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Abstract 
 
The rise of antibiotic resistance (AR) in clinical settings is one of  the biggest modern 
global public health concerns, therefore, the understanding of its mechanisms, 
evolution and global distribution is a priority due to its impact on the treatment course 
and patient survivability. Besides all efforts in the elucidation of AR mechanisms in 
clinical strains, little is known about its prevalence and evolution in environmental 
uncultivable microorganisms. In this study, 293 metagenomic and 10 
metatranscriptomic samples from the TARA oceans project were used to detect and 
quantify environmental Antibiotic Resistance Genes (ARGs) using modern machine 
learning tools. After extensive manual curation, we show their global distribution, 
abundance, taxonomy and phylogeny, their potential to be horizontally transferred by 
plasmids or viruses and their correlation with environmental and geographical 
parameters. After manual curation, we identified a total of 99,205 environmental 
ORFs as potential ARGs. These ORFs belong to 560 ARG families that confer 
resistance to 26 antibiotic classes. A total of 149 ORFs were classified as viral 
sequences. In addition, 24,567 ORFs were found in contigs classified as plasmidial 
sequences, suggesting the importance of mobile genetic elements in the dynamics 
of ARGs transmission. From the 13,163 identified ARGs passing all the criteria for 
quantification analysis, 4,224 were expressed in at least one of the 10 
metatranscriptomic samples (FPKM >5).  Moreover, 4,804 contigs with more than 2 
ARGs were found, including 2 plasmids with 5 different ARGs, highlighting the 
potential presence of multi-resistant microorganisms in natural environment and/or 
non-impacted by human presence oceans, together with the possibility of Horizontal 
Gene Transfer (HGT) between clinical and natural environments.  The abundance of 
ARGs in 293 samples showed different patterns of distribution, with some classes 
being significatively more abundant in Coastal Biomes. Finally, we identified ARGs 
conferring resistance to some of the most relevant  clinical antibiotics, revealing the 
presence of 15 ARGs from the recently discovered MCR-1 family with high 
abundance on Polar Biomes. A total of 5 MCR-1 ORFs are present in the genus 
Psychrobacter, an opportunistic bacteria that can cause fatal infections in humans. 
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Our results are available on Zenodo in MySQL database dump format and all the 
code used for the analyses, including jupyter notebooks can be accessed on github 
(https://github.com/rcuadrat/ocean_resistome).  
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Introduction  
 
The world is facing a dramatic emergence of cases of multi-resistant bacterial 
infections, and leading organizations as the Center for Disease Control and 
Prevention (CDC) and World Health Organization (WHO) classify the problem as 
“urgent, serious and concerning” [1]. Antibiotic resistant bacteria causes 700.000 
deaths per year, being an economic burden to the entire world and in particular for 
developing countries. Furthermore, if the emergence of multi-resistant bacteria 
continues at the same rate projections then they will cause 10 million deaths per 
year by 2050, which is more than deaths caused by cancer [2,3]. 
Antibiotic resistance (AR) is a natural phenomenon, and some of the most common 
resistance mechanisms like beta-lactamase are estimated to have emerged more 
than 1 billion years ago [4,5]. This estimation is based on the prediction of ancestral 
enzymes, in the Precambrian era, through Bayesian statistics based on modern 
ARGs [4] (1.3-3 Gyr). The collection of antibiotic resistance genes (ARGs) in a given 
environment, also called resistome, is a natural feature of microbial communities. 
The resistome is part of both inter- and intra-community communication and defense 
repertoires of organisms sharing the same biological niche  [6,7]. 
Over the years, evidence of the role of natural environments as a reservoir of 
resistance genes has been shown in different environments, such as hospital 
wastewater [11], water supply [12], remote pristine Antarctic soils [13] or impacted 
Arctic tundra wetlands [14], and it is believed that anthropogenic activity (e.g. over-
usage of antibiotics and their subsequent release in waste waters and in the 
environment) could lead to the rise of ARGs in the clinical environment. Therefore, 
the investigation of the natural context of ARGs such as the geographic location, 
dynamics and in particular their presence on horizontally transferable mobile genetic 
elements (MGEs), such as plasmids, transposons and phages, is crucial to assess 
their potential to emerge and spread [8–10]. Thanks to the development of DNA 
sequencing technology, the metagenomics and bioinformatics fields, it is now 
possible to study the presence and prevalence of ARGs in different environments, 
however, most of the studies investigated one or few classes of ARGs, being limited 
to specific environments and to the technology that were still being developed. 
 
