
Evaluating Representations for Gene Ontology Terms
Dat Duong, Ankith Uppunda, Chelsea Ju, James Zhang, Muhao Chen, Eleazar Eskin,
Jingyi Jessica Li, Kai-Wei Chang.
University of California Los Angeles, California, USA.
datdb@cs.ucla.edu, eeskin@cs.ucla.edu, jli@stat.ucla.edu, kwchang@cs.ucla.edu

Abstract

Recently, as the number of new protein sequences being collected is rising at a faster pace than
the number being annotated, there have been efforts in developing better methods for predicting
protein functions. Because protein functions are annotated by Gene Ontology (GO) terms, one key
auxiliary resource is the GO data itself. GO terms have definitions consisted of a few sentences
describing some biological events, and are arranged in a tree structure with specific terms being
child nodes of generic terms. The definitions and positions on the GO tree of the GO terms
can be used to construct their vector representations. These vectors can then be integrated into
existing prediction models to improve the classification accuracy. In this paper, we adapt two
neural network architectures, Embeddings from Language Models and Bidirectional Encoder
Representations from Transformers, to encode GO definitions into vectors. We evaluate these
new encoders against the previous definition and position encoders in three tasks: (1) measuring
similarity betweenGO terms (2) asserting relationship for orthologs and interacting proteins based
on their GO annotations and (3) predicting GO terms for protein sequences. Results in task 1 and
2 find that BERT-based encoders are often better than the other kinds of encoders. Result in task 3
shows that using GO vectors as additional prediction features increases the accuracy, primarily for
GO terms with low occurrences in the dataset. In task 3, we also observe that having GO vectors
as features definitely helps, but the choice of encoders does not greatly affect the outcome.

1 Introduction
The Gene Ontology (GO) provides descriptions for functions of genes and proteins [9].
This database 1 contains terms referred to as GO terms, each term has a definition describ-
ing some biological events. To clearly annotate the locations and functions of proteins,
this database is further divided into three smaller ontologies: cellular components (CC),
molecular functions (MF) and biological processes (BP). In each smaller ontology, the
GO terms are arranged into a directed tree with one single root (GO tree), where terms
describing more specific biology functions are child nodes of more generic terms.

In late 2017, [33] reported that only about 1% of the proteins in the GO database
have manually verified annotations. With the advancement of sequencing technology,
this fraction is expected to drop in the incoming years; hence, there have been great
efforts in developing methods to automatically assign GO terms for unknown sequences
[11, 19, 27, 33, 34]. The manually annotated data, which is often used as training and
evaluation sets, have many GO terms annotating only a few proteins; for example, [27]

1https://www.uniprot.org/

1

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 8, 2019. ; https://doi.org/10.1101/765644doi: bioRxiv preprint

https://www.uniprot.org/
https://doi.org/10.1101/765644
http://creativecommons.org/licenses/by-nc/4.0/

estimate that about half of the GO terms annotate about 10 proteins in Human and Yeast
database. To increase the prediction accuracy, automatic annotation methods have been
using two additional data resources.

The first data resource is the sequence-to-sequence relationship. For example, protein-
protein interaction network and structural homology are often used to constrain the fact
that closely related proteins should have similar GO labels [4, 33]. The second data
resource is in fact the Gene Ontology itself. For example, distance metric for GO terms
can be inferred from the GO tree or their definitions, and then be used as the intuitive
constraint that forces similar terms to have equivalent prediction probabilities for a given
protein sequence [27]. More importantly, for rare label prediction problems, works in
other research domains have shown that using vector representations of labels as one of
the features can boost the classification accuracy [2, 21, 30].

This paper will focus on the second data resource, the Gene Ontology itself. On this
end, there have been efforts in developing distance metric for GO terms [8, 13, 15, 17, 20,
24, 32]. Most traditional methods for computing semantic similarity of GO terms rely on
the Information Content (IC) and the GO tree. For two GO terms, the key idea is to first
retrieve the shared common ancestors and then weigh these nodes with their IC values.
For example, the most basic method [20] takes the maximum IC of the shared ancestors
as the similarity score for two given GO terms. Methods based on shared ancestors and
IC values have two drawbacks. First, they do not consider the definitions of the GO terms
which have been shown to yield better semantic similarity scores in many cases [8, 15].
Second, they are unable to create vector representations of GO terms which then can be
integrated into other annotation models to predict functions for protein sequences.

