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An improved demand curve for analysis of food or drug
consumption in animal experiments

Mark Newman · Carrie R. Ferrario

Abstract The incorporation of microeconomics concepts into studies using pre-
clinincal self-administration procedures has provided critical insights into the fac-
tors that influence consumption of a wide range of food and drug reinforcers. In
particular, the fitting of demand curves to consumption data provides a powerful
analytic tool for computing objective metrics of behavior that can be compared
across a wide range of reward types and experimental settings. The results of these
analyses depend crucially on the mathematical form used to fit the data. The most
common choice is an exponential form proposed by Hursh and Silberberg, which
is widely used and has provided fundamental insights into relationships between
cost and consumption, but it also has some disadvantages. In this paper we first
briefly review the use of demand curves to quantify the motivating effects of food
and drugs, then we describe the current methodology and highlight some poten-
tial issues that arise in its application. To address these issues, we propose a new
mathematical framework for the analysis of consumption data, including a new
functional form for the demand curve. We show that this proposed form gives
good fits to data on a range of reinforcers across different animals and different
experimental protocols, while allowing for straightforward calculation of key met-
rics of demand, including preferred consumption level, maximum response, price
at maximum response, and price elasticity of demand. We provide software imple-
menting our entire analysis pipeline, including data fits, data visualization, and
the calculation of demand metrics.

1 Introduction

Behavioral economics is a branch of microeconomic theory and practice that aims
to understand and quantify the economic choices made by individuals (Cartwright
2018; Kahneman 2011; Ayers and Collinge 2004; Perloff 2016). Classically, the
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field has focused on choices made by humans, but behavioral economic concepts
have also been fruitfully applied to animal behavior, particularly in the context of
self-administration procedures (Hursh 1993; Winger et al. 2002; Hursh et al. 2005;
Winger et al. 2006; Hursh and Silberberg 2008; Galuska et al. 2011; Bentzley et al.
2013; Kawa et al. 2016; Pantazis et al. 2019). Although animals do not have an
economy in the sense of markets, currency, credit and so forth, in many cases
they are willing to “pay” for goods such as food or drugs by performing work.
By measuring the amount of work they are willing to do for a given return one
can develop notions of “price” and “demand” for goods, on which the tools of
economics can then be brought to bear.

The utility of economic concepts in the study of food and drug motivation and
addiction has been demonstrated extensively since their introduction to the field
in the 1990s (Hursh 1993; Hursh and Winger 1995; Bickel et al. 2000; Hursh and
Silberberg 2008). Foundational contributions by Hursh, Winger, Bickel, and others
have established behavioral economics approaches as a fundamental tool for the
quantitative assessment of self-administration behavior. The approach has been
widely applied to evaluate motivation across different reinforcers or testing condi-
tions, to study effects of pharmacological or behavioral interventions on demand,
and to address abuse liability and neurobehavioral underpinnings of substance
abuse.

The behavioral economics approach as currently applied focuses on the study
of the so-called “demand curve,” which represents the consumption of food or drug
as a function of the work or “price” required to obtain it. Such curves are computed
by fitting an appropriate mathematical form to raw self-administration data, and
aspects of the fitted curve provide summary statistics describing features such as
the maximum effort exerted to obtain a given reinforcer and the price at which
that maximum effort occurs. Most previous work has made use of an exponential
form for the demand curve proposed by Hursh and Silberberg (2008) but, as we
discuss, this form and the accompanying methodology have some shortcomings
that create challenges for comparisons across studies and for reproducibility of
results.

In this paper, we present a new approach for fitting self-administration demand
data that addresses these shortcomings while providing easy calculation of key
metrics of preferred consumption, price sensitivity, and motivation. We begin with
a brief introduction to the relevant concepts of behavioral economics followed by a
description of the current methodology. We then describe our proposed approach,
outlining its main features and providing a simple recipe for data analysis that
gives straightforward quantitative answers to questions relevant to the study of
demand, motivation, and addiction.

2 Economics of consumption

Consider a typical self-adminstration experiment in which an animal is given the
opportunity to perform work, such as lever presses, in return for a desirable good.
In most cases the good is either food or drug; for the purposes of illustration let us
say it is a dose of drug. The “price” of the drug can be varied by the experimenter,
usually using one of two methods: either they can vary the number of lever presses
required to receive a fixed dose, or they can vary the dose received for a fixed
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Improved demand curve for food or drug consumption in animal experiments 3

Variable Meaning Other notations

P Price, work performed per unit of good received C
Q Consumption
R Revenue, total work performed at a given price point O
Q0 Preferred consumption level when price is negligible
Rmax Maximum work performed to obtain goods at any

price
Omax

Pmax Price at which maximum work is performed

P̃max Normalized Pmax, equal to Q0Pmax Pmax, nPmax

α Fitted parameter in exponential model, inversely pro-
portional to Pmax

α̃ Normalized α, equal to α/Q0, also called “essential

value,” inversely proportional to P̃max

α

Table 1 Summary of the variables used in the theory described here, along with alternative
notations for the same quantities used by other authors.

number of lever presses. Either way, one can define the price P of the drug as
the number of lever presses per unit of drug received, measured for instance in
milligrams. Thus:

Price, P =
Number of lever presses

Milligrams of drug received
. (1)

(See Table 1 for a summary of the variables used in this paper.)
In the most straightforward version of the experiment, the experimenter allows

the animal to “buy” repeated doses of drug at a set price and records the total
amount of drug Q consumed during a session of fixed length (anywhere from a
few minutes to hours, depending on the drug, the question at hand, and so forth).
The procedure can then be repeated for a range of different prices to measure
consumption Q as a function of price P .

The data produced by experiments of this kind have a characteristic form.
First, there is normally a clear preferred amount of drug that a particular animal
will consume in the allowed time when price is not an issue. Even if the price
is reduced practically to zero so that drug is essentially free, the animal will not
consume an unlimited amount, but will stop when it reaches its preferred level of
consumption. Traditionally this level is denoted Q0.

Next, if we now raise the price slightly, so that drug is not free but still very
cheap, the animal will still be willing to do the modest work required of it and will
take its fill of drug, meaning its consumption will still be Q0. But if we raise the
price enough, the effort will start to become a factor and the animal will consume
less drug. And if the price is very large—if the animal has to do a million lever
presses, say, to receive an infusion—then consumption must be zero, since it is
physically impossible to perform this many lever presses in the allowed amount of
time.

