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Abstract 

Motivation:  New single-cell technologies continue to fuel the explosive growth in the 
scale of heterogeneous single-cell data. However, existing computational methods are 
inadequately scalable to large datasets and therefore cannot uncover the complex 
cellular heterogeneity.  

Results: We introduce a highly scalable graph-based clustering algorithm PARC - 
phenotyping by accelerated refined community-partitioning – for ultralarge-scale, 
high-dimensional single-cell data (> 1 million cells). Using large single cell mass 
cytometry, RNA-seq and imaging-based biophysical data, we demonstrate that PARC 
consistently outperforms state-of-the-art clustering algorithms without sub-sampling 
of cells, including Phenograph, FlowSOM, and Flock, in terms of both speed and 
ability to robustly detect rare cell populations. For example, PARC can cluster a 
single cell data set of 1.1M cells within 13 minutes, compared to >2 hours to the next 
fastest graph-clustering algorithm, Phenograph. Our work presents a scalable 
algorithm to cope with increasingly large-scale single-cell analysis. 

Availability and Implementation: https://github.com/ShobiStassen/PARC 

Contact:  tsia@hku.hk 
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1. Introduction 

Leapfrogging development in single-cell technologies, notably flow cytometry,        

mass cytometry, high-content imaging cytometry, as well as single-cell         

RNA-sequencing (scRNA-seq), has revolutionized approaches to measuring a        

multitude of cellular characteristics (from gene and protein expression, to biophysical           

and morphological phenotypes) at the single-cell precision. This attribute holds the           

key not only to defining the diversity of cell types, states and functions, but also               

understanding how the phenotypic variability within an enormous and heterogeneous          

population of cells plays a role in tissue development, health, and disease.  

 

Over the years, both the single-cell measurement depth and throughput have           

drastically been increased and thus have resulted in an explosive growth of large-scale             

single-cell data. The most prominent is flow cytometry that traditionally offers           

high-throughput measurements (~10,000 - 100,000 cells/sec), typically with ~10         

features (cell-surface markers and intracellular proteins). Integrated with high-speed         

imaging techniques, imaging flow cytometry has emerged with the simultaneous spurt           

in measurable parameters and throughput because of its ability to allow           

high-resolution single-cell image-based phenotyping without compromising the       

throughput significantly ( Caicedo et. al., 2017; Blasi, T. et al. 2016; Lee et. al., April               

2019). Mass cytometry by time of flight (CyTOF) offfers single-cell measurements of            

millions of cells with simultaneous detection of 40 or more proteins (features) for a              

given experiment (Spitzer and Nolan, 2016), albeit at a lower throughput compared to             

flow cytometry. Another parallel advance is scRNA-seq, recent years have seen           

proliferation in scRNA-seq data with droplet-based systems sequencing hundreds of          

cells per second ( Zheng et al. 2017) resulting in tens of thousands of cells across               

samples in an experiment. A “MegaCell Demonstration” by 10X Genomics ( 10X           

Genomics Datasets, 2017) recently featured a scRNA-seq data set of 1.3 million E18             

mouse brain cells, showcasing the very high throughput it can achieve.  
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While the single-cell measurement scale or throughput continues to grow at a            

staggering rate, such technological advance has outstripped the existing computational          

capability to handle, process and analyse the enormous amount of heterogeneous           

single-cell data. Beyond the sizeable single-cell data backlog, the key challenge lies in             

the search for new solutions to fill such a computational gap and thus to accelerate               

new biological discoveries. Among all computation tasks, unsupervised clustering         

plays a decisive role in facilitating downstream biological interpretation in single-cell           

analysis. However, available methods still lack the scalability and data-driven          

capability required for parsing the immense and heterogeneous data and thus           

identifying putative cell types in an efficient manner.  

 

Most tools developed for gene sequence data become computationally prohibitive          

when the cell count reaches 105-10 6 cells. For example, to handle the scRNA-seq data              

of only 6,000 cells, the popular SC3 and RaceID take ~20,000 seconds and CIDR              

takes 1000 seconds (Duo et al. 2018). Even the clustering stage of the speedier Seurat               

takes over 30 minutes on 60,000 cells (Sinha et al. 2018). In order to digest larger                

batches of data, the common strategy is to rely on subsampling which inevitably             

overlooks rare cell types (e.g. SPADE Qiu et al. 2011). A handful of tools can operate                

on large cytometry data sets, e.g. FlowSOM (Van Gassen et al. 2015), K-Means and              

FlowMeans (Aghaeepour et al. 2011). However, they often rely on manual parameter            

tuning, or invoke a number of clusters in advance that in turn poses challenges to               

perform unbiased exploration of the unknown complex cellular heterogeneity. In the           

scenario where it is feasible to perform analysis for a range of predetermined number              

of clusters and select the result based on the internal clustering evaluation criteria (e.g.              

Silhouette Index), it is not uncommon that the emerging optimum or ‘elbow point’ is              

a poor reflection of the true underlying structures in the data. A recent benchmarking              

study of 12 clustering methods on smaller scRNA-seq data sets ( Duò et al., 2018)              

showed that generally no method achieved its best performance at the annotated            

number of clusters. For instance, in its automated mode where cluster-selection is            

based on the elbow-point of a performance metric, FlowSOM vastly undershoots the            
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number of clusters (as does FlowPeaks), and typically requires a ‘generous’ cluster            

estimate in order to capture annotated populations (Weber and Robinson 2016).  

 

In light of these challenges, we present PARC, phenotyping by accelerated refined            

community-partitioning - a fast, automated, combinatorial graph-based clustering        

approach that integrates hierarchical graph construction and data-driven        

graph-pruning with a new community-detection algorithm. PARC (i) outperforms         

existing tools in scalability without resorting to sub-sampling of ultralarge-scale,          

high-dimensional single-cell data (> 1 million cells); (ii) accelerates the clustering           

computation by an order of magnitude through community-partitioning refinement;         

and (iii) more importantly, augments the sensitivity and specificity to unbiasedly           

recapitulate the cellular heterogeneity, especially rare subsets within large         

populations. We validate the superior performance of PARC on large-scale datasets,           

with respect to speed and accuracy, as well as versatility across a wide range of               

single-cell data including: mass and flow cytometry, scRNA-seq and imaging          

cytometry. Notably, we demonstrate that PARC not only can detect subpopulations           

that were not labelled in the original scRNA-seq data sets of 68k peripheral blood              

mononuclear cells (PBMC), but it can also enable data-driven clustering of the entire             

mouse brain dataset of 1.3 million cells without any downsampling. As a proof of              

concept, we also showcase that PARC correctly infers cell type on a megaset of              

multiple lung cancer cell lines (> 1 million cells) on the basis of their intrinsic,               

biophysical attributes derived from multi-contrast label-free single-cell images (Lee,         

Feb 2019 and Lee April 2019). 
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2.1 Method 

PARC is built upon a nearest-neighbor graph architecture in which each node is a              

single cell, connected to a neighborhood of its similar cells by a group of edges ( Fig.                

1a). PARC employs three major innovative steps to enable fast, scalable, and accurate             

data-driven clustering of heterogeneous single-cell data. PARC first constructs the          

graph based on an accelerated k-nearest-neighbor (k-NN) search using hierarchical          

small world (HNSW) (Malkov and Yashunin, 2016). In contrast to the tools adopting             

exact neighbor searches (e.g. X-Shift (Samusik et al 2016)) whose computational           

overload is hardly justified in terms of accuracy, HNSW-based k-NN search offers            

logarithmic complexity scaling. Second, data-driven graph pruning (on both local and           

global scale) is implemented in order to remove extraneous edges guided by the             

distribution of edges weighted by the Jaccard and Euclidean metric . This step is              

motivated by the distribution of weights which generally resembles a long-tailed           

distribution in various single-cell data sets in consideration ( Fig. 1b ). Based on the             

histogram we observe that the Jaccard (and also Euclidean) weight for weak            

(potentially 'spurious') and majority (around median weight) links is similar,          

conceivably a consequence of the curse of dimensionality. The tail thus carries most             

of the important neighbors, but its high weight score also diminishes the relative             

difference between weak and majority links. Consequently, the optimization function          

employed in the subsequent community-detection step sees the weak and majority           

links as very similar. The detected subcommunities are thus more susceptible to being             

merged by spurious links due to the “resolution limit” – a common limitation in              

community detection (Barabasi et. al. 2019) resulting in undesirable merging of           

clusters. We find that true communities have adequate strong and ‘majority’ level            

weight neighbors to still emerge as standalone clusters even after pruning (evidenced            

by no excessive fragmentation of communities in the final output). We also find that              

pruning considerably improves sensitivity to rare but distinct populations. Hence, the           

data-driven pruning procedure offers a two-fold impact in reducing the sample size of             

edges and improving the k-NN graph representation of the underlying data structure,            

both of which critically improve the subsequent community detection step in speed            
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and robustness. Third, a newly developed community-detection approach, Leiden         

algorithm (Traag et al., 2019), is employed to partition the large pruned networks in              

the graph into communities. In contrast to the popular Louvain algorithm (Blondel et             

al. 2008), Leiden algorithm demonstrates superior performance in faster computation          

time, scalability, and minimising badly connected communities (Traag et al. 2019).  