Recently the number of metagenomic projects stored in public databases have been 
growing, but the lack of related metadata makes it difficult to conduct high-
throughput gene screenings and correlations with environmental factors. Fortunately, 
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the TARA oceans project [15], measured several environmental conditions, such as 
temperature, salinity, geographical location, pH, etc, across the globe and stored 
them as structured metadata, which, together with the deep sequencing of 
metagenomic samples, allows the use of machine learning and deep learning 
approaches to search for patterns of species and genes with environmental 
parameters and extract relevant biological information. 
In this study, we applied DeepARG [16], a deep learning approach for ARG 
identification, trained to search for over 30 classes of ARG based on the similarity 
distribution of sequences in the 3 ARG databases [17] on the assembled TARA 
oceans data [18] for 12 regions. The ARG identification was then followed by 
abundance quantification for each individual sample for 293 samples and association 
analyses between the quantification of ARGs and environmental parameters using 
Ordinary Least Squares (OLS) regression. We also explored the presence of ARGs 
in mobile genetic elements (MGEs) in TARA samples in order to verify the potential 
of a given environment to act as a reservoir of ARGs. 
 
 
Material and Methods 
 
Metagenomic data 
 
A total of 12 co-assembled metagenomes, with contigs larger than 1 kilobase from 
the regions explored by the Tara Oceans expedition were obtained from the dataset 
published in 2017 by Delmont et al. [19].  Raw reads of 378 runs from 243 samples 
from the Tara Oceans project were downloaded from the EBI ENA database 
(https://www.ebi.ac.uk/ena) from studies PRJEB1787, PRJEB6606 and PRJEB4419. 
The sequence identifier and metadata were obtained from Companion Tables Ocean 
Microbiome (EMBL) [20]. All these samples were collected in seawater  on different 
depth and filtered to retain different fractions (cell sizes). Also, 10 metatranscriptome 
samples from the TARA Oceans expedition were obtained from the EBI repository 
(https://www.ebi.ac.uk/ena/data/view/PRJEB6608) and used in order to evaluate the 
expression of the previously detected ARGs. 
 
Obtaining and analysing putative ARGs from Tara Ocean Project contigs 
 
Open reading frame (ORF) prediction and extraction was performed on the 12 co-
assembled metagenomes using the software MetaGeneMark v3.26 [21] with default 
parameters.  
The screening for ARGs with DeepARG [16] was performed on the extracted ORFs 
using the default gene models and sequences with probability equal or superior to 
0.8 of being an ARG. The contigs containing at least one putative ARG were 
analysed with the tool PlasFlow 1.1 [23] in order to check if those contigs are 
plasmids or chromosomal sequences. We also investigated the number and 
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distribution of contigs with 2 or more putative ARGs, in order to check for multiple 
resistance presence and/or whole ARG operons from environmental samples. 
The ORFs of putative ARGs were extracted with a Python script for following 
analyses. All ORFs classified as ARG were submitted to Kaiju v1.6.2 [22] for 
taxonomic classification, with the option “run mode” set as “greedy”.  
 
In order to check for mis-annotations and inconsistencies, a manual curation on each 
of the ARG was conducted in sequences from both deepARGdb [16] and obtained 
from environmental samples. Next, blastp queries [24] were performed against the 
non-redundant protein database, with default parameters and the results were 
manually inspected. Conserved domains (CDDs) and annotations in the source 
databases (ARDB, CARD and UNIPROT) were manually inspected. 
 
ARGs quantification on metagenome and metatranscriptome samples 
 
Environmental ARGs identified in the assembled database after the manual curation 
were used as reference for mapping all the raw reads from the 378 metagenomic 
and 10 metatranscriptomic samples, using BBMAP v 37.90. The coverage and 
abundance of each ARG class for every sample was obtained from BBMAP (FPKM). 
Next, data was normalized by Reads Per Kilo Genome equivalents (RPKG), being 
the Average Genome Size (AGS) and Genome Equivalents (GE) estimated by the 
software MicrobeCensus v 1.0.7 [25].  
 
Phylogenetic analysis of environmental ARGs 
 
The clinically relevant ARG family MCR-1 was used for phylogenetic analyses with 
the ARGs found in public databases, such as NCBI and deepARGdb. A multiple 
alignment and phylogenetic trees were generated using the standard pipeline found 
in phylogeny.fr [26]. Sequences were aligned with Muscle [27], then conserved 
blocks extracted with gblocks [28], phylogenetic trees generated with phyML [29], 
using “WAG” as substitution model and the statistical test alrt.  
 