Thus, when plotted against price, we expect consumption to look something
like Fig. 1a. The data points in this figure show actual consumption against price
for a rat self-administering cocaine.1 Observe how the points are roughly flat in the

1 Previously unpublished data kindly provided by A. B. Kawa, L. Longyear, and T. E. Robin-
son.
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Fig. 1 (a) Data points: total consumption of self-administered cocaine by a single male rat
as a function of price P measured in lever presses per milligram. Solid curve: the demand
curve reconstructed by fitting to Eq. (21). (b) The elasticity corresponding to the demand
curve in (a). Note that the value of the elasticity is always negative and that the point where
elasticity equals −1 coincides with the point at which the revenue [plotted in (c)] reaches its
maximum. (c) The “revenue” corresponding to the demand curve in (a), i.e., the total work
performed at each price point. The maximum revenue Rmax falls at price Pmax, which coincides
with the point at which elasticity is −1.

left part of the plot, but fall off beyond a certain “breakpoint,” denoted roughly by
the vertical dashed line, as the price rises. If one were to continue the measurements
far enough to the right of the plot, they would eventually reach zero when the price
becomes so high that the rat receives no drug at all. Note that the graph is plotted
on logarithmic scales, a standard practice that allows us to capture the typically
wide range of values of both price and consumption.

3 The demand curve

Data of the kind shown in Fig. 1a can be summarized by fitting a demand curve

to it. An example is shown as the solid curve in Fig.1a; it represents the expected
consumption level Q as a function of price P . The demand curve has become a
standard tool in the analysis of consumption data, capturing in a single graph
the willingness of an animal to work for a range of outcomes. The utility of this

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 16, 2019. ; https://doi.org/10.1101/765461doi: bioRxiv preprint 

https://doi.org/10.1101/765461


Improved demand curve for food or drug consumption in animal experiments 5

approach has been demonstrated repeatedly and demand curve analyses have pro-
vided essential information about many aspects of consumption and drug-taking
behavior in both humans and animal models [see for example Hursh and Silber-
berg (2008); Bentzley et al. (2013); Aston and Cassidy (2019)]. As we will see, the
demand curve allows us to describe motivation for drugs or food in a quantitative
manner, placing numbers on concepts that may otherwise be accessible only via
more qualitative approaches, and allowing comparisons across different reinforcers
[see Hursh and Winger (1995) and Hursh et al. (2005) for reviews]. To do this
we borrow some concepts from economics, starting with the so-called elasticity of
demand.

3.1 Elasticity of demand

Suppose that we know the demand curve for a particular experiment—the solid
line running through the data points in Fig. 1a. (We will see shortly how to extract
such curves from data.) In general the demand curve falls off as price increases,
since we expect an animal to consume less of a good as the work required to
obtain it increases (the so-called “law of demand”). The price elasticity of demand E

measures exactly how the demand curve falls off with increasing price. For instance,
if we double the amount of work a rat has to do to receive a dose of drug, will the
rat consume the same amount of drug overall? Half as much? A quarter?

The elasticity is the ratio between the fraction the price goes up by and the
fraction the consumption goes down by. For example, if price goes up by 10% and
as a result consumption falls by −20%, then the elasticity is E = −20/10 = −2.
Note that elasticity is normally a negative number, as here.

More generally, suppose that the price P increases by an amount dP . Then the
fraction that price increases by is dP/P . If at the same time consumption Q goes
down by dQ then the fractional decrease in consumption is dQ/Q. The elasticity is
the ratio of these two fractions (fractional decrease in consumption over fractional
increase in price), which is

E =
dQ/Q

dP/P
=
P

Q

dQ

dP
. (2)

The quantity dQ/dP is the derivative of consumption with respect to price.2 The
derivative is the slope of a graph of Q against P . Because the graph is downward
sloping in this case, the slope is negative, and hence again E will be a negative
number.

Alternatively, we can note that

d logQ

d logP
=
dQ/Q

dP/P
= E, (3)

which is the same elasticity again, meaning that E is also equal to the slope of a
graph of logQ against logP . In other words, if we plot the demand curve on log
scales (as in Fig. 1a), then the elasticity is the slope.

Figure 1b shows the elasticity for the demand curve of Fig. 1a. Note that in
general elasticity is not a single number: it varies with price. In the left part of

2 Technically, the derivative is the limiting value of dQ/dP for infinitesimal dP and dQ.
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Fig. 1a, for instance, the demand curve is flat and hence the elasticity in Fig. 1b
is close to zero. But in the right part the demand curve slopes downward quite
steeply, meaning the elasticity is large and negative.

The elasticity is widely used in (human) economics as a measure of the price
sensitivity of goods, including psychoactive substances (Ayers and Collinge 2004;
Perloff 2016). A large (negative) elasticity of demand indicates a good that is
highly price sensitive: small increases in price will substantially decrease demand.
A small elasticity indicates a relatively price-insensitive good. For instance, the
elasticity of soft drinks has been measured to be about −3.8 at prevailing prices
(Ayers and Collinge 2004), indicating substantial price sensitivity—if the price of
a soft drink is increased people will simply stop drinking it. On the other hand,
the elasticity of cigarettes is estimated to be much smaller, around −0.4 (Becker
et al. 1994), indicating significantly lower price sensitivity—people will continue
to smoke even if the price of cigarettes goes up.

These results suggest that elasticity could be used as a measure of the rein-
forcing or motivating effects of drugs or food, not only in humans but also in
animal experiments. In practice, however, it is rarely used in this way in the ani-
mal literature. Instead, elasticity has primarily been of interest because of its role
in estimating the maximum work that animals perform, as we discuss in the next
section. (There are claims in the literature of using elasticity to quantify motiva-
tion, but in most such cases no value of the elasticity is actually reported. There
appears to be some misunderstanding of what elasticity is and what it represents,
as we discuss in Section 4.2.)