The data input to PARC is a matrix of ncells x mdims representing ncells single cells, each                 

of which has m dims phenotypes (dimensions) measured by different single-cell          

technologies, e.g. flow cytometry, CyTOF, scRNA-seq, and imaging cytometry (e.g.          

multi-ATOM in this study), etc. We next describe the three key modules mentioned             

above that augment the clustering speed, scalability and accuracy, particularly in the            

case of ultralarge dataset.  

2.1 HNSW for fast and scalable K-NN search  

In PARC we use HNSW as an approximate nearest neighbor search based on the              

assumption that our data has an inherently community like structure. We note that             

some tools (e.g. X-Shift Samusik et al 2016) employ exact neighbor searches whose             

computational overload cannot be justified in terms of accuracy. Furthermore, the           

appropriate choice of an approximate nearest neighbor algorithm is essential for           

scalability. Several others incorporate approximate nearest neighbor searches that         

become time intensive for use on large-scale data (e.g. Phenograph’s use of Python             

LibrarySklearn’s ‘kdtree’ and SCANPY’s UMAP (McInnes et al. 2018) based          

neighbor-search) . A small world graph is characterized by long links which bridge             

different clusters and shorter links which represent inter-cluster connectivity. The          

HNSW method differs from other NSW methods by binning links in hierarchy (in             

layers) according to their lengths. The search starts at the top layer containing the              

longest links, and traverses the elements until a local minimum is reached. The search              

then goes to the lower layer (i.e. the layer having shorter links) from the node where                

the most recent local minimum was detected. Such hierarchical graph structure allows            

fast graph construction with logarithmic scalability, i.e. the construction scales as           

O(NlogN), whilst each query takes O(logN) time (Malkov and Yashunin, 2016).  
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2.2 Graph pruning for effective capture of network structure 

The linkages present in the K-NN graph impact the number of clusters found in the               

community-detection algorithm (more precisely, modularity optimization). Instead of        

using the common strategy of tuning the K parameter, PARC starts with a generous              

fixed K number (K = 30) and implements automated weak-edge pruning guided by             

the data structure. Not only can this data-driven pruning approach effectively           

‘fine-tune’ the local K value, but also refine the network structure for accelerating and              

optimising the Leiden community detection steps. 

 

A user-defined global K value and its tuning do not yield robust graph representation              

of the data. Higher K values generally favor preserving larger communities, but            

compromise the ability to detect rare subpopulations. One might expect, on the other             

hand, that a lower value can automatically separate distinct rare subpopulations, but            

leads to more severe cluster fragmentation - complicating the biological discovery.           

We found that using a graph of a lower k-value as input to the modularity algorithm                

only marginally (and inconsistently) allows us to discern rare populations compared           

to a larger K value (See Fig. 2 ). Furthermore, in a heterogeneous single-cell dataset,              

the degree of each node (cell) often varies across the K-NN graph. The baseline              

degree of a node also exceeds K, and spurious connections exist. Choosing a global K               

value thus does not allow that density of links to vary sufficiently. Even worse, as the                

construction (and querying) of the graph is based on the Euclidean distances in higher              

dimensional space, the relative importance of neighbors is not necessarily accurately           

quantified due to the common ‘curse of dimensionality’, and re-weighting the graph            

based on different metrics to will still suffer the same “curse of dimensionality”.  

 

As discussed earlier, empirically we observe for the various biological data sets in             

consideration, that the edge-weight statistics resemble a long-tailed log-normal         

distribution whose tail diminishes the distinction of more closely separated points. A            
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graph that does not discriminate adequately between links (especially those connected           

to rare populations) dramatically impacts the modularity optimization in the Leiden           

algorithm.  

 

Motivated by this characteristic, PARC removes ‘weak’ edges in two steps in order to              

overcome the aforementioned shortcomings brought by the K-value. First by          

examining each node locally and removing the weakest neighbors of that particular            

node based on the Minkowski distance as a generalized distance measure; and second             

by re-weighting the edges using the Jaccard similarity coefficient and globally           

removing any edges below the median Jaccard-based edge weight. The Jaccard           

coefficient is the ratio of the intersection of node A and node B’s neighbors, to the                

union of node A and node B’s neighbors, expressed as: 

 

The local pruning allows us to remove redundant neighbors in very densely            

connected neighborhoods, and the global pruning removes spurious edges that were           

placed in otherwise disconnected, low-density populations. This results in a graph           

where only significant neighbors are retained and has the additional effect of making             

the network even sparser, allowing for a rapid convergence of the optimization            

algorithm which empirically scales linearly with the number of nodes in a sparse             

graph (Blondel et al. 2008).  

 

2.3 Leiden algorithm on the pruned graph to shield against 
“resolution limit”  
 

Having constructed a network representation of the single cells, i.e a collection of             

cells that have strong links to each other but fewer links to the remaining network, we                

apply a new modularity optimization algorithm called Leiden algorithm, for          

community-detection-based clustering (Traag et al. 2019). Leiden method has very          
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recently been demonstrated to show superior performance in speed as well as            

reducing internally disconnected (or poorly connected) communities, to the popular          

Louvain algorithm in clustering social network datasets. Here we apply Leiden           

algorithm on the biological single-cell data and show that a pruned graph, as an input               

to this algorithm, could further accelerate the clustering time and mitigate the            

‘resolution limit’ issue (whereby smaller clusters tend to become more likely           

subsumed into larger ones as the network size grows) of the modularity            

optimization in the algorithm. 

A popular method for community detection, modularity optimization is an          

NP-hard problem, i.e. it is computationally challenging to solve and requires heuristic            

approximations when applied to large networks. However, the Leiden algorithm          

stands out in terms of scalability. Modularity is a scalar measure of the density of               

links within a community to that between communities. For weighted networks, the            

modularity is defined as (Blondel et al., 2008): 

 

 

A ij is the weight of the edge between vertex i and j, ki is the sum of vertex i’s                   

edge-weights. c i is the community to which vertex i is assigned. m is the weight of the                 

graph. The Kronecker delta function is 1 if ci=c j, and otherwise 0.  

Asides from the ‘resolution limit’ issue of the modularity optimization function           

which tends to merge small sub-structures, the Louvain algorithm applied to any            

quality function suffers from a separate issue of poorly connected or even internally             

disconnected communities (Traag et al. 2019). Recall that the Louvain algorithm           

essentially consists of repeating two steps: 1) re-assigning nodes to communities           

based on improvement in modularity and 2) once nodes can no longer be moved,              

aggregate nodes in a community and allow each community to become a ‘node’ in the               

next pass of the same steps. Leiden addresses the issue of internally disconnected             

communities by allowing clusters to be refined, broken up into sub-clusters, which            
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can then be assigned to any of the existing major clusters found in the aggregation               

step immediately before. This vastly improves the connectivity within clusters.          

However, in order to control the proliferation of clusters Leiden only re-assigns            

refined communities to those un-refined communities found in the previous step.  

This means that once a community is merged into another (which may occur             

more than desired due to the resolution limit), it can only be reassigned to any of the                 

existing other communities or itself. Thus, even though nodes within communities           

may be well connected, sub-structures may be subsumed/ integrated into larger           

communities due to the quality function which is sensitive to spurious links extending             

from minor-populations to major populations. The effect worsens as the size ( m ) of             

the network increases. This resolution limit clarifies why both Phenograph (which           

uses Louvain community detection method) and Leiden-without any pruning are          

unable to consistently segregate rare yet distinct populations. The change in           

modularity when assigning a node i in community A to community B can be written               

as (where k i,in is the sum of the weighted links from node i to nodes in B, k i is the                     

weighted links incident on node i, Σ tot is the sum of weighted links incident on  B) : 

 

If we were to assign all the nodes in community A to community B then the change in                  

modularity as a result of merging communities A and B is           

 

For the simplified case of an unweighted graph (or a graph where the weightings are               

not discriminatory enough and hence effectively unweighted), we can rewrite the           

change in modularity when we merge A and B as , (where kA and k B are the total                  

degrees of A and B and L is the total number of links in the entire network, and lAB is                    

the number of links between community A  and B  (Barbasi 2019):  
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Consider the scenario where kAk B/2L <1, then the change in modularity is positive as              

long as there is even just one link between the two communities ( l AB>=1). For the sake                

of simplicity, let k ’=k A ~ k B, then the modularity increase will be positive when A and                

B are merged for all k ’≤√(2L ). So if the number of links within a certain small                

community are below the threshold √(2L ), then even a single link to another             

community will result in a merger and the algorithm will struggle to resolve             

communities below the resolution limit of k’≤√(2L ). It is therefore critical to remove             

artificial or weak links set up in the initial K-NN graph.  