In recent years, with the advancement of computing power, neural network (NN) en-
coders have been introduced to map GO terms into vectors based on the principle that the
vectors of related terms shouldhave similar values [8, 24]. Once theGOvectors are created,
then their distance metric naturally follows; for example, cosine similarity or Euclidean
distance can be applied. Thus, NN encoders solve the same problem as IC models, and
also provide GO vectors which later can be integrated into known annotation methods.
Typically, NN encoders are divided into two classes; they either transform GO definitions
or theGO entities (e.g. GOnames) into vectors. For example, consider two recentmethods
[8] and [24]. [8] apply Long-short TermMemory on theGOdefinitions; whereas, Onto2vec
in [24] apply Word2vec on axioms, for example “GO:0060611 is_subclass GO:0060612", to
capture relatedness of GO entities by using the vectors representing their GO names.

In principle, both types of encoders solve the same problem; however, one key question
is: in practice, which type of encoder tends to be better? Unfortunately, there have not
been any extensive works comparing these encoders. Moreover, despite these methods
providing the GO vectors, there have not been works assessing how do these vectors
affect the prediction of GO labels for protein sequences; for example, do these GO vectors
indeed increase the annotation accuracy, and what types of GO labels benefit the most
from having GO vectors as extra features?

In this paper, we address these questions and introduce a fewmore encoders based on
two recent neural network architectures which have attain state-of-the-art results in many
language tasks like textual entailment, name entity recognition, sentimental analysis, and
language translation. These two architectures are Embeddings from Language Models

2

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 8, 2019. ; https://doi.org/10.1101/765644doi: bioRxiv preprint

https://doi.org/10.1101/765644
http://creativecommons.org/licenses/by-nc/4.0/

(ELMo) and Bidirectional Encoder Representations from Transformers (BERT) [7, 18].
The core of ELMo is the Bidirectional Long Short Term Memory (BiLSTM) encoder.

Encoding GO definitions via a single layer BiLSTM encoder has been studied before in
[8]; in this paper, we compare how their method performs against ELMo which has two
sequential layers of BiLSTM encoders where the output of the first layer is the input of the
second layer. To transform a GO definition into a vector, we take the weighted average of
the output of the two BiLSTM layers, and then compute the simple mean of the final word
vectors to represent a GO definition.

BERT is entirely different from the other previous neural networks in that it does not
use any LSTM or convolution layer. Rather, BERT uses a 12-layer attention mechanism
based on the Transformer encoder [7, 26]. Loosely speaking, for one input sentence
having L words, at the layer i and the word j, the word vector wij is a weighted average
of the vectors wi−1,k for all k ∈ [1, L]. BERT outputs a matrix embedding where column
j corresponds to jth word in the input. BERT original implementation does not return a
vector representation for each sentence in its input; in fact, encoding a sentence was not
a key objective in the original paper [7]. At the time of writing this paper, there has not
been any consensus of how to represent a sentence from BERT.

In this paper, we introduce and evaluate five sentence encoders based on BERT to
transform a GO definition into a vector. First, conditioned on two given GO terms, we
train BERT to (1) predict missing words in the two definitions and (2) test if the second
definition follows the first one (e.g. if the two GOs are child-parent terms). To extract the
vector for one GO definition, we average the token embedding in layer 11 of BERT (to be
explained later). Second, we average the word embedding in layer 12 of BERT to represent
one GO definition. Third, following ELMo we take the weighted average of the output
in layer 11 and 12. Fourth, we use the header token of the GO definition to represent the
entire definition. Fifth, we reuse the original BERT framework, and simply replace the
GO definitions with the GO names so that we convert GO names into vectors; this idea is
similar to Onto2vec [24].

We evaluate the ELMo and BERT encoders alongwith BiLSTM [8], Graph Convolution
Network [10], and Onto2vec [24] in three downstream tasks: (1) measuring semantic
similarity between GO terms, (2) asserting relationship for orthologs and interacting
proteins based on their GOannotations and (3) predictingGO terms for protein sequences.
For tasks 1 and2,we include two ICmethods: Resnik andAggregated InformationContent
(AIC) [20, 25]. ICmethodsdonot returnvector representations forGOterms, and soarenot
used in task 3. In task 1 and 2, neural network encoders can outperform IC methods only
when the data are well annotated with GO terms having high IC values. In task 3, using
GO vectors as prediction features increases the annotation accuracy, primarily for rare GO
terms. In all the tasks, definition encoders are often better than entity encoders. Within
definition encoders, BERT-based encoders are usually better than LSTM-based encoders.
Our code and data are at https://github.com/datduong/EncodeGeneOntology.