3.2 Measuring motivation

One of the primary uses of demand curves in animals is for quantifying responding
for food or drug. How motivated are animals to take a drug? Can we define a
single number to quantify motivation? How does motivation change over time or
in relation to other reinforcers? One approach is to look at the total amount of
work an animal is willing to perform over the course of an experimental session. In
the jargon of economics this total amount of work is called the revenue, denoted R,
although in the present context it may be more useful to think of the R as standing
for “responses,” since it is simply equal to the number of lever presses or other
work the animal performs.3

We have seen that the price P is defined as the amount of work that must be
performed to receive one unit of the desired good, such as the number of lever
presses per milligram of drug [see Eq. (1)]. If we know the number of lever presses
per milligram and we also know the total number of milligrams consumed Q, then
the total number of lever presses—the revenue R—must be the product of the two:

R = PQ. (4)

Figure 1c shows a plot of the revenue corresponding to the demand curve in
Fig. 1a. Observe how the revenue starts at a low value on the left of the plot in
the regime where the animal is required to perform only a little work to receive

3 The notation R for revenue is a standard one in economics, but in the animal literature
one sometimes sees revenue denoted O for “output.” See also Table 1.
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drug, rises to a maximum around the “breakpoint” in the demand curve, then
falls off again as the price becomes too high and the animal abandons trying to
obtain drug. These observations suggest two possible measures of the motivation
potential of food or drugs: (1) the maximum amount Rmax of work—the maximum
revenue—the animal is willing to commit to obtaining goods at any price,4 or
(2) the price Pmax at which this maximum occurs. In Fig. 1c, Rmax corresponds to
the height of the peak in revenue (the horizontal dashed line) and Pmax corresponds
to the price at which that peak occurs (the vertical dashed line). Perhaps more
intuitively, Pmax corresponds roughly to the breakpoint in the demand curve,
Fig. 1a, at which the curve falls off from its initial plateau. Thus Pmax measures
the maximum price the animal will tolerate before it gives up and reduces its
consumption.

To calculate Pmax we maximize Eq. (4) with respect to P by differentiating
thus:

dR

dP
=
d(PQ)

dP
= Q+ P

dQ

dP
= Q

[
1 +

P

Q

dQ

dP

]
= Q(1 + E), (5)

where E is the elasticity as before and we have used Eq. (2). Setting Eq. (5) to zero
we then find that the maximum revenue is achieved when the elasticity E is equal
to −1, and thus we can find Pmax by finding the price at which this occurs. We
give examples of this calculation in Section 4.4 and 5.2. Once we have determined
Pmax we can substitute the result back into Eq. (4) to find the corresponding value
of the revenue, Rmax.

Ease of calculating Pmax and Rmax is one of the reasons why the demand
curve and the elasticity are useful concepts. In principle, one could imagine mea-
suring Pmax and Rmax directly from the data by asking what the maximum number
of responses is at any price and at what price that maximum falls. Ad hoc methods
for doing this have been proposed, for instance, by Hursh and Silberberg (2008)
[see also Oleson et al. (2011)]. The results returned by these methods, however, are
limited to the specific values of price and responding measured in the experiment
and so give only a general indication, and they are moreover prone to measurement
fluctuations and hence can be unreliable. Calculations based on demand curves are
more robust and repeatable (Bentzley et al. 2013).

Both Rmax and Pmax are reasonable measures of motivation, but they are not
equivalent. If two animals display the same Pmax for a given reinforcer but the
first has higher Rmax it implies that the first is willing to do more work than the
second for the same amount of consumption. Conversely, if they display the same
Rmax but the first has higher Pmax then the first is willing to do the same amount
of work for less consumption. Certainly these two measures could be correlated,
but they are not the same thing.

Rmax has found use in human studies, where strong associations have been ob-
served between its value and, for instance, post-intervention alcohol consumption
(MacKillop and Murphy 2007; MacKillop et al. 2009), although it should be noted
that there were also strong relationships in these studies among Pmax, Rmax, and
other demand metrics (see Section 6 and Fig. 6 for further discussion). Hursh and
Winger (1995) make a persuasive argument that Rmax is essentially independent
of the potency or magnitude of a reinforcer, which argues in favor of its use for
comparisons between different reinforcers. The value of Pmax, by contrast, varies

4 Sometimes also denoted Omax.
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with potency and hence Pmax appears inferior in this respect. However, it is possi-
ble by suitable normalization to create a potency-independent version of Pmax, as
discussed in Section 3.3. Moreover, Rmax is difficult to measure in some situations,
particularly when using progressive ratio schedules, whereas Pmax is relatively easy
to measure (Richardson and Roberts 1996). Thus both Pmax and Rmax are useful
in certain contexts, and both are employed in the field, although arguably Pmax is
more common.

3.3 Normalized price and comparisons between different reinforcers

In addition to their use in basic data analysis, demand curves are used as a way to
compare behavior across experiments on different drugs or other reinforcers. Can
we tell, for instance, whether animals have greater motivation for food or drugs?
Or for one drug over another?

One way to perform such comparisons is to use the measure Rmax defined in
Section 3.2 above, which is the maximum work animals are willing to perform to
obtain a good, at any price. Hursh and Winger (1995) argue that Rmax is well
suited to comparisons between different reinforcers and describe it as “a sensitive
tool for direct comparison and quantitative ordering of demand, both within and
across the drug classes (stimulant, sedative, and opioid)”.

Conversely, the measure Pmax (also defined in Section 3.2), which is the price
at which animals exert their greatest effort to obtain goods, is not well suited to
answering such questions because it is not clear how one should compare prices
for different goods. Is a price of 10 lever presses per milligram of cocaine higher or
lower than 10 lever presses per milligram of amphetamine? The answer depends on
the potency of the drugs in question: one milligram might have a strong effect for
one drug but only a weak effect for another. To make a meaningful comparison,
we need to normalize the price by a suitable factor that represents the typical
magnitude of drug intake in milligrams (or other suitable units). Fortunately, we
have exactly such a factor to hand, namely the preferred consumption level Q0.