 

In some cases, pruning yields clusters consisting of only a single or two cells. In               

order to determine whether or not these are true outliers, we examine any clusters              

below a certain minimum population (default of 10 cells). These cells are assigned to              

the cluster containing the greatest number of its original neighbors found in the             

HNSW stage, provided this cluster is above the minimum population threshold. If the             

cell does not have any neighbors belonging to a larger cluster, then it remains an               

‘outlier’ cluster. A default value of 10 cells is applied to datasets in this paper.  
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2.3 PARC algorithm 
 

The overall workflow of PARC is summarized in the pseudocode below: 

 

PARC Pseudocode                                                                                                                 .  

Inputs: X = data [ncells  x mdims ], 

global_jaccard_prune = “median”,  local_euclidan_prune  = “2 standard dev”, 
small_cluster_threshold = 10 cells 

Outputs: Cluster membership 

hnsw_graph <- make_small_world(X) // construct the HNSW graph 

(neighbors, distances)  <- extract_neighbors(hnsw_graph)  // query 30-NN and weights based 
on Euclidean distances  

for each node_i  in graph // local node pruning 

Remove edges 2 standard deviations above mean edge-weights of node_i 

// update neighborhood information 

Jaccard-weights  <- compute_Jaccard (on updated edges of graph) // use iGraph library  

Updated edges  <- keep edges above median jaccard-weight of graph 

Simple graph <- combine edges by summing weights// remove directionality  

Clusters  <- Leiden_modularity_optimization (Simple Graph ) 

for each small_cluster in Clusters: // default any cluster below 10 cells 

if cells in small-cluster have neighbors from original 30-NNG belonging to larger 
identified clusters: re-assign possible.  

else:  leave as outlying or ‘extremely rare’ population  
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3. Results  

With large-scale clustering being the emphasis, we reviewed and compared 18           

well-known clustering tools recently benchmarked (Weber and Robinson 2016). Only          

5 of them are practically scalable and run to completion on datasets with ~1 million               

cells without the need for any subsampling (typically subsampling is only applied            

when runtimes exceed tens of hours or even days). These 5 are Phenograph,             

FlowSOM, FlowPeaks, Flock and K-Means.  

Motivated by the need for a versatile tool to cope with the increasing diversity in the                

available large-scale single-cell data types, we tested PARC on a range of annotated             

single-cell data sets of scRNA-seq, flow cytometry, CyTOF, and imaging cytometry           

with the cell counts spanning almost 2-orders-of-magnitude (from 68,000 to          

1,300,000 cells). PARC’s performance is benchmarked against the 5 competitive          

clustering methods chosen for their ability to also handle large-data sets and a             

summary of the results is illustrated in Fig. 1c and Supplementary Fig. 1 . PARC              

consistently outperforms, in terms of unweighted F1-measure calculated using the          

Hungarian algorithm ( Supplementary Information ), against Phenograph and other        

competitive methods such as FlowSOM (Van Gassen et al. 2015) and FLOCK (Qian             

et al. 2010), especially in revealing minor populations without artificially fragmenting           

larger populations. In addition, we note that the scores for K-means and FlowSOM             

shows high variability strongly depending on the pre-determined values of chosen           

parameters (e.g. K clusters) ( Supplementary Fig. 1).  

In the following sections, we will demonstrate the usability of PARC on three diverse              

types of single cell data: (1) flow cytometry or mass cytometry data, (2)             

transcriptomic data, and (3) imaging-based biophysical properties.  
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3.1 PARC is scalable and accurate to very large single cell mass cytometry 

data  

To evaluate systematically how PARC accelerates graph-based clustering, we         

compare the runtime break-down between PARC and Phenograph in terms of their            

graph construction and modularity optimization steps. Here we employ the large-scale           

CyTOF data set Samusik_all : a dataset consisting of replicate-bone-marrow of 10           

individual C57BL/6J mice , of 841,644 cells with 13 surface markers (Samusik et al             

2016). The initial value of K (the number of nearest neighbouring cells) is 30 for both                
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PARC and Phenograph (which applies the Louvain algorithm). By randomly          

subsampling the data set with varying size, we quantify how different steps contribute             

to the computation speed-up in PARC ( Fig. 2a ). Clearly, both the graph construction             

and modularity optimization are drastically accelerated in PARC, altogether which          

lead to ~30 times faster in total runtime compared to Phenograph. This speed up may               

be attributable to some key innovative steps in PARC, namely 1) the use of HNSW to                

accelerate the nearest neighbor search, and 2) the pruning phase which has a knock-on              

effect to speed up the modularity optimization by effectively reducing the number of             

edges for a given number of samples. Notably, pruning progressively becomes more            

significant in lowering runtime with increasing sample size ( Fig. 2b ) - marking its             

significance in clustering acceleration with large-scale single-cell data. We also tested           

the scalability of PARC with increasing data dimensionality using the scRNA-seq           

dataset of human PBMCs (Zheng et al., 2017). We observe a fairly linear scaling in               

runtime of PARC, even when the dimension goes beyond 500, indicating its ability to              

scale with high dimensionality ( Fig 2c).  

 

3.2 PARC identifies rare populations in large flow cytometry data  

We next test the ability of PARC to isolate rare populations (See Fig. 2d-f ) on two                

flow cytometry datasets available on FlowRepository (repository I.D.:        

FR-FCM-ZZPH) (Weber and Robinson, 2016), and one in-house imaging flow          

cytometry dataset of 7 lung-cancer cell lines (representing the 3 major subtypes of             

lung cancer) generated by a new ultrahigh-throughput label-free imaging technique,          

coined multi-ATOM (Lee Feb 2019 and Lee April 2019) (See Supplementary           

Information for experimental details). The first is Nilsson_rare (Nilsson, 2013) which           

contains 44,100 bone marrow cells with 13 surface markers (dimensions), out of            

which we must isolate 358 (0.08% of total population) manually gated hematopoietic            

stem cells. In the second data set, Mosmann_rare (Mosmann, 2014), we have 396,400             

human peripheral blood cells (14 surface markers), stimulated with influenza          

antigens. Only 109 (0.03%) of these are manually gated as activated memory CD4 T              

cells (see Fig. 2d ). The third set, multi-ATOM_rare, consists of digitally mixed cells             
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obtained from 7 different lung-cancer cell lines with 26 quantitative biophysical           

features extracted from each label-free single-cell image. Within this dataset, there are            

only 100 randomly subsampled adenocarcinoma cells (H1975) and 280,000 from the           

remaining 6 lines (0.04% in Fig. 2e) . In these datasets, the cluster with the highest               

F1-score for any cluster containing members of the rare population is reported ( Fig.             

2e and 2f). The F1-score of the 100 H1975 adenocarcinoma cells are averages across              

10 runs with randomly sampled subsets.  

PARC consistently outperforms other methods in detecting rare populations across          

these different datasets ( Fig. 2f ). The F1-score of the rare population obtained using             

the common large-scale methods (notably FlowSOM and k-means) are not only           

lower, but sensitive to the user-defined choice of {k =10,15,...60}. Testing on the             

Mosmann_rare dataset, we show that pruning in PARC critically enables the           

detection of the small activated memory CD4 T cell population (0.03%), which is             

otherwise missed if pruning is skipped (Fig. 2d). 

We note that in Phenograph the ability to identify rare but distinct cells is influenced               

by the choice of number of K (nearest neighbors) in the graph. Although the rationale               

in Phenograph for applying weights to the edges of the graph is to resolve rare               

populations by weakening spurious links, we find that the weighted values are not             

adequately discriminatory as already illustrated in the long-tailed weight distributions.          

Consequently, a critical factor in faithfully capturing the network structure is whether            

or not a link exists. A false remedy is to lower K (number of nearest neighbors),                

however, as shown in Fig. 2e , reducing K in PARC or Phenograph’s graph             

construction does not yield reliable rare- population identification, not to mention the            

resulting over-fragmentation of clusters that  confounds downstream analysis..  