3

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 8, 2019. ; https://doi.org/10.1101/765644doi: bioRxiv preprint

https://github.com/datduong/EncodeGeneOntology
https://doi.org/10.1101/765644
http://creativecommons.org/licenses/by-nc/4.0/

2 Methods
In this paper, we use the word encoders to refer to NN methods that transform GO terms
into vectors. Typically, there are two types of encoders. Sentence encoders convert the
definitions of GO terms into vectors; by default, terms describing related biology events
will have similar vectors. Entity encoders treat a GO term as a single entity and encode it
into a vector based on its position in the GO tree without using its definition. Here, terms
within the same neighborhood in the GO tree will have similar vector values. We will first
describe the sentence encoders, and then the entities encoders.

2.1 Sentence encoders
2.1.1 BiLSTM

We first describe the Bidirectional Long Short Term Memory (BiLSTM) model to encode
sentences into vectors. BiLSTMprovides contextualizedvector for eachword in a sentence,
so that the samewordwill have different vectors depending on its position in the sentence
and the surrounding words. We begin with the input of BiLSTM which is usually the
Word2vec encoder. Word2vec assigns similar vectors to words with related meanings
or are likely to occur in the same sentence [14, 22]. We train our own Word2vec using
open accessed papers on Pubmed following the setting in [8] where the word dimension
is 300. For this process, we keep stop-words (e.g. but, and not) and symbols like + and
− because they may have important biological meanings such as positive and negative
charged molecules.

Given one sentence, when using Word2vec, we would convert the sentence into a
matrix M where each column Mj is vector for the word at position j in the sentence.
Regardless of the sentence, the same word is always assigned to the same vector. To
capture the fact that the sameword can have different meanings depending on its position
in the sentence, we apply M̃ = BiLSTM(M)where the same word in M̃ will have different
vectors. For example, consider the word vectorMj at position j in a sentence of length L.
BiLSTM computes the forward and backward LSTMmodel to produce the output vectors
−→
hj = LSTM(

−→
h j−1,Mj) and

←−
hj = LSTM(

←−
h j+1,Mj) and then returns M̃j = [

−→
hj ;
←−
hj] where

[
−→
hj ;
←−
hj] indicates the concatenation of the two vectors into one single vector.
To encode amatrix of words into a vector of a sentence, we takemax-pooling across the

columns of M̃ , maxpool(M̃) [5]. Next, we apply one linear transformation to this aggregated
vector to produce a final representation of the GO definition. We set the BiLSTM hidden
layer at 1024, and apply one final linear layer of size 768. During training, we freeze the
input M and update only BiLSTM parameters.

2.1.2 ELMo

Embeddings from Language Models (ELMo) improves the BiLSTM encoder in two key
steps [18]. First, instead of representing a whole word as a vector, ELMo represents
each character in the alphabet as a vector and then uses convolution filters of varying
sizes to transform the alphabet vectors into a word vector. Second, ELMo trains a 2-layer

4

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 8, 2019. ; https://doi.org/10.1101/765644doi: bioRxiv preprint

https://doi.org/10.1101/765644
http://creativecommons.org/licenses/by-nc/4.0/

BiLSTM. The first BiLSTM input are the word vectors from the character layer, and the
second BiLSTM input are the output of the first BiLSTM. The final vector for one word
is a weighted average of the word vector from the character layer, and the output of the
first and second BiLSTM, where the weights are computed for a given specific task and
thus are jointly trained with the other parameters. In this paper, we load the ELMo
pretrained on Pubmed 2, freeze the character convolution layer, and train only the two
biLSTMs. Borrowing notations from the previous section, let M̃ l

j be the BiLSTM output
of layer l. Our final vector for a word in a GO definition is ajM̃

1
j + (1 − aj)M̃

2
j where

aj ∈ [0, 1] is specific to position j and is jointly trained with the two biLSTMs. To encode
a sentence (e.g. GO definition), we take mean-pooling over ELMo final token embedding
matrix. Default ELMo output embedding is size xxx; thus, to match pre-trained BERT,
we pass this aggregated vector through a linear layer sized 768 to produce a final vector
representation of the GO definition.

2.1.3 BERT

We provide a high-level explanation for BERT. Like BiLSTM, BERT converts words in an
input sequence (which can be more than one sentence) into a contextualized embedding
where the same word has different vector representations depending on its position in
the sequence and the surrounding words. Unlike BiLSTM, BERT’s key internal structure
is the Transformer framework which relies on attention mechanism and will be described
below.