If we divide dose by Q0 we get a number that is independent of potency: every
dose is specified as a fraction of the preferred consumption level for the same good.
Thus, a suitable normalized price, as first proposed by Hursh and Winger (1995),
is given by replacing the dose in Eq. (1) by dose divided by Q0:

Normalized price, P̃ =
Number of lever presses

(Milligrams of drug received)/Q0

= Q0
Number of lever presses

Milligrams of drug received

= Q0P. (6)

Combining this approach with our measure Pmax, we can then write a potency-
independent measure of motivation thus:

P̃max = Q0Pmax. (7)

This measure appears to work well in practice for comparing demand across dif-
ferent reinforcers.
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Equations (6) and (7) are not in precisely the form used elsewhere. In much of
the literature, for instance, the price is denoted C instead of P and the normalized
price P̃ is denoted P . This, however, is merely a matter of notation. A more
substantive difference is that many experimenters avoid the use of Pmax as a
measure of motivation in favor of another parameter commonly denoted α. We
discuss α in detail below (Section 4.4), where we show that it is in fact essentially
equivalent to Pmax but has some disadvantages that Pmax does not share.

4 Fitting the demand curve

Data such as those shown in Fig. 1a already give us a rough outline of the demand
curve. But they also inevitably display statistical fluctuations and moreover give
us the consumption at only a small set of discrete price points. We can reduce the
effects of fluctuations and interpolate between price points by fitting a suitable
curve through the data, recovering the entire demand curve, as shown by the blue
line in Fig. 1a. The fitting procedure itself is straightforward—there are a range
of software packages that will do the job. A crucial question, however, is what
mathematical form the fitted curve should take. We need to specify a form that
is flexible enough to fit the data we see in experiments on a range of different
consumables, different animals, and different procedures, while at the same time
following the common-sense requirements that the curve be flat at first, then drop
off, and go to zero as price becomes large.

4.1 The exponential demand curve

The most common mathematical form used for demand curves in self-administration
experiments of the kind considered here is the “exponential” form advanced by
Hursh and Silberberg (2008):

Q = Q0e
k(e−αP−1). (8)

This equation relates the consumption Q to the price P using three parameters.
The first is Q0, which we have already discussed—it is the preferred level of con-
sumption when the price is low enough to have no limiting effect on intake. The
other two parameters are k and α, which we look at more closely in the following
section.

Because demand curves are normally plotted on logarithmic scales, one often
sees Eq. (8) expressed in terms of the logarithm of Q. Taking the log of both sides
of the equation we find that

logQ = logQ0 + k(e−αP − 1), (9)

where “log” denotes the natural logarithm (base e).5 The two forms, Eqs. (8)
and (9), are entirely equivalent and contain the same information.

5 Some authors have employed common logarithms (base 10) instead, which case some of
the formulas and parameter values are modified, but the scientific outcome is unchanged.
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4.2 Parameters for the exponential demand curve

Though it has been widely employed, the demand curve defined in Eq. (8) has
some shortcomings. Specific issues include difficulty estimating or interpreting the
parameters k and α, difficulty estimating the elasticity, and an unrealistic nonzero
value of consumption at large prices.

The parameter k and the limiting value of Q: A disadvantage of Eq. (8) is that it
fails to meet one of our fundamental criteria for a demand curve, that it go to zero
as price becomes large. As we have said, it is axiomatic that the curve should go
to zero: if the price of drug is a million lever presses per dose then the animal is
necessarily going to consume no drug. As P goes to infinity, however, the form in
Eq. (8) tends to the limiting value Q0e

−k, which is always nonzero.

This conflict causes a number of problems. First, it is undesirable to a fit curve
to data when we know the curve to have a different shape from the data. Just as
one should not fit a straight line if one knows the data to follow a rounded form,
so one should not fit data that must go to zero with a form that does not. This is,
however, a somewhat theoretical objection. A more practical issue arises when we
attempt to estimate the parameter k. Since k controls the value of consumption
when price becomes large, one should be able to determine k by measuring this
value. This, however, is not possible in the present case, since as we have said there
is no such value in practice: consumption always goes to zero.

There are ways around this difficulty. One could for instance estimate k using
some other type of fitting procedure. Hursh and Silberberg (2008) take a different
route, avoiding the problem altogether by not fitting k to the data at all. Instead,
they choose its value themselves, writing that “The value of k is generally set
to a common constant across comparisons because it merely specifies the range
of the data.” In related work Bentzley et al. (2013) write that the value of k is
“chosen based on the maximum observed range of consumption.” Specifically, they
compute the range spanned by the observed values of logQ for all sessions and
set k equal to the largest such range. Gilroy et al. (2019) suggest a slight variant
of this procedure, calculating the same maximum range but then adding 0.5, to
guard against the possibility that k “does not reflect the full range of observed
consumption values.”6

In practice, however, approaches such as these are somewhat unsatisfactory
because they determine k using an ad hoc recipe rather than by fitting to the data.
Such recipes can result in different experimenters using different values of k—
and hence reaching different conclusions—even when fitting to the same set of
data points. Consider Fig. 2, which shows the same cocaine self-administration
data that appears in Fig. 1a. The four curves in the figure show the best fit of
the exponential demand curve to these data for four different values of k. The
blue (solid) curve shows the fit when k is chosen according to the prescription of
Bentzley et al. that k should be set to the largest range spanned by logQ over all
sessions. Since we are looking at only a single session in this case, k is simply equal

6 The value of k must also always be greater than the mathematical constant e = 2.718 for
Pmax to be well defined (Gilroy et al. 2019). If k is smaller than this then there is no point on
the demand curve where elasticity is −1 and hence there is no Pmax—see Section 3.2.
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Fig. 2 Best fits of the cocaine self-administration data from Fig. 1a to the exponential demand
curve of Eq. (9) for various choices of the parameter k as indicated.

to the range of the data, which gives a value of about 4. (The exact value is 3.91,
but we use 4 for simplicity.)

On the other hand, if we were examining these data as one session out of
many, it is likely that at least one other session would have a larger range of
logQ, meaning that we would have to use a larger value of k. The green and
orange (dashed and dot-dashed) curves in Fig. 2 show fits with k = 5 and 6. For
comparison we also show one fit with a smaller value of k = 3 (red, dot-dot-dashed).