Statistical analyses  
 
RPKG values for all ORFs of each ARG family were summed for each sample. The 
features were grouped by environmental features, such as the sample depth, 
biogeographic biomes, ocean and sea regions and the concatenation of size fraction 
lower and upper thresholds (here defined as “Fraction”). Box plots were generated 
for ARG classes grouped by each of the previously cited parameters. Pairwise Tukey 
HSD tests and PCA analyses were also performed on the same. The multivariate 
linear regression using OLS models was performed considering the following 
formula: 
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ARGRPKG  ~ Marine provinces + Environmental Feature + Ocean sea regions + 
Fraction + Biogeographic biomes + Latitude + Longitude + NO2 + PO4 + NO2NO3 + 
SI + miTAGSILVATaxo Richness + miTAG_SILVA_Phylo_Diversity + 
miTAG_SILVA_Chao + miTAG_SILVA_ace + miTAG_SILVA_Shannon + 
OG_Shannon + OG_Richness + OG_Evenness + FC_heterotrophs_cells_mL + 
FC_autotrophs_cells_mL + FC_bacteria_cells_mL + FC_picoeukaryotes_cells_mL 
 
Where ARGRPKG (the dependent variable) is the sum of RPKM of all ARGs in a given 
class and all the dependent variables are selected environmental parameters. Anova 
test was conducted on the coefficients obtained from the OLS regression. Statistical 
analysis were performed using Python 2.7 scripts with data science and machine 
learning libraries, such as pandas, scipy, numpy, seaborn and sklearn. 
 
 
Database design and implementation 
 
A manually curated MySQL database was created with the environment ARGs 
described in this study plus the original ARGs from deepARGdb. We provide the 
SQL file and in the future a web interface to query, visualize and analyse similar 
datasets will be made available. The full MySQL dump is available at 
https://doi.org/10.5281/zenodo.3404245. 
 
Results 
 
Environmental ARGs prediction and manual curation 
 
The identification of ORFs, performed with the software MetaGeneMark on the 12 
co-assembled metagenomes, returned a total of 41,249,791 ORFs from 15,600,278 
assembled contigs. The identified ORFs were used in a screening for ARGs with the 
software DeepARG, of which 116,425 (0.28% of ORFs) were classified as putative 
antibiotic resistance genes (ARGs), belonging to 594 gene families and 28 ARG 
classes. The number of contigs, ORFs and putative ARGs for each region 
(metagenomic co-assembly) can be found on Table 1 and the distribution of putative 
ARG classes within each co-assembled metagenome can be found in 
Supplementary Table 1. 
 
 
 
Table 1: Number of contigs, ORFs and putative ARGs for each region (metagenomic 
co-assembly) 
 

Sample Contigs ORFs #ARG 
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TARA_ANE_RAW 1382239 3686619 11283 

TARA_ANW_RAW 1267057 3308183 9994 

TARA_ASE_RAW 766472 1842937 4955 

TARA_ASW_RAW 989154 2502625 6902 

TARA_ION_RAW 1608737 4257000 9830 

TARA_IOS_RAW 1475271 3736229 9909 

TARA_MED_RAW 1146485 3344341 10160 

TARA_PON_RAW 1663221 4368436 11814 

TARA_PSE_RAW 2722083 7155344 20587 

TARA_PSW_RAW 1124813 3080817 9224 

TARA_RED_RAW 1039053 2937951 8924 

TARA_SOC_RAW 415693 1029309 2843 

Total 15,600,278 41,249,791 116,425 

 
Afterwards, we conducted a manual curation on all 594 genes, in order to investigate 
different scenarios: (i) miss-annotated genes or with low experimental evidence as 
ARGs on the databases; (ii) housekeeping genes that confers resistance when 
specific mutations arise; (iii) housekeeping genes conferring resistance when 
overexpressed; (iv): regulatory sequences, responsible for ARGs activation or 
overexpression of housekeeping genes (leading to resistance phenotype); (v): 
sequences with both similarity to ARGs and non-ARGS, for example, from the same 
super family and/or sharing domains.  
 