We will use this BERT architecture to capture the relationship of the GO definitions.
Consider the example in Figure 1, where the input sequence is the child-parent description
perforation plate (GO:0005618) and cellular anatomical entity (GO:0110165). We are using
the short descriptions in this example, but in the experiment we will use the complete
descriptions. To capture the relationship that perforation plate is a cellular anatomical entity,
we input both sentences into BERT (Fig. 1).

In the first step, BERT splits each word into smaller segments called tokens; for ex-
ample the word perforation is segmented into 3 tokens per ##fo ##ration. We use the same
segmentation rule as in the original paper [7]. The symbol ## is only a naming convention
and bares no significant meaning. For our example, BERT processes the GO terms into
the format [CLS] per ##fo ##ration plate [SEP] cellular an ##ato ##mic ##al entity [SEP], where
the special token [CLS] denotes the start of the whole input and [SEP] denotes end of
each sentence [7]. BERT internal structure is the Transformer encoder which is described
in detail in [26]. Here, we briefly describe the key idea in Transformer. Transformer has
several independent heads, each using its own attention mechanism. Loosely speaking,
for each head h in the layer i, the output vector ohi,j for the word at position j is computed

2https://allennlp.org/elmo

5

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 8, 2019. ; https://doi.org/10.1101/765644doi: bioRxiv preprint

https://doi.org/10.1101/765644
http://creativecommons.org/licenses/by-nc/4.0/

as a weighted average

ohi,j =
∑

k∈{1:L}

ahikV
h(wik) (1)

ahik = softmax(ehik) (2)
ehik = Qh(wij)

ᵀKh(wik) (3)

where L is input length, and V h, Qh, Kh are transformation functions. To merge all the
heads at the layer i, Transformer concatenates the output ohi,j at the position j of all the
heads, and then applies a linear transformation on this concatenated vector. The output
of this linear transformation oij at position j is then passed onto the next layer i+ 1.

The input of the first layer denoted as w0j is a summation of the token, position and
type embedding. Token embedding is analogous to the Word2vec embedding where
every token is assigned to exactly one vector. Position embedding assigns a vector to each
location in the sentence; in our example, we would add the position vector p1 to the token
at position 1 which is per. Type embedding assigns the same vector v1 to tokens in the first
sentence, and the same vector v2 to tokens in the second sentence. In our example, we
would add the same vector v1 to each token vector in the first sentence which are [CLS]
per ##fo ##ration plate [SEP].

We use the same hyper-parameters as the original BERT in [7], where the Transformer
encoder has 12 heads, 12 layers, and the linear transformation matrix produces a vector
size 768. The final results are 12 layers of embedding, each with size 768 × L. Based on
the framework of Transformer, the final output vector of the token [CLS] is a function of
all the other words in both GO definitions, and therefore can be viewed as an aggregated
representation of both GO definitions. For this reason, in the original implementation [7],
the embedding of [CLS] in layer 12 is passed through a full connected layer to predict if
perforation plate is a cellular anatomical entity. To ensure that BERT returns high probability
for this example case, wewill need to train the BERTparameterswith respect to the context
of the Gene Ontology.

We use the Pytorch BERT code 3 and initialize the parameters with a BERT pretrained
on Pubmed [12]. Following [7], our BERT model is trained with two tasks: masked
language model and next-sentence prediction. Masked language task randomly removes
words in a sentence, and then uses the remaining words to predict the missing words.
Next-sentence task estimates if two sentences are sequential or chosen randomly from the
corpus. Next-sentence prediction uses the [CLS] embedding in layer 12 to make the final
decision as described above. In our example, the next-sentence task should confirm that
the two sentences are sequential. To train, we create our own data with respect to the
context of the Gene Ontology. To create one document, we concatenate the definitions of
all GO terms in one single branch of the GO tree, starting from the leaf node to the root.
We consider only is-a relation, and randomly select only one parent if the given node
has many parents. Our fine-tune BERT will capture the relationships of words within a
sentence, and also the relationships of GO definitions that are on the same path to the root
nodes.