The values of the parameters of the fit for each curve are shown in Table 2.
As we can see, the values span quite a wide range. The value of Q0 varies from
0.319 to 0.420 for example, an increase of 32%, and Pmax shows a similar increase
of 38%. Also shown in the table is the quantity we call α̃, which is described in
Section 4.4 and which is widely used as a measure of motivation in the literature.
The fitted values of this quantity vary over a broad range from a low of 0.0047
to a high of 0.0149, an increase of 217%. The quantity P̃max = Q0Pmax, which
we recommended in Section 3.3 as a measure of motivation, fares better, varying
from 37.5 to 43.6, an increase of just 16%, but even this variation is large enough
to inject significant uncertainty into the results, given that it is provoked solely by
making different choices for the parameter k.

k Q0 α α̃ Pmax P̃max Rmax

3 0.319 0.00476 0.01491 130.2 41.5 10.4
4 0.400 0.00379 0.00948 94.3 37.7 11.3
5 0.420 0.00267 0.00636 96.9 40.7 13.0
6 0.390 0.00183 0.00469 111.8 43.6 14.4

Table 2 Values of the parameters Q0 and α for the four fitted curves in Fig. 2, each for a
different value of k as indicated, along with the calculated values of the quantities α̃, Pmax,

P̃max, and Rmax.
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The parameter α: The parameter α is also somewhat problematic, although for
different reasons. In principle this parameter is unexceptionable: it plays the role of
an exponential constant and can be estimated in straightforward fashion by fitting
to data such as those in Fig. 1a. The problem is that in much of the literature α
is said to be a measure of elasticity and it has been extensively treated as such
[e.g., Koffarnus et al. (2011); Bentzley et al. (2013); Lacy et al. (2019)]. As discussed
in Section 3.1, elasticity is a well-defined and useful concept in economics, but α
is not a measure of elasticity. Rather, α is a measure of the price at which the
animal performs maximum work, equivalent to the quantity Pmax discussed in
Section 3.2 above. This point is made clearly in the literature, but at the same
time misinterpretation of α is also common. For example, Bentzley et al. (2013)
state correctly that “α is an inherently normalized parameter and equivalent to
[normalized Pmax], as these variables are inversely proportional”, but also that
“α is a measure of demand curve elasticity.” To some extent this may be a matter
of semantics—the scientific conclusions are largely unaffected—but in the interests
of clarity it is good to be precise about the role of the variables.

A further issue with α is that its value is strongly influenced by the choice
of k. In Sections 4.3 and 4.4 we examine the elasticity for the exponential demand
curve in detail and explain the role played by α.

4.3 Elasticity for the exponential demand curve

Another issue with the exponential demand curve arises when we attempt to es-
timate the corresponding elasticity of demand. The elasticity for Eq. (8) can be
calculated by taking the derivative of the logarithmic form in Eq. (9), which, as
shown by Bentzley et al. (2013), gives

E = −kαP e−αP . (10)

Unfortunately, this value depends fundamentally on the parameter k which, as we
have said, is not determined from the data, but instead is chosen by the exper-
imenter. To see an example of why this matters, let us calculate the maximum
value of the elasticity Emax for given values of the parameters Q0, α, and k. To do
this we differentiate (10) with respect to P and set the result to zero giving:

−kαe−αP + kα2Pe−αP = 0. (11)

Canceling a number of factors and rearranging, we find that αP = 1, and substi-
tuting back into (10) we find the maximum value of the elasticity to be

Emax = −k
e
, (12)

where e = 2.718 . . . is the base of the natural logarithm.
Thus the maximal value of the elasticity depends only on k (and the mathe-

matical constant e). Since k is determined using an ad hoc recipe that can give
different answers for the same data depending on experimental context, this means
that the value of Emax is largely arbitrary.

The net result is that in most cases values of the elasticity determined from
data fits to Eq. (8) [or Eq. (9)] are not informative. This may be one reason why
elasticity has not found wide use in the analysis of self-administration data.
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4.4 Maximum work performed for the exponential demand curve

We have seen that the price Pmax at which maximum work is performed falls at
the point where the elasticity E is equal to −1 [Section 3.2 and Eq. (5)]. For the
exponential demand curve, the elasticity is given by Eq. (10) and hence maximum
work occurs when

−kαP e−αP = −1, (13)

which can be solved to give

Pmax = −W (−1/k)

α
, (14)

where W is the so-called Lambert W -function (Olver et al. 2010; Gilroy et al.
2019).7 Once we have the value of Pmax it is straightforward to compute the
corresponding value of Rmax by substituting into Eqs. (4) and (8), which gives

Rmax = PmaxQ0 e
k(e−αPmax−1) = −W (−1/k)

α
Q0 e

k[eW (−1/k)−1]. (15)

In current approaches to data analysis, the standard procedure is to hold the
value of k constant over different sessions and different animals, meaning that
W (−1/k) is also constant so that Eq. (14) implies Pmax is inversely proportional
to α and hence, as discussed in Section 4.2, the two quantities measure the same
thing, a point that has been made clearly by, for example, Bentzley et al. (2013).
The detailed relationship between α and Pmax however still depends on the value
of k since Eq. (14) can be rearranged to read

α = −W (−1/k)

Pmax
. (16)

This means that even when working with identical data, from animals with the
exact same Pmax, different experimenters will arrive at different results for α if
they use different values for k. Under the circumstances, therefore, we do not
recommend using the value of α as a measure of motivation, given that Pmax itself
contains the same information but is not directly dependent on k.

Some writers have argued in favor of using α because for some formulations of
the demand curve it automatically incorporates a normalization by a factor of Q0

of the kind discussed in Section 3.3. One can rewrite the demand curve of Eq. (9)
thus:

logQ = logQ0 + k(e−(α/Q0)Q0P − 1) = logQ0 + k(e−α̃Q0P − 1), (17)

where
α̃ =

α

Q0
. (18)

Equation (17) is exactly equivalent to the original form (9) but expresses the
consumption as a function of the normalized price Q0P of Section 3.3. This is the
form in which the exponential demand curve is mostly commonly written,8 and

7 Some authors have used common (base 10) logarithms instead of natural (base e) loga-
rithms, in which case the solution takes a slightly different form—see Gilroy et al. (2019).