For the scenario (i), the genes were completely removed from both our database and 
downstream analysis. Genes on the scenario (ii), (iii) and (iv) were kept in the 
database for further studies but not used in the quantification and statistical 
analyses. The first due to technical limitations for differentiate the wild type from 
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mutant with our approach and the later two because we do not have expression data 
from all the samples analysed. For the scenario (v), when it was possible, we 
conducted phylogenetic analysis in order to try to separate ARGs from non-ARGs 
homologous, and when impossible, those genes were kept in the database as 
“waiting for validation” ARGs, (and excluded from quantification and statistical 
analyses). 
Regarding the scenario (i), we identified 34 ARG families as missannotated in the 
source database or with low quality annotation. For instance, the msrB gene 
encodes an ABC-F subfamily protein, leads to resistance to the antibiotics 
erythromycin and streptogramin B, but the fasta sequence on the database is 
actually a Methionine Sulfoxide Reductases B, also called msrB but not a resistance 
gene. In addition, another miss annotated ARG family is patA, an ABC transporter of 
Streptococcus pneumoniae, conferring resistance to fluoroquinolones, however, the 
sequence in the CARD database was a putrescine aminotransferase (patA).  
 
After removing ORFs identified for the scenario (i), a total of 99,205 ORFs remained 
for non-quantitative analyses (taxonomical classification, presence of multi-ARGs in 
the same contig, and potential HGT ARGs - by checking if they are in plasmids or 
phage). 
 
Regarding the scenario (ii): we identified 10 families which genes are housekeeping 
and mutations could lead to resistance; scenario (iii): we found 9 ARGs in which the 
overexpression leads to resistance;  scenario (iv): we found 41 regulatory 
sequences, and for scenario (v): we identified 187 families that cannot be 
distinguished by similarity alone from genes not involved with the resistance 
phenotype. After the removal of these genes, a total of 13,163 ORFs (from 116,425)  
belonging to 313 (from 594) families were retained for quantification and statistical 
analysis.  
 
The supplementary  table 1 shows the results of our manual curation.  
 
Figure 1 shows the 20 more abundant ARG families (in number of ORFs found in all 
12 metagenomes) with their antibiotic classes (only for the ARGs marked for 
quantification analyses).  
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Figure 1: The 20 most abundant ARGs (in number of ORFs detected on the 
study) and their respective antibiotic classes. 
 
Multiple ARGs in chromosomes and plasmids and its taxonomic classification 
 
The presence of 2 or more ARGs in a single contig was also checked in order to find 
possible multi-resistant organisms. For this analysis, we only removed the ARGs 
from scenario (i), because the presence of putative ARGs in the same contig and/or 
plasmid can give us additional functional evidence, for example, regulatory 
sequences (scenario iv) in the same contig of  multiple sequences from scenario v 
(not easily distinguished from non-ARGs homologs), can be an AR operon.  
 
We identified 4,804 contigs with 2 or more putative ARGs, of which 2 contigs 
harboured  a maximum of 11 putative ARGs, and 2 contigs classified as plasmids 
with 5 putative  ARGs, suggesting the presence of multi-resistant microorganisms in 
these environments (Figure 2). In fact, a total of 24,567 putative  ARGs (24.76% of 
the 99,205 ARGs in scenario ii,iii,iv and v) were classified as plasmids. Figure 2 
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shows the distribution of contigs and their respective number of ARGs in plasmids 
and chromosomes. 
 
 
 

 
Figure 2: Distribution of contigs with multiple ARGs (more than 2 per contig) in 
chromosome (blue bar) and plasmids (orange bar). 
 
 
 
The taxonomic classification of putative ARGs using Kaiju [22], allowed us to classify 
97,397 (98.17%) sequences to some taxonomic level. The largest class is 
alphaproteobacteria (35,638 sequences), as expected for marine environments. A 
total of 149 ARGs were classified as virus (0.15% of total ARGs in scenario ii,iii,iv 
and v). The most abundant is Chrysochromulina ericina virus (CeV) (28 ARGs). 
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However, all the 149 ARGs are in the scenario iv, and further investigations should 
be done in order to curate these sequences. 
 