 

The ability of PARC to minimize the risk of over-fragmentation is also evident by              

comparing it with another clustering method, X-Shift, using density-based K-NN          

estimation. This method was originally established for analyzing the CyTOF          

single-cell data “Samusik_all” (Samusik et al 2016). X-shift generated 74 clusters in            

~230 minutes based on a random subsampling of 300,000 cells from Samusik_all            
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data, whereas PARC managed to produce 24 clusters of the 841K cells in only ~6               

minutes, and to maintain the same F1 scores ( Supplementary Table 1 ). Further            

tested with another CyTOF data sets of healthy human bone marrow cells            

(Levine_13dim consisting of 24 manually gated populations), this density-based         

K-NN estimation approach yields over-fragmentation (153 clusters after ~2500         

seconds) , in stark contrast with PARC (25 clusters after 35 seconds).  

 

3.3 PARC dissects heterogeneous single-cell transcriptomic data of        

PBMCs and 1.3 million mouse brain cells 

We also tested the adaptability as well as scalability of PARC in handling             

complex single-cell transcriptomic (scRNA-seq) data. We use a mid-sized annotated          

3’ mRNA data set of 68,000 peripheral blood mononuclear cells (PBMCs) (Zheng et             

al. 2017) for a more granular analysis, and an exploratory large dataset of 1.3 million               

embryonic mouse brain without subsampling.  

 

In the first case, the cells in the mixture were annotated by correlating             

(Spearman) each cell against the average expression profile of 11 purified populations            

(Zheng et al 2017). We adopt the same pre-processing steps as Zheng et al 2017               

which are: by filtering out genes based on unique molecular identifier (UMI) count,             

selecting the 1000 most variable genes and subsequently using the first 50 principal             

components (PCs) generated by the principal component analysis (PCA) applied on           

the UMI counts. Likewise, the issue of ‘drop-outs’ is not directly addressed, but             

partially mitigated by UMI-count-based filtering. We compute the log2 fold changes           

by cluster to infer the cell population based on the most differentially expressed genes              

( Fig. 3b ). 

 

Apart from that PARC yields better F1-scores than other clustering methods ( Fig.            

1c and Supplementary Fig. 1 ), it also identifies sub-populations ( Fig.3a ) that were            

masked by the original manual gating ( Supplementary Fig. 4 ). This is attributed to              
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the fact that the annotation was mainly given to T-cell subpopulations on a             

mesoscopic level (e.g. CD4+, CD8+, memory and regulatory T cells). In contrast,            

other sub-types of PBMCs (e.g. monocytes, dendritic cells and NK cells) are not             

annotated by any of their known subtypes. Nevertheless, PARC is able to reveal the              

clusters showing high expression of CD14 (cluster 9) and CD16 (or FCGR3A)            

(cluster 10), markers for classical and non-classical monocytes respectively (Ong,          

2018). It also identifies subsets of NK cells as inferred by the expression level of               

CD160 and CD16 (FCGR3A) (cluster 3 and 5), which is known to be associated to               

the CD56dim CD16+ cytotoxic NK cell phenotype (cluster 5) (Bouteiller, 2011).           

Notably, PARC also detects rare populations of IL-3RA+ (Zhang et al., 2017)            

plasmacytoid dendritic cells (cluster 11, 0.6%) and megakaryocytes (cluster 12,          

0.4%). The marker genes identified for each cluster are summarized in           

Supplementary Table 3 .  

 

We further employ PARC to explore the scRNA-seq dataset of 1,308,421           

embryonic mouse brain cells. The single-cell transcriptomic profiles were obtained          

with Cell Ranger 1.2 (10X Genomics 2017), and again preprocessed in the same             

manner as the Zheng et al 2017 dataset (see above) using python package SCANPY              

(Wolf et al 2018). Bypassing the approaches that downsample the data and thus the              

inevitable risk of losing the original data structure (especially the rare populations            

(Linderman 2019)), PARC completes the clustering with a run time of only 15             

minutes on the 1.3 million cells (using the first 50PCs on the UMI counts of the 1000                 

most variable genes found after initial filtering). It is significantly faster than the             

competitive runtimes reported by the recent methods that do not rely on            

downsampling, i.e. ScScope (Deng 2019) and SCANPY (Wolf et al. 2018), with the             

clustering runtime of 97 and 104 minutes respectively. The clusters are annotated by             

the major cell types according to the maximal expression of well-known marker genes             

from the Allen Brain Atlas and Tasic et al 2016 ( Fig. 3c-f ), and have the following                

composition: GABAergic 18%, Glutamatergic 65% and non-neuronal 17%. The         

composition concurs with previous studies on embryonic brain cell composition          

which suggest ~90% of cells are neuronal ( Bandeira et al. 2009) , with ~1 in every 5                
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neurons being GABAergic (Sahara et al. 2012). The composition also agrees with the             

reported fractions by ScScope and SPLiT-Seq (Deng 2019) ( Fig. 3f ). Further           

classification of subtypes is inferred by plotting the average cluster expression for            

well-known gene markers, thus verifying the segregation of established (non-)          

neuronal types ( Fig. 3f and Supplementary Table 4 ). Our results thus demonstrate            

the ability of PARC to enable efficient and effective exploration of the ultra-large             

heterogeneous single-cell datasets, which becomes increasingly demanding.  
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3.5 PARC clusters 1.1 million quantitative label-free single cell image 

data  

 

An emerging challenge in single-cell analysis is to adapt to the progressively diverse             

sets of single-cell data generated by the wide range of new single-cell technologies,             

each with multiple modalities. This becomes a prerequisite for comprehensive          

multi-faceted single-cell analysis. Apart from the flow/mass cytometry and         

sequencing technologies, a notable example is high-throughput and high-content         

single-cell imaging - empowering large-scale deep image analysis that extracts a           

multitude of subtle features (or phenotypes) representing cell states and types (J.            

Caicedo et al. 2017).  

 

In contrast to the fluorescence image cellular assay that specifically probes different            

biomolecular signatures of the cellular components and even provides functional          

annotation of genes by morphological similarity (Rohban et al 2017), a substantial            

body of work has shown that cellular biophysical properties, extracted from label-free            

optical imaging (Park et al. 2018; Zangle and Teitell. 2014; Tse et al. 2013; Otto et al.                 

2015), are the effective intrinsic markers for probing many cellular processes (e.g. cell             

proliferation, death, differentiation and malignancy). Bypassing the need for costly          

and time-consuming sample preparation, single-cell biophysical phenotyping could be         

functionally significant in single-cell analysis especially when other biomolecular         

assays are not effective.  

 

Here we test the adaptability of PARC to cluster an in-house niche single-cell image              

dataset which describes the biophysical phenotypic profiles of 1.1 million lung cancer            

cells (7 cell lines representing three major lung-cancer subtypes: 1) adenocarcinoma,           

2) squamous cell carcinoma, 3) small cell carcinoma). The biophysical phenotypes of            

individual cells were extracted from a recently developed ultrahigh-throughput         

microfluidic quantitative phase imaging (QPI) cytometer, coined multi-ATOM (Lee         
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Feb 2019 and Lee April 2019), which captures a large amount of label-free single-cell              

images at an ultrahigh throughput (>10,000 cells/sec) without compromising         

sub-cellular resolution. In multi-ATOM, each imaged cell generates three different          

label-free image contrasts, from which 26 biophysical features are derived, e.g. cell            

size, mass, mass density, optical opacity, and statistical sub-cellular texture          

characteristics (See the detailed phenotype definitions in Supplementary Table 5 ).          

After feature normalization, we apply PARC to cluster the total 1,113,369 single cells             

imaged by multi-ATOM based on the 26 biophysical phenotypes. 

 

PARC unambiguously separates (mean-F1 98.8%) between and within the 3 broad           

groups of lung cancer cells ( Fig. 4a-c ). Indeed, each of the three main lung cancer               

subtypes shows its characteristic phenotypic profile. We observe there are subtle           

differences in some texture features within the same subtype that further differentiate            

individual cell lines ( Fig. 4b ) - demonstrating the discriminative power of label-free            

biophysical phenotypes. PARC and Phenograph score the highest in terms of accuracy            

compared to the other methods ( Supplementary Fig. 1 ), with PARC completing the            

task in 800 seconds versus the 7,200 seconds required by Phenograph using the same              

computational resources. Furthermore, by running PARC on the randomly selected n           

= 100 of H1975 cells mixed with an increasing cell count of each of the other six cell                  

lines, we also demonstrate PARC’s consistent performance in rare-population         

detection based on biophysical phenotypes ( Fig. 4d and Supplemental Fig. 3).  