8 Price in this context is often written C rather than P . This, however, is merely a notational
choice.
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it involves a change in the definition of α according to (18). Combining (18) with
Eq. (16), we find that

α̃ = −W (−1/k)

Q0Pmax
= −W (−1/k)

P̃max

, (19)

where we have used the definition of P̃max from Eq. (6).
In other words α̃ is inversely proportional to the normalized measure P̃max

and hence measures the same thing. Because of this, α̃ has been used widely as
a measure of motivation and is in fact probably the most commonly used such
measure. It is sometimes referred to as the “essential value,” and often denoted
simply α, though we prefer the notation α̃ to avoid confusion with the original α
parameter of Eq. (8). While α̃ is an appropriate normalized measure of motivation,
however, it still suffers from the same shortcoming as the unnormalized α, that
it depends on the choice of k. We saw an example of this issue in Section 4.2
(see Table 2). A further reason to avoid the use of α̃ is that it is specific to the
exponential demand curve form. The value of P̃max can be calculated for any
demand curve, but α̃, by its nature as a parameter of the exponential form, can
only be calculated if one uses that form.

5 An alternative form for the demand curve

In Section 4 we examined the use of fitted demand curves as a way of quantifying
the variation of consumption with price and discussed the widely used exponen-
tial form, Eq. (8), which has played an important role in the field but has some
disadvantages—in particular that it does not go to zero as price becomes large,
and that it depends crucially on the parameter k which is not determined by a fit
to the data. Here we propose an alternative form for the demand curve which be-
haves in many ways like the exponential form but eliminates these shortcomings.
The form we propose is also mathematically simpler, making solution of the result-
ing equations more straightforward. In the accompanying materials we provide an
open-source data analysis program that calculates demand curves and parameters
such as Pmax and Rmax from experimental data using our proposed form, as well
as giving visualizations of the demand and revenue curves and best-fit parameter
values.9 Instructions for using the program are given in the appendix.

5.1 Form of the proposed demand curve and parameters

The functional form we propose for the demand curve is

Q = Q0

[
1 +

(
P

P0

)b]−a/b
. (20)

The parameters, depicted in Fig. 3, are as follows:

Q0: the preferred consumption level, as previously, i.e., the height of the plateau
in the curve.

9 See http://umich.edu/~mejn/demandcurve for details.
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Fig. 3 Example of the demand curve form of Eq. (20), along with an indication of the role
played by each of the parameters Q0, P0, a, and b.

P0: the price at the breakpoint where the curve falls off, where the work is no
longer worth the outcome.

a: the slope of the right-hand part of the curve where it falls off.
b: a parameter controlling the width of the “knee” or transition region between

the left and right parts of the curve.

Figure 4 shows the effect of varying each of these parameters on the shape of the
demand curve.

This form for the demand curve is flexible enough to fit a variety of different
data types (see also Figs. 5 and 7). It has three basic regions, one flat, one curved,
and one downward sloping, and hence it can fit data with any of these forms, or a
combination of all three.

Since it is common to plot the demand curve on logarithmic scales, one can
also rewrite Equation (20) in terms of the log of Q thus:

logQ = logQ0 − a

b
log

[
1 +

(
P

P0

)b]
. (21)

The two forms, Eqs. (20) and (21), are entirely equivalent and contain the same in-
formation. One can employ either natural (base e) or common (base 10) logarithms—
the results are identical either way.

5.2 Elasticity and measures of motivation

We can repeat the analyses of Sections 4.3 and 4.4 for this new demand curve.
The elasticity E can be computed from the logarithmic derivative, Eq. (3), which
gives

E = − a

1 + (P0/P )b
, (22)

and the maximal value of E, the equivalent of Eq. (12), occurs when P goes to
infinity, giving simply

Emax = −a. (23)
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Fig. 4 The effect of varying each of the four parameters in Eq. (20).

Thus the elasticity in this case bears a very simple relationship to the values of
the parameters.

The value of Pmax is given, as previously, by the point at which the elasticity
equals −1, i.e., by

− a

1 + (P0/P )b
= −1. (24)

Solving for P we find that

Pmax =
P0

(a− 1)1/b
. (25)

This is a more convenient form than Eq. (14), which involves the special function W
and requires a complex iterative procedure to calculate Pmax (Hursh and Silberberg
2008). Equation (25) by contrast can be evaluated using only a simple calculator
or spreadsheet.

As discussed in Section 3.3, it is useful when comparing values for different
goods to normalize the value of Pmax to give a potency- or magnitude-independent
measure of motivation. The relevant measure in the present case is

P̃max = Q0Pmax =
P0Q0

(a− 1)1/b
. (26)

Given the value of Pmax we can compute the corresponding value of Rmax by
substituting into Eqs. (4) and (20) to get

Rmax = P0Q0

[
(a− 1)a−1

aa

]1/b
. (27)

Combining (26) and (27), we can also derive a direct relation between P̃max

and Rmax thus:

Rmax = P̃max

(
a− 1

a

)a/b
. (28)
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Fig. 5 Cocaine consumption as a function of price in four individual male rats. The blue lines
show the best fit of the proposed demand curve, Eq. (21).

The quantity in brackets is never greater than 1, meaning that we always have
Rmax ≤ P̃max, with the equality occurring in the limit where b becomes large.10

In practice b can quite often take values as large as 100 or more, in which case
we expect Rmax and P̃max to be essentially equal. These observations shed some
light on the question raised in Section 3.2 of the extent to which Rmax and P̃max

measure the same thing: the answer appears to be that in some cases (but not all)
they do, and that overall we expect them to be correlated. We test this conclusion
against data in Section 6.

We do not recommend using the values of the fitted parameters P0, a, and b

themselves as measures of motivation or behavior. When using the exponential
form of Eq. (8) [or Eq. (9)] it is common practice, as described in Section 4.4, to
use the fitted value of the parameter α̃ (also denoted α elsewhere) as an indicator
of reinforcement or motivation, but we do not recommend using the parameters of
Eq. (20) in this way since they do not have a clear behavioral interpretation (with
the exception of Q0, which is certainly informative). Instead we recommend using
the derived quantities Rmax and P̃max.

10 The same result also holds for the exponential demand curve. Equation (15) can be rewrit-

ten as Rmax = P̃max ek(e
−αPmax−1), but ek(e

−αPmax−1) ≤ 1 always, so this implies that

Rmax ≤ P̃max.
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Q0 Pmax P̃max Rmax

a 3.52 17.3 60.8 41.6
b 3.74 27.0 100.8 33.6
c 2.65 40.3 107.1 85.0
d 4.84 19.0 91.7 15.0

Table 3 Values of Q0 for the four fitted curves in Fig. 5 along with the calculated values of

the quantities Pmax, P̃max, and Rmax.