 
Impact of filter size on average genome size (AGS) on Tara Oceans samples 
 
For all 378 sample runs, the software MicrobeCensus v 1.0.7 [25] was used to 
estimate the average genome size of the sample. The method is used to avoid bias 
of genome sequence coverage between samples populated with different size of 
genomes, what is expected due to filtration methods in the TARA study.  
The authors of the software proposed the method RPKG for gene abundance 
normalization in microbiome studies, described in [25]. Since the TARA samples had 
different lower and upper thresholds of filtration size, we grouped samples by both 
thresholds to investigate the differences in the AGS. This tool use a set of gene 
markers to infer the AVS, and as the markers are mainly present in cellular 
genomes, the fractions enriched for virus and giant virus (< 0.22 and 0.1-0.22) 
showed very biased and aberrant results for AVS (very high, up to 395.4 
megabases) and genome equivalents (consequently very low, minimal), being then 
removed from the quantitative analysis. The remaining 293 samples were mapped to 
the ARGs (all versus all) and the  RPKG calculated for each of  the environmental 
ARGs. 
Also, 10 RNA-seq samples (metatranscriptome) were used for evidence of gene 
expression, and a total of 4,224 ARGs (from a total of 13,163) were expressed in at 
least one sample. From those,  841 are plasmidial ARGs.  
 
Statistical tests  
 
In order to explore the abundance of ARG classes across different marine regions, 
fractions and layers, we ran pairwise tukey hsd tests on the ARG classes (The sum 
of RPKG for each class). For example, we wanted to investigate if the Coastal 
biomes had significatively more ARGs from any class than other more pristine 
biomes, such as Coastal. For quinolone and bacitracin classes, the Coastal biome 
shown significant more abundant than Westerlies biome (adjusted p-values 0.0169 
and 0.0076). Also for quinolone, Coastal biome shown also borderline significantly 
more abundance than Trades Biome (adjusted p-value 0.0438). 
For fosmidomycin, the Coastal biome shown significantly more abundance of ARGs 
than Trades Biome (adjusted p-value 0.0014) (Figure 3).  
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Figure 3: Tukey HSD comparing the RPKG of ARG classes for 4 biomes of Tara 
Oceans study. a- RPKG for Quinolone ARGs; b- RPKG for Bacitracin ARGs c- 
RPKG for Fosmidomycin ARGs d- RPKG for Polymyxin ARGs 
 
However, surprisingly, the Polar Biome shown significantly higher RPKG values for 
ARGs from the class Polymyxin than any other biome.  
 
When comparing provinces, we found significant difference of bleomycin class in 2 
Indian provinces compared to  most of the other provinces, even if the RPKG values 
are very low for all the samples. 
 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/765446doi: bioRxiv preprint 

https://doi.org/10.1101/765446
http://creativecommons.org/licenses/by/4.0/


 
Figure 4: Tukey HSD comparing the RPKG of ARGs (bleomycin class) for Ocean 
Provinces. 
 
The complete results of all the pairwise tests can be found in supplementary table 2. 
 
Estimating the environmental factors influence on ARGs abundance by linear 
regression (OLS) 
 
Our OLS models shown mostly geographical parameters affecting the variance of 
ARGs. However, for some classes, the influence of non-geographical parameters 
(such as nutrient concentration) on the abundance of ARGs could be demonstrated. 
For example, for quinolone, the model shows PO4 inverted correlated (beta -0.13, p-
value 0.0002), NO2NO3 (Nitrite+Nitrate concentration) direct correlated (beta 0.007, 
p-value 0.002). The R2 of this model is 0.57 and p-value 9.82E-17. 
The supplementary table 3 shows all the results anova test on the coefficients of 
OLS  for each class (significant results).  
 
Mobilized colistin resistance  genes (MCR-1) 
 
Genes of great clinical relevance were found, for example 15 ORFs of MRC-1 
(resistance to polymyxin). 
 
The figure 5 shows the distribution of MRC-1 over the marine regions. 
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Figure 5: MCR-1 RPKG distribution for each marine province. The most abundant 
regions were Antarctic Province followed by its adjacent region Atlantic Southwest 
Shelves Province. 
 
 
 
Phylogenetic analysis of MCR-1 
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The MCR-1 genes are similar to chromosomal polymyxin resistance eptA genes, 
then in order to classify the environmental ARGs we conducted a phylogenetic 
analysis using EPTA sequences as outgroups, and also clinical MCR-1 genes. Our 
results show that the environmental sequences felt on the same big clade with 
clinical MCR-1 sequences (support value 0.954), being eptA genes external group 
as expected. The 5 sequences classified by kaiju as belonging to Psychrobacter 
genus were the closest to the clinical clade, with support value of 0.986 (figure 6).  
 