3https://github.com/huggingface/pytorch-pretrained-BERT

6

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 8, 2019. ; https://doi.org/10.1101/765644doi: bioRxiv preprint

https://github.com/huggingface/pytorch-pretrained-BERT
https://doi.org/10.1101/765644
http://creativecommons.org/licenses/by-nc/4.0/

12 layers attention mechanism of Transformer

Position embedding
Token type embedding

[CLS] [SEP] [SEP]per ##fo ##ration plate

12 x 768 x 13

cellular an ##ato ##mic ##al entity

Figure 1: Consider child-parent terms GO:0005618 (perforation plate) and GO:0110165
(cellular anatomical entity). We input into BERT the tokenizedwords of perforation plate
and cellular anatomical entity. This illustration uses the short descriptions, but in the
experiment we will use the complete descriptions. The [CLS] specifies the start of the
whole input, and [SEP] specifies the end of each sentence. At the lowest level, BERT has
three embedding layers: word, position, and token type. For example, [SEP] appears
twice but will have different position vector representations. Each token in the first
segment [CLS] per ##fo ##ration plate [SEP] will have toke type 1 embedding, whereas
the rest of the input will have toke type 2 embedding. In general, the type 1 embedding
is assigned to words in the first sentence, and type 2 embedding is meant for words
in the second sentence. For each token, BERT adds the embedding of the three layers
and then send this summation into the Transformer encoder. BERT outputs 12 layers
of embedding size 12× 768× 13 for this example, where 13 is the total length of both
GO terms including the [CLS] and [SEP] tokens.

We emphasize that by default, BERT does not provide a vector representation for a
given GO definition. BERT only provides the matrix embedding for the words in a GO
definition. After tuning BERT, we test two methods to retrieve the vector representations
for the GO definitions from the word embedding matrix.

For our firstmethod (BERTas), we follow Bert-as-service [29] and do not further update
any the model parameters. To transform the GO description perforation plate into a vector,
we input it into BERT as [CLS] per ##fo ##ration plate [SEP] without any second sentence
which would be cellular anatomical entity in the example in Fig. 1. Then we average the
vectors of all theword tokenswith the [CLS] and [SEP] token in layer 11. [29] recommends
this layer because layer 12 may be too affected by the masked language model and next-
sentence prediction task instead of our key objective which is to extract the sentence
representation. Because we use the same hyper-parameters as the original BERT, by
default, BERTas returns a GO vector of length 768.

For the second method, we continue training the BERT parameters; however, we will
apply a new objective loss function and train on the dataset described in section 2.3. We
remove masked language model so that our only task is next-sentence prediction. We
emphasize that this task will be trained differently from the original paper by [7]. In this
new task, unlike [7] we do not append two GO definitions into one single input, and then

7

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 8, 2019. ; https://doi.org/10.1101/765644doi: bioRxiv preprint

https://doi.org/10.1101/765644
http://creativecommons.org/licenses/by-nc/4.0/

use the [CLS] token to make the classification which relies on cross-entropy loss. Instead,
we first use BERT to encode two GO definitions into two vectors, and then measure their
cosine distance. Intuitively, two similar GO definitions will have high cosine distance, and
vice versa. Our new objective loss function is to maximize cosine distance of child-parent
GOdefinitions, and vice versa. Unlike [7] our approach first requires an explicit method to
encode the GO definitions into vectors, and then applies the cosine loss function to these
vectors. We will evaluate three different ways to encode the GO definitions: BERT12,
BERT11+12, and BERTCLS.

BERT12 follows similar idea in BERTas. For a GO term, we send only its definition
through BERT (not appending definitions of parent terms), and then average the token
embedding in the layer 12. We add one extra linear layer to transform this mean vector to
retrieve the final representation of the GO definition.

For BERT11+12, we follow the idea of ELMo. We take the weighted average of the
output in layer 11 and 12 so that the final vector of the token at position j is oj =
ajo11,j + (1 − aj)o12,j where aj ∈ [0, 1] is jointly trained with the other parameters. To
encode a GO definition, we take the mean of oj over j and then linear-transform this
vector.

In BERTCLS, for each GO term, we again send only its definition through BERT. Next,
we use the pooled output of layer 12 which is simply the [CLS] token in layer 12 transformed
by a linear layer with Tanh activation. We pass this pooled output through one more linear
layer to produce the final vector representation of the GO definition.

In BERT12, BERT11+12 andBERTCLS, the final linear transformation returns an output
of size 768 to match BERTas output which is 768. To review, for BERT12, BERT11+12 and
BERTCLS, given two GO terms, we independently transform each of their definitions into
a vector (by individually sending each definition through BERT, and not by concatenating
them first as one long sentence). Then for training, our loss function is to maximize or
minimize the cosine distance of these two vectors depending on whether the terms are
child-parent or randomly chosen.

2.2 Entity encoders
Because GO terms are arranged in a directed tree, we can treat a GO term as a single
entity and encode it into a vector without using its definition. In this paper, we test Graph
Convolution Network (GCN) and Onto2vec. There are other node embedding methods,
but GCN has shown to work well in practice for prediction tasks when labels have low
occurrence frequencies [10, 21, 30].