6 Example calculations

Figure 5 shows example fits11 of the demand curve of Eq. (21) to data from four
different male rats self-administering cocaine under conditions in which each lever
press results in an infusion (FR1) and price is varied within session by systemat-
ically reducing the dose of drug from 0.72 to 0.004 mg/kg.12 As the figure shows,
there are a range of different qualitative forms in the data, some with a clear
plateau followed by a drop-off, in the classic shape of Fig. 1a, others with a gentler
curved form with less of a clear “knee.” Nonetheless the proposed form for the
demand curve fits all of the data sets well.

After performing the fits, one can use the fitted parameter values to compute
measures such as Pmax, P̃max, and Rmax. The results are shown in Table 3. Note
that there is wide variation in the values of both P̃max and Rmax, and that large
values of one do not always correspond to large values of the other. As discussed
in Section 5.2, we expect Rmax and P̃max to be correlated, and they must satisfy
the constraint Rmax ≤ P̃max, but they are separate measures and can on occasion
take widely different values.

To shed more light on the relationship between Rmax and P̃max, we show
in Fig. 6 a plot of the values of Rmax against those of P̃max for cocaine self-
administration by nine different male rats over ten sessions each, with one point
for each session for a total of 86 points (with four sessions omitted for reasons
given below). The plot shows substantial correlation between the two measures
(R2 = 0.716) and the fact that Rmax ≤ P̃max is clear in that all points lie on or be-
low the diagonal dashed line at which Rmax = P̃max. These findings are consistent
with previous work examining relationships between Rmax and P̃max (MacKillop
and Murphy 2007; MacKillop et al. 2009).

The results shown in Fig. 6 omit data from four sessions, one for which the
demand curve had no point with elasticity −1 (and hence no Pmax) and three
that returned values of P̃max that were extreme outliers, one having a value of
almost 500. If these three outliers are included in the fit then most of the correlation
disappears (R2 = 0.155). It is worth asking therefore what causes these outliers.
Recall that P̃max = Q0Pmax [Eq. (25)], so that large P̃max values can be generated
either by large Pmax or by large Q0. We see both behaviors in the present case:
one of our three outliers is caused by a large value of Q0, which appears to be due

11 We perform our fits using a least-squares best fit of Eq. (21) to the logarithm of consump-
tion, discarding data points with zero consumption, since one cannot take the log of zero. It is
also possible to fit consumption data directly to Eq. (20) and it is a straightforward modifica-
tion of the approach to do so, but in practice we find this gives visually poorer fits. See also
Koffarnus et al. (2011).
12 Unpublished data kindly provided by C. Carr and T. E. Robinson.
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Fig. 6 Plot of the values of Rmax against P̃max for demand curves for cocaine consumption
by nine male rats over 86 separate sessions. The values of the two quantities are substantially

correlated (R2 = 0.716) and clearly obey the rule Rmax ≤ P̃max derived at the end of Sec-

tion 5.2. (The dashed line shows the point at which Rmax = P̃max, and all points lie on or
below this line.) Three extreme outliers on the horizontal axis have been omitted from the plot
and from the fit, as discussed in the text.

to the fact that the measured price range failed to span the “knee” in the demand
curve, but the other two outliers are caused by large values of Pmax. This suggests
that P̃max may be a (slightly) less reliable measure of motivation than Rmax, which
shows no extreme outliers, at least in the data we have examined. This issue would
be an appropriate one for further investigation.

Finally, in Fig. 7 we show fits of our proposed demand curve form to data from
a range of published studies on consumption of drugs of different drug classes by
rats, monkeys, and, in one case, humans. The new form fits this diverse selection
of data well, even when the data do not follow the traditional demand curve form
as price increases, as in Fig. 7d for example. It is important to note that in such
cases the fit will still return values for Pmax, Rmax, and other quantities but that
they may not be meaningful because the price range examined does not cover
the plateau and/or knee of the demand curve and hence does not provide a good
estimate of Q0 or Pmax. For this reason, it is important to inspect all fits visually,
not just for goodness of fit to the data, but also to verify that the behavior of
interest is actually captured by the range of prices probed in the experiment.

7 Conclusions

The pioneering work of those who brought microeconomics concepts to the study
of food and drug self-administration provides a rich foundation on which to build.
In this paper we have discussed in detail the use of demand curves and elasticity
to quantify the motivating effects of food and drugs in animal experiments. We
have highlighted a number of issues with current methodology in this area and
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Fig. 7 Fits of the demand curve of Eq. (21) to data on self-administration of four different
drugs. (a) Cocaine in a male rat from Bentzley et al. (2013), Fig. 3. (b) Ketamine in male
monkeys from Winger et al. (2002), Fig. 3, upper panel. (c) Nicotine in humans from Giordano
et al. (2001), Fig. 1. (d) Remifentanil in male monkeys from Winger et al. (2006), Table 1.

proposed a new mathematical framework for the analysis of consumption data
that remedies these issues. This framework incorporates a proposed mathemati-
cal form for the demand curve that is flexible enough to fit data on a range of
reinforcers across different animals and different experimental protocols, provides
established metrics of demand (Pmax, Rmax, Q0), and the formulas needed to cal-
culate them from fits to data. The equations require only basic algebra for their
implementation, although we also provide software implementing our entire analy-
sis pipeline, including data fits, plotting, and the calculation of summary statistics
(see appendix).
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A Analysis software

In the accompanying online materials (http://umich.edu/~mejn/demandcurve) we provide a
software program that performs the analyses described in this paper using the proposed de-
mand curve of Eq. (20). In this appendix we describe the use of this program. The same
information can also be found in the form of a video tutorial, also in the accompanying mate-
rials.

A.1 Installation

The program is called demand.py. To install it, simply download it from the web address given
above and place it in the folder or directory containing the data you want to analyze.

The program is written in the Python computer language. Running it requires that you
also have the Python language installed. Many computers come with Python already installed,
but if yours does not, Python is free to download from the web. There are various versions
available, but we recommend the “Anaconda” Python distribution, which contains everything
you will need in one single package. Anaconda is available for free from www.anaconda.com.
Two versions are currently available, version 2 (actually version 2.7 at the time of writing) and
3 (version 3.7 at the time of writing). Our program will work with either but we recommend
installing version 3 simply because it is the most up-to-date.