 

To exemplify its utility in image-based phenotypic exploration, we also use PARC to             

further investigate the significance of the label-free sub-cellular texture-based features          

in distinguishing different cell types. While cell size (volume) and shape are the most              

conceivable cellular biophysical features, sub-cellular textures parameterized from        

label-free imaging are intimately linked to a variety of subcellular spatial           

characteristics, e.g. protein localization (Yan et al., 2018), nucleus architectural          

changes (e.g. DNA fragmentation (Almassalha et al., 2016), and cytoskeletal network           

(Bon et al., 2014), to name a few. Hence, they can be harnessed as information-rich               
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single-cell phenotypes. This can clearly be evident by the insignificant drop (1%) in             

the unweighted F1-score when exclusively the texture features (excluding volume,          

area, circularity and their moments) are input to PARC, compared to the case of using               

the complete feature set ( Fig. 4e ). The adjusted rand index (ARI) between the two sets               

of clusters of 80% indicates the two sets are well aligned. 
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Discussion  

The burgeoning of new bioassay technologies, notably the seamless integration of           

advanced molecular biology, microfluidics, and imaging, now allows diverse         

characterization of single cells at an unprecedented throughput and content. There is            

thus a pressing need for new computational tools that could efficiently handle such an              

increasing scale and complexity of single-cell data, and effectively explore the           

cellular heterogeneity for gaining new biological insights. To this end, PARC fills this             

gap by employing a combinatorial graph-based clustering approach that outperforms          

other competitive methods not only in speed (by an order of magnitude), and             

scalability (going beyond 1 million cells), but also the ability to accurately capture the              

complex data structure, especially to detect rare populations (< 0.1%).  

  

PARC does not incur additional computational complexity to deal with exhaustive           

large-scale data processing or resort to random data downsampling. Instead, PARC is            

built upon three integrated elements to analyze ultralarge-scale and high-dimensional          

single-cell data: (1) HNSW for accelerated k-NN graph construction, (2) data-driven           

graph pruning and (3) a new community-detection approach, Leiden algorithm.          

Notably, our results show that pruning, guided by the local and global single-cell data              

structure, critically refines and improves the data graph representation that in turn            

further accelerates the Leiden algorithm, and alleviates the common problem of the            

resolution limit in community detection.  

  

We anticipate that the clustering performance of PARC could readily be further            

augmented by incorporating other methodologies recently developed for single-cell         

analysis. For instance, prior to PARC clustering, one could apply correction steps for             

removing the batch effects (MNN by Haghverdi et al., 2018 ), imputation strategies            

for combating the noise and dropouts in scRNA-seq data (e.g. scScope, DeepImpute)             

and accelerated visualization methods for ultralarge-scale single-cell data (e.g.         

Net-SNE, flt-SNE and UMAP). Such compatibility, together with the fact that PARC            
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does not require prior knowledge of the single-cell data, could make PARC widely             

adaptable to the popular single-cell analysis pipelines (e.g. Seurat , SCANPY and Cell             

Ranger) or new methodologies tailored for niche single-cell data types (e.g. label-free            

imaging cytometry data shown in Fig. 4) and integration of multiple data types.  

  

Indeed, our results demonstrate that PARC produces robust and accurate clustering           

across various single-cell data types, namely flow cytometry, mass cytometry,          

scRNA-seq and even emerging imaging cytometry. We thus anticipate that such           

versatility of PARC could be extended to play an important role in emerging             

techniques that empower multi-faceted and integrative characterization of single-cell         

biochemical/ biophysical phenotypes and transcriptional profiles (or broadly regarded         

as single-cell multi-omics (Hasin et al. 2017, Chappell et al. 2018) – the major               

pursuit to crafting the human cell atlas (Regev et al., 2017 ) that could offer a deeper                

mechanistic understanding of biological processes, particularly those driving cellular         

heterogeneity associated with diseases. 
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Figure Titles and Legends  

Fig.1 Overall Workflow and Performance of PARC . (a) Overview of PARC           
workflow for large-scale single-cell analysis on multiple types of high-dimensional          
single-cell data. The enabling features include fast graph construction by HNSW,           
2-step data-driven graph refinement and pruning, and accelerated community         
detection by Leiden algorithm. (b) Long tailed distributions of graph edge-weights           
observed in various SC datasets. The tail implicates that the high weight score of the               
important neighbors diminishes the relative difference between weak and majority          
links. This negatively impacts the robustness and the speed of community detection –             
a predicament that could be addressed by graph pruning. (c) Overall performance of             
PARC and other competitive clustering methods on various SC datasets.  

 

Fig. 2 Scalability of PARC and its Rare Population Detection Performance . (a)            
Scalability of PARC, in comparison to Phenograph, in terms of graph construction            
and clustering time, on the random samples of large-scale CyTOF data (Samusik_all:            
841,644 cells). (b) Pruning speeds up the runtime of PARC by a factor of 2, with the                 
gain being greater as the number of samples increases. (c) PARC scalability as             
dimensionality increases on scRNA-seq data (10X_PBMC). (d) (Left) t-SNE plot          
colored by 'ground truth' of the Mosmann_rare data ; (Center) t-SNE plot colored by              
PARC clustering with pruning where the cluster containing majority of rare activated            
memory T-cells are colored red; (Right) t-SNE plot colored by PARC clustering            
without pruning. The rare activated memory T-cells are not detectable at all. (e).             
Pruning is key to reliably identifying rare cell population in 3 datasets with rare              
populations: Nilsson_rare, Mosmann_rare, multi-ATOM_rare, with the rare       
populations of 0.08%, 0.03%, and 0.04%, respectively. Simply lowering the K           
(number of neighbors) in graph construction does not ensure rare-cell detection in            
PARC or Phenograph. (f) Performance comparison of PARC on 3 rare-cell datasets            
against 5 competitive tools and their corresponding number of clusters.  

 

Fig. 3 PARC for Mid-scale (68K cells) and Ultralarge-scale (1.3M cells)           
scRNA-seq Analysis. (a) t-SNE visualization of 68K human PBMCs (Zheng et al.            
2017) colored based on clusters found by PARC, which delineates well-known cell            
subtypes not captured in original annotation (Supp. Fig. 4 , Supp. Table 3 for detailed               
references of marker genes) ). (b) Heatmap of most differentially (log2-fold)           
expressed genes in each assigned cluster by PARC. (c) t-SNE visualization of the             
entire mouse brain data (1.3M cells). Cluster colors reflect PARC clustering of major             
neuronal type (Glutamatergic, Gabaergic and non-neuronal) inferred by the marker          
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genes (Allen Brain Atlas and Tasic 2016, Tasic 2018). (d) Mean cluster-level gene             
expressions of known marker genes and (e) the inferred sub-cell types. (f) PARC's             
major cell-type composition concurs with ScScope and SplitSeq, as well as prior            
studies on embryonic mouse brain cells (See Suppl. Table 4).  

 

Fig. 4 PARC for Ultralarge Analysis of Quantitative Label-free Single-Cell          
Image Data (1.1M lung cancer cells) by PARC. (a) (Left) Bright-field and (Right)             
quantitative phase images of cells captured by the multi-ATOM system. (b)           
Phenotypic profiles of the lung cancer cell populations clustered by PARC (See            
Suppl. Table 5 for the composition of the populations) based on a total 26 features               
related to the biophysical characteristics of single cells extracted from the           
multi-ATOM images (See Suppl. Table 6). Each of the three main lung cancer             
subtypes, squamous, adenocarcinoma, small-cell lung cancer, shows its characteristic         
phenotypic profile, with texture-based features further differentiating       
subtypes/clusters within the cell line. (d) A spike test where H1975 cells (n=100) are              
digitally mixed with progressively higher cell count of each of the other 6 lung cancer               
cell lines shows PARC's ability to reliably detect the rare population. (e) PARC is              
employed to illustrate the significance of the label-free texture-based features of           
single-cells for distinguishing different cell types.  

 

Declaration of Interests 

The authors declare no competing interests. 

 

 

  

 

27 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 11, 2019. ; https://doi.org/10.1101/765628doi: bioRxiv preprint 

https://doi.org/10.1101/765628
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 References  

1. Aghaeepour, N. et al. Rapid cell population identification in flow cytometry data.            
Cytometry A. 79(1): 6-13 doi: 10.1002/cyto.a.21007. 