 
Figure 6: Phylogenetic tree, inferred by standard pipeline from phylogeny.fr (phyML 
with “WAG” model and statistical test Alrt for support values). Sequences from NCBI 
for outgroup EPTA and for clinical MCR-1 were used in addition to the samples 
obtained from our results from Tara co-assemblies.  
 
Discussion  
 
In this study, we explored the distribution, abundance and phylogeny of homologs of 
antibiotic resistance genes that are conferring resistance to 28 antimicrobial classes, 
thus revealing the global ocean resistome using public metagenomic databases.  
Previous studies screened and analyzed ARGs in genomes and metagenomes of 
clinical and environmental samples [11,12,13,14], but they focused on one or few 
ARG classes, being mostly β-lactamases lactamase coding genes. In general, there 
is a gap in our knowledge about how most of ARGs are distributed in the natural 
environment, how these environments can act as a reservoir of ARGs and also how 
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human activities can impact by providing ARGs that evolved under anthropogenic 
activity pressure, for example, agricultural activity or urban wastewater.  
Using the deepARG tool [16] , we found 594  putative ARGs  in  28 ARGs classes, in 
the most comprehensive study so far. From the total of ORFs found in the 12 co-
assembled metagenomes from the TARA Oceans expedition [15], 0.28% were 
classified as an ARG gene. However, due to miss-annotations and miss-
classifications, it was necessary to conduct an extensive manual curation on the 
results. After curation, we completely excluded 31 ARGs (so-called scenario i). For 
the quantitative analyses, we kept only 313 ARGs (26 classes), the ones passing all 
the criterias of scenario i-to-v.  This represents an important resource for further 
studies, including evolutionary and comparative studies. 
By using contig sequences assembled from multiple samples, we assume the risk of 
analysing chimeras, where contigs can be artificial assembled between different 
strains or even species, but we are able to evaluate genetic context of the studied 
genes, and also the possible presence of multi-resistance, by finding multiple ARGs 
in the same contig. In fact, it was possible to find several contigs containing 2 or 
more ARGs, with extreme cases of 2 chromosomal contigs with 11 putative ARGs 
(figure 2). The presence of multi-resistant bacteria in aquatic samples was not a 
surprise, and it was already described by several studies in seawater and sediment 
[30,31] and even in drinking water [32].  
In addition, we used PlasFlow [23] to infer if the putative environmental ARGs are in 
a plasmid or in a chromosomal region. We found  24,567 ARG sequences in 
plasmids, including 2 plasmidial contigs containing up to  5 ARGs. We also used 
Kaiju [22] for taxonomic classification of ARGs and we found 149 sequences 
classified as viruses. The main objective of the latter analyses was to evaluate the 
potential of horizontal genetic transfer (HGT), as plasmids, bacteriophages, and 
extracellular DNA are the three primary drivers of HGT. The occurrence of HGT of 
ARGs was already detected and characterized in clinical environments [33], in 
wastewater treatment plants (activated sludge) [34,35] and in fertilized soil [36], but 
still little is known about aquatic environments, especially in open ocean regions. The 
presence of ARGs in phages and its potential HGT was described in many studies, 
for example, in a mediterranean river [37], in pig feces samples [38], in fresh-cut 
vegetables and in agricultural soil [39]. 
The environmental ARGs sequences found in this study were used as reference for 
mapping reads from 293 TARA oceans metagenomic samples, in order to quantify 
each of them around the world. The samples used in the original assembly (93) were 
included in the samples used in this step, but with the addition of new samples 
published afterwards.  
In order to investigate if environmental features can influence ARG classes 
abundances, we conducted statistical tests (pairwise tukey HSD  and OLS), showing 
that for 3 ARG classes there are significant higher abundance on Coastal Biomes 
than some other biome (Figure 3). For quinolone class, the Coastal biomes are the 
highest compared to all  the other 3 biomes.  High abundance of ARGs of quinolone 
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class along other ARG classes was previously reported on China coastal 
environment  [40]. 
These results could indicate that specifically this class of ARGs are under 
anthropogenic pressure, and future studies should be carried to investigate it in 
greater details.  
For Polymyxin class, we found a surprising result, showing Polar Biomes as 
significantly more abundance. Polymyxin B and E  (also known as Colistins) are last 
resort antibiotics used against gram-negative bacteria only when modern antibiotics 