If you wish to install Python by another route (for instance using a package manager), then
you should, at a minimum, install the Python language itself (either version 2 or version 3),
plus the packages “scipy” (for curve fitting) and “matplotlib” (for graphics).

A.2 Data input

The program takes input data in the form of prices and responses. It can handle an arbitrary
number of price points in a single analysis and can analyze data from multiple animals or
multiple sessions in a single run. Data should be prepared in a spreadsheet as shown in Fig. 8.
The first column of the sheet contains the prices, in any units you choose. Prices can be in
any order—they need not be in increasing (or decreasing) order, though they can be. The
second and subsequent columns contain the response at each price in terms of the amount of

Fig. 8 Example of the format of the input data. The first column (column A) represents
prices, which can be in any units. (Ours are in responses per milligram.) Second and subsequent
columns, of which there can be any number, represent responses at each price point for separate
animals, sessions, or data sets. In this case the file has columns for three different sessions
(columns B, C, and D). Our responses are whole numbers, since they represent lever presses
by individual animals, but one can also use responses averaged over several animals or sessions,
in which case the values need not be whole numbers. When complete, the spreadsheet should
be saved in CSV (comma-separated value) format with commas as separators between the
fields.
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work (e.g., number of lever presses) done in experimental sessions, with one column for each
session or data set. There can be just a single session (for a total of two columns—prices and
responses) or many (for a total of n + 1 columns if there are n sessions). There should be no
blank cells, nor empty rows or columns, in the spreadsheet, except for the unused rows and
columns below and to the right of the data. (If you wish to analyze data from experiments
using different numbers of price points then you will have to use separate spreadsheets.)

The spreadsheet should be saved in CSV (comma-separated value) format, using commas
as separators between the values and the file extension “.csv”. (Note that CSV files can
be saved with spaces as separators, but this should be avoided as it will not work with our
program.) When using Microsoft Excel, for instance, saving as a CSV file is a standard option
under the “Save as” menu item; any of the sub-formats listed there (Mactintosh, MS-DOS, or
CSV) will work. An example input file, called example.csv, is included in the accompanying
online materials.

A.3 Running the program

Windows: On an appropriately configured Windows system it will be possible to run the
program from a command prompt window (also known as a “DOS window”), by changing
to the folder where the program file resides and typing either “py demand.py” or “python
demand.py” into the command window (depending on how the computer is set up). Alterna-
tively, the program can be run inside a Python development environment such as Jupyter,
Idle, or Spyder.

The latter all are included, for instance, in the Anaconda distribution mentioned above.
When Anaconda is started it will display a screen offering a choice of environments for use.
Start the environment of choice by double-clicking on its launch icon, then load the program
demand.py and run it. Specific procedure will depend on which environment you use. See the
video tutorial for an example using the Spyder environment.

OSX: On a Mac one can normally open a command window and type “python demand.py”
to run the program, or use any of the several available Python development environments—see
the instructions for Windows users above.

Linux: Under Linux one can run the program from the command line with the command
“python demand.py” or from within a development environment.

A.4 Using the program

When first run, the program will ask for the name of the input data file. Type in the name of the
CSV file containing your data. (The name is case-sensitive, so take care with capitalization.)
The file extension “.csv” at the end of the name is optional and can be omitted. The file name
can also be provided to the program as a command-line argument when the program is run.
For instance, under Windows one might type “py demand.py example.csv” and the program
would use the data file example.csv. This is a convenient feature when running the program
in batch mode (i.e., unattended).

Once the file name is entered, the program will perform the analysis. It works by computing
consumption levels from the response data then performing a nonlinear least-squares fit of the
logarithms of the consumption values to Eq. (21). The output of a typical run of the program
looks like this:

Data read from file example.csv
Price points: 10
Curves: 3

Analyzing curve 1
Analyzing curve 2
Analyzing curve 3
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Fig. 9 Example of the output spreadsheet generated by the program. Columns represent the
parameters Q0, P0, a, and b of the fitted demand curves, plus the derived values Rmax, Pmax,

and P̃max (“Normalized Pmax”), as indicated, and there is one row of the spreadsheet for each
data set in the input file.

The program gives a summary of the data it found in the input file (number of price points
and number of data sets), then lists the demand curves one by one as it analyzes them. The
program may also print out cautionary messages if it believes there are potential problems
with the data. For instance, if the fitted value of Q0 lies well outside the range of observed
consumption it will print a message like this:

Caution: Q0 = 880 is substantially outside the data range [2.5 to 140]

This could be an indication that the experiment failed to probe the salient portion of the
demand curve near the breakpoint at which demand falls off.

When the program finishes, which typically takes a few seconds, it will produce a set of
output files in the same folder. First, there will be an output data file. If the input file was called
example.csv, the output file will be called example params.csv. This is a CSV spreadsheet
containing the best fit values of the parameters Q0, P0, a, and b for each session in the input

file, plus the values of the derived quantities Rmax, Pmax, and P̃max. This file can be opened
in Microsoft Excel, Google Docs, or any similar spreadsheet program. There is one row of the
file for each session, in the same order as the columns of the input file, so that the row for
curve 1 corresponds to data in column B of the input file, curve 2 to data in column C, and
so forth. An example output file is shown in Fig. 9.

Second, the program produces a set of output figure files, one for each input session or
data set (i.e., for each column from B onward in the original input). An example is shown in
Fig. 10. Each figure file contains two graphs: the left graph shows, as a function of price, the
data points for consumption in blue and the fitted demand curve in green; the right graph
shows the original data for responses in blue and the fitted curve in green. If the input data file
is called example.csv then these figure files will have names example 1.png, example 2.png,
and so forth, numbered in the same order as the columns of the input file.

It is a good idea before using the numerical results of any of the fits to inspect the corre-
sponding figures to make sure that the fit is a reasonable one. If the data fluctuate a lot, or if
the experiment fails to probe the correct price range, then the fit may be a poor one. In cases
where the data are entirely unlike the expected demand-curve form of plateau-plus-decline,
the fit may fail and the fitted curve will not resemble the data points. Some thought may be
needed to interpret the results of the procedure in any specific case.
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