2. Blasi, T. et al. Label-free cell cycle analysis for high-throughput imaging flow            
cytometry. Nat. Commun. 7:10256 doi: 10.1038/ncomms10256 (2016).  

3. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single             
cells. Nat. Commun. 8, 14049 doi: 10.1038/ncomms14049 (2017). 

4. 10X Genomics Datasets, https://www.10xgenomics.com/solutions/single-cell/  
5. Spitzer, Matthew H, and Garry P Nolan. “Mass Cytometry: Single Cells, Many            

Features.” Cell  165(4), 780-91. doi:10.1016/j.cell.2016.04.019 (2016) 
6. Duò, Angelo et al. “A systematic performance evaluation of clustering methods           

for single-cell RNA-seq data” F1000Research, 7, 1141,       
doi:10.12688/f1000research.15666.2 (2018) 

7. Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of             
communities in large networks. J. Stat. Mech. Theory Exp. 10008, 6,           
https://doi.org/10.1088/1742-5468/2008/10/P10008  (2008). 

8. Weber LM and Robinson MD, Comparison of clustering methods for          
high-dimensional single-cell flow and mass cytometry data. Cytometry A. 2016          
89(12) 1084-1096, https://doi.org/10.1002/cyto.a.23030   (2016). 

9. Malkov, Yu and Yashunin, Dmitri. Efficient and robust approximate nearest          
neighbor search using Hierarchical Navigable Small World graphs. arXiv:         
1603.09320 https://arxiv.org/abs/1603.09320  (2016). 

10. Barabasi, Albert Laszlo. Network Science Communities, Chapter 9        
http://networksciencebook.com/chapter/9#introduction9 (2019) 

11. Samusik, Nikolay et al. “Automated mapping of phenotype space with single-cell           
data” Nature methods 13(6), 493-6    
https://doi-org.eproxy.lib.hku.hk/10.1038/nmeth.3863  (2016) 

12. Levine, Jacob H., et. al, Data-Driven Phenotypic Dissection of AML Reveals           
Progenitor-like Cells that Correlate with Prognosis. Cell. 162(1), 184-97,         
https://doi.org/10.1016/j.cell.2015.05.047 (2015) 

13. Ajami, B and Steinman, L. Nonclassical monocytes: are they the next therapeutic            
targets in multiple sclerosis?, Australasian Society for Immunology Inc.96(2),         
125-127 https://doi.org/10.1111/imcb.12004 (2018) 

14. Le Bouteiller P et. al., “CD160: a unique activating NK cell receptor”, Immunol             
Lett.138(2): 93-6   https://doi.org/10.1016/j.imlet.2011.02.003 (2011) 

15. Martin A.Turman, Toshio Yabe, Cynthia McSherry, Fritz H.Bach, Jeffrey         
P.Houchins. (1993) Characterization of a novel gene (NKG7) on human          
chromosome 19 that is expressed in natural killer cells and T cells. Human             
Immunology, 36 (1) 34-40. doi.org/10.1016/0198-8859(93)90006-M 

 

28 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 11, 2019. ; https://doi.org/10.1101/765628doi: bioRxiv preprint 

https://www.10xgenomics.com/solutions/single-cell/
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1002/cyto.a.23030
https://arxiv.org/abs/1603.09320
http://networksciencebook.com/chapter/9#introduction9
https://doi-org.eproxy.lib.hku.hk/10.1038/nmeth.3863
https://doi.org/10.1016/j.cell.2015.05.047
https://doi.org/10.1111/imcb.12004
https://doi.org/10.1016/j.imlet.2011.02.003
https://doi.org/10.1016/0198-8859(93)90006-M
https://doi.org/10.1101/765628
http://creativecommons.org/licenses/by-nd/4.0/


 

16. Samten B. (2013). CD52 as both a marker and an effector molecule of T cells               
with regulatory action: Identification of novel regulatory T cells. Cellular &           
molecular immunology, 10(6), 456–458. doi:10.1038/cmi.2013.38 

17. Lima, Margarida et al. Chemokine Receptor Expression on Normal Blood          
CD56(+) NK-Cells Elucidates Cell Partners That Co-migrate during the Innate          
and Adaptive Immune Responses and Identifies a Transitional NK-Cell         
Population , Journal of immunology research, 2015 839684        
http://dx.doi.org/10.1155/2015/839684  (2015) 

18. Hidalgo, L. G. et. al., The Transcriptome of Human Cytotoxic T Cells:            
Similarities and Disparities Among Allostimulated CD4+ CTL, CD8+ CTL and          
NK cells. American Journal of Transplantation, 8 627-636.        
.https://doi.org/10.1111/j.1600-6143.2007.02128.x  (2008) 

19. Wong K.L. et.al., Gene expression profiling reveals the defining features of the            
classical, “Intermediate, and nonclassical human monocyte subsets”. Blood 118,         
5, https://doi.org/10.1182/blood-2010-12-326355   (2011) 

20. Collin, Matthew et. al. Human dendritic cell subsets, Immunology 140(1): 22-30           
https://doi.org/10.1111/imm.12117 (2013). 

21. Hong Zhang , Josh D. Gregorio , Toru Iwahori , Xiangyue Zhang , Okmi Choi ,                
Lorna L. Tolentino , Tyler Prestwood , Yaron Carmi , and Edgar G. Engleman, A               
distinct subset of plasmacytoid dendritic cells induces activation and         
differentiation of B and T lymphocytes. Proc Natl Acad Sci U S A. 2017 Feb               
21;114(8):1988-1993. doi: 10.1073/pnas.1610630114. Epub 2017 Feb 6. 

22. Bio-Rad Laboratories, An Overview of B Cells – from Discovery to Therapy,            
Mini Review https://www.bio-rad-antibodies.com/static/2016/b-cell/  ( 2016) 

23. Poli, Aurélie et al. CD56bright natural killer (NK) cells: an important NK cell             
subset. Immunology 126(4):458-65.   
https://doi.org/10.1111/j.1365-2567.2008.03027.x  (2009) 

24. Henoch S. Hong ,Fareed Ahmad ,Johanna M. Eberhard,Nupur        
Bhatnagar,Benjamin A. Bollmann,Phillip Keudel,Matthias Ballmaier,Margot     
Zielinska-Skowronek,Reinhold E. Schmidt. 2012 Loss of CCR7 Expression on         
CD56bright NK Cells Is Associated with a CD56dimCD16+ NK Cell-Like          
Phenotype and Correlates with HIV Viral Load PLOS1        
https://doi.org/10.1371/journal.pone.0044820 ,  

25. Qiu, Peng et al. “Extracting a cellular hierarchy from high-dimensional cytometry           
data with SPADE.” Nature biotechnology vol. 29,10 886-91. 2 Oct. 2011,           
doi:10.1038/nbt.1991 

26. Schinnerling, Katina et al. Gene Expression Profiling of Human         
Monocyte-derived Dendritic Cells - Searching for Molecular Regulators of         
Tolerogenicity. Frontiers in immunology 6 528      
https://doi.org/10.3389/fimmu.2015.00528 (2015)  

27. Tel J, et.al., IL-4 and IL-13 alter plasmacytoid dendritic cell responsiveness to            
CpG DNA and herpes simplex virus-1., J Invest Dermatol 131(4):900-6          
https://doi.org/10.1038/jid.2010.410  (2011) 

28. Smith, C. W., Raslan, Z., Parfitt, L., Khan, A. O., Patel, P., Senis, Y. A., &                
Mazharian, A. (2018). TREM-like transcript 1: a more sensitive marker of           
platelet activation than P-selectin in humans and mice. Blood advances, 2(16),           
2072–2078. doi:10.1182/bloodadvances.2018017756 

 

29 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 11, 2019. ; https://doi.org/10.1101/765628doi: bioRxiv preprint 

http://dx.doi.org/10.1155/2015/839684
https://doi.org/10.1111/j.1600-6143.2007.02128.x
https://doi.org/10.1182/blood-2010-12-326355
https://doi.org/10.1111/imm.12117
https://www.ncbi.nlm.nih.gov/pubmed/28167780#
https://www.bio-rad-antibodies.com/static/2016/b-cell/minireview/an-overview-of-b-cells---from-discovery-to-therapy-mini-review.pdf
https://doi.org/10.1111/j.1365-2567.2008.03027.x
https://doi.org/10.1371/journal.pone.0044820
https://doi.org/10.3389/fimmu.2015.00528
https://doi.org/10.1038/jid.2010.410
https://doi.org/10.1101/765628
http://creativecommons.org/licenses/by-nd/4.0/


 