2.2.1 GCN

Graph Convolution Network encodes each GO term in the tree into a vector [10]. Let A
be the adjacency matrix, where Aij = 1 if GOi is the parent of GOj . Compute Ã = A + I ,
where I is identity matrix. Compute the degree matrix D̃, where D̃ii =

∑
j Ãij . Next scale

A into Â = D̃−
1
2 ÃD̃−

1
2 . Let W1 and W2 be two transformation matrices. Define X to be

the initial vector embedding for the GO terms, where a column in X corresponds to a
GO vector. Before training, X is initialized with random numbers. During training X is

8

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 8, 2019. ; https://doi.org/10.1101/765644doi: bioRxiv preprint

https://doi.org/10.1101/765644
http://creativecommons.org/licenses/by-nc/4.0/

transformed into a new matrix E = W2Â relu(W1ÂX). Loosely speaking, one column i in
ÂX is some summation of all its neighbor nodes and itself. W1ÂX then transforms this
summation into a new vector. We repeat this transformation twice as in [10, 21]. At the
end, column i in E is the vector for GOi and is a function of its child nodes. We train GCN
to minimize the cosine distance loss of the column vectors in E using the data in section
2.3. We set GCN to produce the final vector representation of size 768, same as BERTas.

2.2.2 Onto2vec

Onto2vec encodes GO terms into vectors by transforming their relationships on the GO
tree into sentences, which are referred to as axioms in the original paper [24]. For example,
the child-parent GO terms GO:0060611 and GO:0060612 are rewritten into the following
sentence “GO:0060611 is_subclassGO:0060612". Onto2vec then appliesword2vec on these
sentences, so that GO names occurring in the same sentence are encoded into similar
vectors. Because the training sentences are constructed from the GO trees without GO
definitions, Onto2vec can conceptually be viewed as method that encodes nodes on graph
into vectors like GCN. Because word2vec objective function is based on cosine similarity,
for Onto2vec, GO terms in close proximity will have high cosine similarity score. We set
Onto2vec to produce the final vector representation of size 768, same as BERTas.

2.2.3 BERT as entity encoder

Following Onto2vec, we apply BERT as an entity encoder (our BERTname) where the key
objective is to encode the GO names into vectors. We create training data as follows. For
eachGO term, we select one path from that term to the root node via only is_a relation. For
each path, we split the set of GO terms into half so that they represent the first and second
sentence. BERTas and BERTname have similar idea. In BERTas, the training step requires
GO definitions, whereas this phase in BERTname uses only the GO names. For example,
consider the pathGO:0000023, GO:0005984GO:0044262, GO:0044237, andGO:0008152. In
BERTname, we format it into the input [CLS] GO:0000023 GO:0005984 [SEP] GO:0044262
GO:0044237 GO:0008152 [SEP]. Next, we set the words in the BERT vocabulary as the GO
names. Then, we train masked languagemodel and next-sentence prediction on this data,
so that we can capture relatedness among the GO names like Onto2vec. We use the same
hyper-parameters as original BERT, where the final token embedding is size 768. The final
vector representation for GO terms is the BERT’s initial token embedding. We do not take
the last layer output because we do not want the contextualized vectors of the GO names
which will vary depending on their locations in the input sequence and the surrounding
words.

2.3 Training data
We train BERTas and BERTname using the data and fine-tune procedure described in
section 2.1.3 and 2.2.3. We train all the other encoders using the data described here.
Our objective is to first use the encoders to transform GO terms into vectors, and then to
maximize andminimize cosine distance for child-parent and unrelated GO pairs sampled

9

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 8, 2019. ; https://doi.org/10.1101/765644doi: bioRxiv preprint

https://doi.org/10.1101/765644
http://creativecommons.org/licenses/by-nc/4.0/

from the GO database For our training data, we treat the BP, MF and CC ontology as one
connected network; this approach has shown to increase accuracy for downstream tasks
[8]. We randomly pair a GO with one of its parents, treating the follow one-directional
relationship “is a", “part of", “regulates", “negatively regulates", and “positively regulates"
as the same edge. To ensure that these child-parent terms are very similar, we compute
their Aggregated Information Content (AIC) scores and retain pairs with scores above the
median [25].

To create the negative dataset where each sample is a pair of two randomly chosen GO
terms, we sample two types of unrelated pairs. For the first type, we randomly pick about
half the GOs seen in the positive dataset. We pair each term c in this set with a randomly
chosen term d. For the second type, we pair the same term d with another randomly
chosen term e. This strategy helps the encoders by letting the same GO terms to be seen
under different scenarios. Next, to ensure that these random pairs are very dissimilar,
we retain pairs with AIC scores below the median. This training data is available at
https://github.com/datduong/EncodeGeneOntology.