are ineffective, especially in cases of multiple drug-resistant Pseudomonas 
aeruginosa or carbapenemase-producing Enterobacteriaceae [41,42]. However, 
some bacteria, such as Klebsiella pneumoniae, Pseudomonas aeruginosa, and 
Acinetobacter baumannii, develop resistance to polymyxins in a process referred to 
as acquired resistance, whereas other bacteria, such as Proteus spp., Serratia spp., 
and Burkholderia spp., are naturally resistant to this drug class [43].  
Most mechanisms conferring resistance to Colistin are directed against modifications 
of the lipid A moiety of lipopolysaccharide (LPS), being the addition of l-ara4N and/or 
phosphoethanolamine (PEtN) to lipid A is one of the main mechanisms [44]. 
We found ARGs responsible for both resistance mechanisms: for l-ara4N addition 
we found genes from arnBCADTEF operon (arnA, arnC and arnD), pmrA, pmrB, 
PBGP/pmrF/yfbF;   and for PEtN addition (pmrC/eptA and the recent discovery of 
mobilized colistin resistance - mrc-1).  
The efflux pump gene rosB involved in polymyxin resistance was also found. Until 
the discovery of the plasmid-borne mrc-1 in E. coli from pigs and meat in China [45], 
colistin resistance has always been linked to a chromosomal-related mechanism with 
few or no possibility of horizontal transfer. However, further studies showed high 
prevalence of the mcr-1 gene (for example 20% in animal strains and 1% in human 
strains in China) and the plasmid has been detected in several countries covering 
Europe, Asia, South America, North America and Africa [46–53]. 
In the present study, we found 15 ORFs classified as mcr-1 by deepARG tool, but 
only 2 were in contigs classified as plasmid by PlasFlow. MCR-1 enzyme was 
described as 41 % and 40 % identical to the PEA transferases LptA and EptC, 
respectively, and sequence comparisons suggest the active-site residues are 
conserved [45]. In our phylogenetic analysis, we included sequences of clinical mcr-
1 and LptA (eptA), in order to understand if the environmental sequences are closer 
to MCR-1 or to the chromosomal PEA transferases. Our results suggested that 5 
ORFs are very close to MCR-1 (from genus Psychrobacter, family Moraxellaceae 
[54]) with support value 0.986 (Figure 6). Those sequences were not classified by 
PlasFlow as being in a plasmid, what can maybe explained by either a false negative 
results of PlasFlow, a re-integration of plasmidial sequences in chromosome or they 
may constitute some of the ancestral of the plasmidial  modern E. coli MCR-1 
sequences, as was already suggested [55].  
Members of the genus Psychrobacter were isolated from a wide range of habitats, 
including food, clinical samples, skin, gills and intestines of fish, sea water, Antarctic 
sea ice [56–60] and at least 2 isolates from this genus were already reported to be 
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resistant to Colistin (Psychrobacter vallis sp. nov. and Psychrobacter aquaticus sp. 
nov) both isolated from Antarctica [61]. Coincidently, the regions with greater RPKG 
mean for MCR-1 in our study were Southwest Atlantic and Antarctic Province.   
Our results support that Psychrobacter can be an ecological reservoir for 
mobilization of PEtN transferases to other pathogens and further studies should be 
conducted to better understand the dynamics and evolution of these genes. The 
presence of these genes in both  Antarctic and adjacent regions can also raise 
concerns about gene flow due to ice melting, a problem already discussed before for 
other ARGs [62]. 
In addition, some species of this genus were also reported to cause opportunistic 
infections in humans, including at least one case reported to be associated with 
marine environment exposure [63], being important to increase vigilance (for 
example including screenings for those genes). In addition, all the 15 ORFs are 
clustered in the same big clade with the clinical MCR-1 sequences (support value 
0.954) (Figure 6).  
 
Conclusion 
 
Our study uncovers the diversity and abundance of ARGs conferring resistance to 26 
classes of antibiotics, conducting extensive analysis, including taxonomic 
classification, abundance in different biomes, potential HGT, multi-resistance, and 
gene expression. It also exposes the importance of monitoring coastal water for 
anthropogenic impact as rejection of antibiotics as wastewater and other type of 
human impact can generate a playground for microorganisms to freely develop 
antibiotic resistance. This study showed that Antarctic soil and ice are a potential 
reservoir for ARGs, and one can discuss the future impact of this content of this 
reservoir on global oceans due to climate change. The code and documentation is 
publicly available, as all the data generated, and stored in a database. This 
constitutes a good resource for the scientific community for future studies on 
antibiotic resistance in different environments. 
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