29. Sakurai, K., Fujiwara, T., Hasegawa, S. et al. Inhibition of human primary            
megakaryocyte differentiation by anagrelide: a gene expression profiling analysis.         
Int J Hematol (2016) 104: 190. https://doi.org/10.1007/s12185-016-2006-2 

30. Rudensky, Alexander, Regulatory T cells and Foxp3. Immunological reviews         
241(1): 260-8 https://doi.org/10.1111/j.1600-065X.2011.01018.x  (2011) 

31. Campbell James J. et.al. , CCR7 Expression and memory T cell diversity in             
humans. J Immunol. 166:877-884 https://doi.org/10.4049/jimmunol.166.2.877     
2001 

32. Hu, Haitao et al. Distinct gene-expression profiles associated with the          
susceptibility of pathogen-specific CD4 T cells to HIV-1 infection. Blood          
121(7): 1136-44 https://doi.org/10.1182/blood-2012-07-446278  (2013) 

33. Stansfield, Brian K. and Ingram David A., Clinical significance of monocyte           
heterogeneity. Clinical and translational medicine 4(5),      
https://dx.doi.org/10.1186%2Fs40169-014-0040-3  (2015) 

34. Wojciech Corczyca, Chapter 10 - Immunophenotypic Pattern of Myeloid         
Populations by Flow Cytometry Analysis Methods in Cell Biology 103: 221-266           
https://doi.org/10.1016/B978-0-12-385493-3.00010-3  (2011)  

35. Goasguen, Jean E et. al. Morphological evaluation of monocytes and their           
precursors Haematologica 94(7): 994-7    
https://doi.org/10.3324/haematol.2008.005421  (2009) 

36. Sinha, Debajyoti et. al., DropClust: Efficient clustering of ultra-large scRNA-seq          
data. Nucleic Acids Research, 46(6) E36.https://doi.org/10.1093/nar/gky007      
(2018) 

37. Peijie Lin et. al., CIDR: Ultrafast and accurate clustering through imputation for            
single-cell RNA-seq data, Genome Biology 18:59      
https://doi.org/10.1186/s13059-017-1188-0  (2017) 

38. Zeisel A et. al, Molecular Architecture of the Mouse Nervous System. Cell            
174(4):999-1014 https://doi.org/10.1016/j.cell.2018.06.021  (2018)  

39. Liguz-Lecznar M. and Skangiel-Kramska, J. , Vesicular Glutamate Transporters        
(VGLUTs): The three musketeers of glutamatergic system, Acta Neurobiol Exp          
67(3):207-18 (2007) 

40. Hevner R.F. et. al., Transcription factors in glutamatergic neurogenesis:         
conserved programs in neocortex, cerebellum, and adult hippocampus., NeuroSci         
Res.;55(3):223-33  https://doi.org/10.1016/j.neures.2006.03.004  (2006) 

41. Bosiljka, Tasic et. al., Adult Mouse Cortical Cell Taxonomy by Single Cell            
Transcriptomics. Nat Neurosci. 19:335-346 https://doi.org/10.1038/nn.4216     
(2016) 

42. Othman, A. et. al., Olig1 is expressed in human oligodendrocytes during           
maturation and regeneration. Glia 59(6):914-26     
https://doi.org/10.1002/glia.21163  (2011) 

43. Boisvert, M.M. et. al., The Aging Astrocyte Transcriptome from Multiple          
Regions of the Mouse Brain. Cell Reports 22(1):269-28        
https://doi.org/10.1016/j.celrep.2017.12.039 (2018) 

44. Furukawa T. et. al., Rax, Hes1, and notch1 promote the formation of Müller glia              
by postnatal retinal progenitor cells, Neuron 26(2):383-94 (2000) 

45. Reynolds G.P . and Beasley C.L., GABAergic neuronal subtypes in the human           
frontal cortex development and deficits in schizophrenia, Journal of Chemical          
Neuroanatomy 22(1-2):95-100 (2001) 

 

30 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 11, 2019. ; https://doi.org/10.1101/765628doi: bioRxiv preprint 

https://doi.org/10.1111/j.1600-065X.2011.01018.x
https://doi.org/10.4049/jimmunol.166.2.877
https://doi.org/10.1182/blood-2012-07-446278
https://dx.doi.org/10.1186%2Fs40169-014-0040-3
https://doi.org/10.1016/B978-0-12-385493-3.00010-3
https://doi.org/10.3324/haematol.2008.005421
https://doi.org/10.1093/nar/gky007
https://doi.org/10.1186/s13059-017-1188-0
https://doi.org/10.1016/j.cell.2018.06.021
https://www.semanticscholar.org/author/Jolanta-Skangiel-Kramska/3661665
https://www.ncbi.nlm.nih.gov/pubmed/17957901
https://doi.org/10.1016/j.neures.2006.03.004
https://doi.org/10.1038/nn.4216
https://doi.org/10.1002/glia.21163
https://doi.org/10.1016/j.celrep.2017.12.039
https://www.ncbi.nlm.nih.gov/pubmed/?term=Reynolds%20GP%5BAuthor%5D&cauthor=true&cauthor_uid=11470557
https://www.ncbi.nlm.nih.gov/pubmed/?term=Beasley%20CL%5BAuthor%5D&cauthor=true&cauthor_uid=11470557
https://doi.org/10.1101/765628
http://creativecommons.org/licenses/by-nd/4.0/


 

46. Gonchar, Yuri et. al. Multiple Distinct Subtypes of GABAergic Neurons in           
Mouse Visual Cortex Identified by Triple Immunostaining, Front Neuroanat. 1:3          
https://dx.doi.org/10.3389%2Fneuro.05.003.2007  (2007) 

47. Frazer, S. et al. Transcriptomic and anatomic parcellation of 5-HT3AR          
expressing cortical interneuron subtypes revealed by single-cell RNA sequencing.         
Nat. Commun. 8: 14219, https://doi.org/10.1038/ncomms14219 (2017). 

48. Bandeira F. et. al. Changing numbers of neuronal and non-neuronal cells underlie            
postnatal brain growth in the rat, Proc Natl Acad Sci U S A 106(33):14108-13.              
https://doi.org/10.1073/pnas.0804650106  (2009) 

49. Sahara, Setsuko et al. The fraction of cortical GABAergic neurons is constant            
from near the start of cortical neurogenesis to adulthood. The Journal of            
neuroscience : the official journal of the Society for Neuroscience vol. 32(14):            
4755-61. https://doi.org/10.1523/JNEUROSCI.6412-11.2012 (2012) 

50. Hystad M. E, Characterization of early stages of human B cell development by             
gene expression profiling. J Immunol 79(6):3662-71      
https://doi.org/10.4049/jimmunol.179.6.3662 (2007) 

51. Traag V.A. et.al., From Louvain to Leiden: guaranteeing well-connected         
communities, Scientific Reports 9: 5233     
https://doi.org/10.1038/s41598-019-41695-z  (2019)  

52. Lee, Kelvin C.M., Multi-ATOM: Ultrahigh-throughput single-cell quantitative       
phase imaging with subcellular resolution, Journal of Biophotonics,        
https://doi.org/10.1002/jbio.201800479  ( 2019) 

53. Traag, V. A. Narrow scope for resolution-limit-free community detection, Phys.          
Rev. E 84,  (2011) 

54. Deng, Yue, Massive single-cell RNA-seq analysis and imputation via deep          
learning, BioRXiv, https://doi.org/10.1101/315556 (2018) 

55. Wolf, F. A. et. al. SCANPY: large-scale single-cell gene expression data analysis.            
Genome Biology 19 :15  https://doi.org/10.1186/s13059-017-1382-0  (2018)  

56. Deng, Yue et. al. Scalable analysis of cell-type composition from single-cell           
transcriptomics using deep recurrent learning. Nature Methods Brief        
Communications 19:4 https://doi.org/10.1038/s41592-019-0353-7  (2019) 

57. Van Gassen et al., FlowSOM: Using self-organizing maps for visualization and           
interpretation of cytometry data. Cytometry A. 87(7): 636-45         
https://doi.org/10.1002/cyto.a.22625  (2015) 

58. Qian Y et al. Elucidation of seventeen human peripheral blood B-cell subsets and             
quantification of the tetanus response using a density-based method for the           
automated identification of cell populations in multidimensional flow cytometry         
data. Cytometry Part B - Clinical Cytometry  78B (Suppl. 1):S69–S82 (2010) 

59. Yu-Hsiang Fu et al. A community detection algorithm using network topologies           
and rule-based hierarchical arc-merging strategies. Plos One       
https://doi.org/10.1371/journal.pone.0187603  (2017) 

60. Mosmann TR et al. (2014) SWIFT- Scalable clustering for automated          
identification of rare cell populations in large, high-dimensional flow cytometry          
datasets, Part 2: Biological evaluation. Cytometry Part A. 85A:422–433. 