3 Evaluation
We evaluate the GO encoders in three tasks. First, we measure the semantic similarity for
two types of GO pairs: child-parent and unrelated terms. The objective is to determine
which encoders can best distinguish the two kinds of GO pairs. Here, we also observe
how the number of neighbors (degrees) and ICs of the GO terms affect their similarity
scores. Second, we assert the relationship for orthologs and interacting proteins based
on their GO annotations. Here, we consider only manual annotations data. This task is
similar the first task; that is, if an encoder does well in task 1 then it is likely to do well
in task 2. However, task 2 provides a more holistic picture because in practice, genes and
proteins are not often manually annotated by uninformative GO terms which have high
degrees and low IC values. Hence, a method can possibly perform well in task 2 even
if it does not do well in task 1. Third, we edit the DeepGO model so that it takes the
GO vectors as an extra input. We test if the GO vectors indeed boost the accuracy for
predicting GO labels of protein sequences. Moreover, suppose the GO vectors improve
the accuracy, then we want to know if the increment occurs for rare GO labels. In some
essence, being able to well predict rare GO labels is important because these terms are
often located lower in the GO tree, describe more detail biology events, and are closer to
the true properties of the proteins. For example, predicting GO:0005618 perforation plate
is more precise to a protein’s location than predicting its parent term GO:0110165 cellular
anatomical entity or its ancestor GO:0005575 cellular component.

3.1 Semantic similarity task
Theoretically speaking, a good GO encoder will clearly separate child-parent GO terms
from unrelated pairs regardless of the degrees and ICs for these GO terms. We shall see in
practice, such proposition does not hold true; however, the GO encoders which alignmost
closely with the theoretical expectation will be considered best. In general, a GO term’s

10

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 8, 2019. ; https://doi.org/10.1101/765644doi: bioRxiv preprint

https://github.com/datduong/EncodeGeneOntology
https://doi.org/10.1101/765644
http://creativecommons.org/licenses/by-nc/4.0/

Information Content is negatively correlated with its number of neighbors (or degree)
in the GO tree. We estimate this correlation to be −0.445 for 20,283 Human terms. For
this experiment, we observe how the degrees and ICs of the terms affect the similarity
scores for child-parent and unrelated GO pairs, by seeing how well the inter-quantile
ranges (IQRs) of the scores for these two groups stay separated at different degree and
IC values. We randomly select Human GO pairs A,B with max(degA,degB) ≤ 100 and
min(ICA, ICB) ≥ 1; the final set contains 3069 child-parent pairs and 3069 unrelated pairs.
For each GO pair A,B, we compare its max(degA,degB) and min(ICA, ICB) against its
similarity score. We include AIC method which does not encode GO terms into vectors;
it is however informative to compare AIC against the GO encoders.

In Figure 2, the performances of all the methods are inversely correlated to the degrees
ofGOterms. Whenmax(degA,degB) is small, that iswhen termsarenear the leavesorhave
few neighbors, then all methods except for BERTname perform well, where the IQRs for
child-parent and unrelated GOs do not intersect. For AIC, as max(degA,degB) increases,
the two IQRs remain well separated, despite their trend lines are getting closer. For neural
network encoders, asmax(degA,degB) increases, the scores of child-parent pairs decrease,
so that the IQRs overlap, making it harder to distinguish related GOs from unrelated ones.
BERTname is the only exception, where the two trend lines diverge. However, BERTname
has its IQRs for the two labels intersected at almost all degree values, making it the least
desirable metric. Onto2vec has its IQRs first intersect atmax(degA,degB) > 2.5 GCN and
ELMo have their IQRs first intersect atmax(degA,degB) > 12.5, respectively. For BiLSTM
and BERTCLS, this number is max(degA,degB) > 17.5. In some sense, BiLSTM and
BERTCLS are better than Onto2vec, GCN and ELMo because they can adequately classify
GO pairs containing terms with more neighbors. BERTas, BERT12, and BERT11+12 are
best; these methods have their IQRs first intersect at max(degA,degB) ≥ 22.5.

