should be considered as contextualized scores, because of the ��xed additive
component� which accounts for peptide dependences, as described in [54]; (2) Depending on the version,
the TDC procedure is by default applied on posterior probabilities or on delta scores, both of us being
contextualized scores; (3) Due to the speci�c relationship between the posterior probabilities and the
scores of long peptides (see Methods 4.3) the minimum observed Andromeda score within the validated
list is almost always near zero, so that focusing on the variations of cut-o� score is not informative.

Concerning the �rst point, it is more a state of a�air than an issue to solve, which will only make
Andromeda more or less adapted to evaluate the TDC procedure. This is notably the reason why we do
not compute and display the BH cut-o� scores: it is impossible to make sure that Equation 1 is applied
on the correct score. As for the second one, we have used the posterior probability, because it is the
published method. Finally, concerning the last one, we simply have to �nd a statistics other than the
minimum score which depicts the quality of the borderline validated peptides. We have decided to rely
on the lowest percentile of the score distribution. This interprets as following: a value of x indicates that
the 1% lowest PSM scores are distributed between 0 and x. As detailed in Methods 4.3, as the lowest
PSM scores are expected to remain of constant quality, it makes an interesting statistics to illustrate a
potential lack of stability in the TDC.

The results are depicted on Supplementary Figure 2. Although the �rst percentile can be expected to
be more stable than the minimum value, one observes an important instability, both for each tolerance
tuning taken individually, and across the tolerance tunings. However, it appears that contrarily to Mascot,
X!tandem and MS-GF+, the e�ect of the fragment mass tolerance tuning is much more important than
that of the precursor one. Moreover, the mapping between the Velos and Qex analyses is not as good
as with Mascot. However, in the LL setting, switching from a Velos to a Qex leads to a stringency loss,
while on the contrary, it leads to a stringency increment in the HL setting. Considered together, these
observations con�rms the lack of of stability of TDC procedure.

Supplementary Figure 2: Same �gure as Figure 1, yet with Andromeda search engine instead of Mascot.
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