61. Nilsson AR et al. (2013) Frequency determination of rare populations by flow            
cytometry: A hematopoietic stem cell perspective. Cytometry Part A . 83A:721–          
727. 

 

31 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 11, 2019. ; https://doi.org/10.1101/765628doi: bioRxiv preprint 

https://dx.doi.org/10.3389%2Fneuro.05.003.2007
https://doi.org/10.1038/ncomms14219
https://doi.org/10.1073/pnas.0804650106
https://doi.org/10.1523/JNEUROSCI.6412-11.2012
https://www.ncbi.nlm.nih.gov/pubmed/17785802
https://doi.org/10.4049/jimmunol.179.6.3662
https://www.nature.com/articles/s41598-019-41695-z#auth-1
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1002/jbio.201800479
https://doi.org/10.1101/315556
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1038/s41592-019-0353-7
https://doi.org/10.1002/cyto.a.22625
https://doi.org/10.1371/journal.pone.0187603
https://doi.org/10.1101/765628
http://creativecommons.org/licenses/by-nd/4.0/


 

62. Girshovitz, Pinhas and Shaked, Natan (2012). Generalized cell morphological         
parameters based on interferometric phase microscopy and their application to          
cell life cycle characterization”. Biomedical optics express. 3(8): 1757-73. 

63. Lee, K.C.M et al. (2018), "Ultra-large-scale single-cell quantitative phase         
imaging, Biomedical Optics Congress 2018 , OSA Technical Digest 

64. J. Caicedo et al.Data-analysis strategies for image-based cell profiling Nature          
Methods, Sep 2017, Vol.14(9), pp.849-863 

65. Nilsson AR, Bryder D, Pronk CJH.Frequency determination of rare populations          
by flow cytometry: A hematopoietic stem cell perspective. Cytometry Part A           
2013;83A:721–727. 

66. Mosmann TR, Naim I, Rebhahn J, Datta S, Cavenaugh JS, Weaver JM, et al.              
SWIFT—Scalable clustering for automated identification of rare cell populations         
in large, high-dimensional flow cytometry datasets, Part 2: Biological evaluation.          
Cytometry Part A 2014;85A:422–433. 

67. Ulyanov Dmitry, (2016). Multicore -TSNE , Github,       
https://github.com/DmitryUlyanov/Multicore-TSNE 

68. Kelvin C.M. Lee ,  Maolin Wang,  Kathryn S.E. Cheah,  Godfrey C.F. Chan , 
Hayden K.H. So ,  Kenneth K.Y. Wong,  Kevin K. Tsia (Feb 2019). Quantitative 
Phase Imaging Flow Cytometry for Ultra-Large-Scale Single-Cell Biophysical 
Phenotyping. Cytometry Part A doi.org/10.1002/cyto.a.23765 

69. George C. Linderman , Manas Rachh, Jeremy G. Hoskins , Stefan Steinerberger  & 
Yuval Kluger, Fast interpolation-based t-SNE for improved visualization of 
single-cell RNA-seq data. Nature Methods 16 243–245 (2019) 
https://doi.org/10.1038/s41592-018-0308-4 

70. Ong, S. M., Hadadi, E., Dang, T. M., Yeap, W. H., Tan, C. T., Ng, T. P., … 
Wong, S. C. (2018). The pro-inflammatory phenotype of the human non-classical 
monocyte subset is attributed to senescence. Cell death & disease, 9(3), 266. 
doi:10.1038/s41419-018-0327-1 

71. Regev, A. et al. eLife 2017;6:e27041 DOI: 10.7554/eLife.27041 
72. Chappell L1, Russell AJC 1, Voet T1,2. Single-Cell (Multi)omics Technologies. 

Annu Rev Genomics Hum Genet. 2018 19:15-41. doi: 
10.1146/annurev-genom-091416-035324 

73. Yehudit Hasin, Marcus Seldin and Aldons Lusis. Multi-omics approaches to 
disease Genome Biology (2017) 18:83 doi.org/10.1186/s13059-017-1215-1 

74. Haghverdi L1,2, Lun ATL3, Morgan MD 4, Marioni JC. Batch effects in 
single-cell RNA-sequencing data are corrected by matching mutual nearest 
neighbors. 2018. Nat Biotechnol. 2018 Jun;36(5):421-427. doi: 10.1038/nbt.4091 

75. Pierre Bon, Sandrine Lécart, Emmanuel Fort, Sandrine Lévêque-Fort,  Fast 
Label-Free Cytoskeletal Network Imaging in Living Mammalian Cells. 
Biophysical Journal 106 (8) 1588:1595. 10.1016/j.bpj.2014.02.023 

76. Luay M. Almassalha, Greta M. Bauer, John E. Chandler, Scott Gladstein, Lusik 
Cherkezyan, Yolanda Stypula-Cyrus, Samuel Weinberg, Di Zhang, Peder 
Thusgaard Ruhoff, Hemant K. Roy, Hariharan Subramanian, Navdeep S. 
Chandel, Igal Szleifer, Vadim Backman. Nanoscale dynamics of higher-order 
chromatin. Proceedings of the National Academy of Sciences Oct 2016, 113 (42) 
E6372-E6381; OI:10.1073/pnas.1608198113 

77. Wenwei Yan, Jianglai Wu, Kenneth K. Y. Wong, and Kevin K. Tsia, “A 
high-throughput all-optical laser-scanning imaging flow cytometer with 

 

32 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 11, 2019. ; https://doi.org/10.1101/765628doi: bioRxiv preprint 

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Lee%2C+Kelvin+CM
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Wang%2C+Maolin
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Cheah%2C+Kathryn+SE
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Chan%2C+Godfrey+CF
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=So%2C+Hayden+KH
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Wong%2C+Kenneth+KY
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Tsia%2C+Kevin+K
https://doi.org/10.1002/cyto.a.23765
https://www-nature-com.eproxy.lib.hku.hk/articles/s41592-018-0308-4#auth-1
https://www-nature-com.eproxy.lib.hku.hk/articles/s41592-018-0308-4#auth-2
https://www-nature-com.eproxy.lib.hku.hk/articles/s41592-018-0308-4#auth-3
https://www-nature-com.eproxy.lib.hku.hk/articles/s41592-018-0308-4#auth-4
https://www-nature-com.eproxy.lib.hku.hk/articles/s41592-018-0308-4#auth-5
https://doi.org/10.1038/s41592-018-0308-4
https://doi.org/10.7554/eLife.27041
https://www.ncbi.nlm.nih.gov/pubmed/?term=Chappell%20L%5BAuthor%5D&cauthor=true&cauthor_uid=29727584
https://www.ncbi.nlm.nih.gov/pubmed/?term=Russell%20AJC%5BAuthor%5D&cauthor=true&cauthor_uid=29727584
https://www.ncbi.nlm.nih.gov/pubmed/?term=Voet%20T%5BAuthor%5D&cauthor=true&cauthor_uid=29727584
https://www.ncbi.nlm.nih.gov/pubmed/29727584
https://www.ncbi.nlm.nih.gov/pubmed/?term=Haghverdi%20L%5BAuthor%5D&cauthor=true&cauthor_uid=29608177
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lun%20ATL%5BAuthor%5D&cauthor=true&cauthor_uid=29608177
https://www.ncbi.nlm.nih.gov/pubmed/?term=Morgan%20MD%5BAuthor%5D&cauthor=true&cauthor_uid=29608177
https://www.ncbi.nlm.nih.gov/pubmed/?term=Marioni%20JC%5BAuthor%5D&cauthor=true&cauthor_uid=29608177
https://doi.org/10.1101/765628
http://creativecommons.org/licenses/by-nd/4.0/


 

biomolecular specificity and subcellular resolution“, J. Biophotonics, 11, 2 
e201700178(2018). 

78. Leland McInnes , John Healy, James Melville , UMAP: Uniform Manifold 
Approximation and Projection for Dimension Reduction, arXiv:1802.03426 

 

33 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 11, 2019. ; https://doi.org/10.1101/765628doi: bioRxiv preprint 

https://arxiv.org/search/stat?searchtype=author&query=McInnes%2C+L
https://arxiv.org/search/stat?searchtype=author&query=Healy%2C+J
https://arxiv.org/search/stat?searchtype=author&query=Melville%2C+J
https://doi.org/10.1101/765628
http://creativecommons.org/licenses/by-nd/4.0/