In Figure 2, the performances of all the metrics are positively associated to the IC
values of GO terms. As the min(ICA, ICB) increases, that is when the GO terms annotate
very few proteins, then the IQRs of scores for child-parent and unrelated pairs do not
intersect, so that the methods can better identify the two labels. BERTname and Onto2vec
underperform; despite their two trend lines diverging as IC increases, the two IQRs
overlap even for large IC values. For GCN, BiLSTM, ELMo, BERTas, BERT12, BERT11+12
and BERTCLS, the two IQRs are entirely separatedwhenmin(ICA, ICB) is strictly over 6.25,
4.25, 7.25, 4.75, 4.25, 4.25, and 5.75, respectively. Here, BiLSTM, BERT12 and BERT11+12
are the bestmetrics because they can adequately classifyGOpairs containingmore generic
terms which are annotating more proteins.

Figure 2 indicates four points. First, encoding a GO term via its definition appears
to be better than encoding a GO term based on its position on the GO tree. Second, we
observe that ELMo does not outperform the single layer BiLSTM.Works in other research
areas have showed that adding more LSTM layer does not guarantee better result [6, 23]
(cite more). Third, within the BERT architecture, BERTas, BERT12, and BERT11+12 are
better than BERTCLS and BERTname. Compared to BERTas and BERTname, BERT12,
BERT11+12 and BERTCLS have scores ranging from −1 to 1, most likely because we
explicitly train the GO vectors using the cosine distance loss. Fourth, neural network
encoders would perform well only for specialized GO terms with low degrees and/or
high ICs. To achieve the best result for all GOs, we must integrate the newer methods

11

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 8, 2019. ; https://doi.org/10.1101/765644doi: bioRxiv preprint

https://doi.org/10.1101/765644
http://creativecommons.org/licenses/by-nc/4.0/

with IC based models as noted in earlier works [8, 32].

3.2 Set comparison task
Because genes and proteins are annotated by GO terms, good GO metrics should well
differentiate similar genes andproteins fromunrelated ones. To compare theGOencoders,
we conduct two experiments (1) classifying orthologs in Human, Mouse, and Fly and (2)
classifying true protein-protein interactions in Human and Yeast.

3.2.1 Orthologs

Wedownload the orthologsdatasets andGOannotations in [8]. This data retains orthologs
annotated by at least one GO term in each GO category and removed GOs with tag IEA,
NAS, NA, and NR [16]. We test the following species: Human-Mouse (HM), Human-Fly
(HF), and Mouse-Fly (MF). For each dataset, the positive set contains orthologs from the
two species; whereas, the negative set contains randomly-matched genes. We set the sizes
of the positive set and negative set to be equal. The HM, HF, and MF data has 10235,
4880, and 5091 pairs for each set, respectively. Here, comparing two genes is equivalent
to comparing their two sets of GO annotations [16]. We use the best max average distance
for the GOs in the two annotation sets [8, 16]. For this experiment, we use the entire GO
annotations and compare terms across different ontology as in [8, 24].

Table 1 shows the summary statistics for the annotation in each ortholog dataset. Table
2 shows the Area Under the Curve (AUC) for each method. When compared to Resnik
andAIC, performances of all the encoders drop for orthologs data having less informative
GO terms. The AUCs for every GO position encoders decrease the most as compared to
GO definition encoders. Within the definition encoders, ELMo’s AUCs decrease the most.
This outcome agrees with Fig. 2, where the position encoders and ELMo do not perform
well for GO terms with low ICs and/or high degrees. Here, encoding GO definitions
often yields better accuracy than encoding GO positions on the GO tree. For the three
datasets, BERTas ranks first twice among the definition encoders; whereas BERT12 ranks
first once. For the position encoders, there is not one method that is consistently better
than the others.

3.2.2 Protein interaction network

Following [8], we download the Human data in [13] and Yeast data in [15]. These data
have 6031 and 3938 positive Human and Yeast protein-protein interactions, respectively.
For the negative set, we follow the same sampling procedure in [13]. We randomly assign
edges between proteins that do not interact in the real PPI network. The real and random
PPI network have the same proteins; we only require that they have different interacting
partners. Table 2 shows the AUC for each method. Here, the AUC is computed using
the exact process in section 3.2.1. For this experiment, we also include SimDef which
uses Term Frequency – Inverse Document Frequency to compare the GO definitions [15].
Among the definition encoders, BERTas and BERT12 rank best for Yeast and Human data,
respectively. For position encoders, GCN is the best method for the two datasets.

12

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 8, 2019. ; https://doi.org/10.1101/765644doi: bioRxiv preprint

https://doi.org/10.1101/765644
http://creativecommons.org/licenses/by-nc/4.0/

Table 1: GO annotation summary statistics in each ortholog dataset. GO frequency
counts the number of times the GO terms appear (including duplication); for example,
if GOA andB both annotate proteinC andD, then the total GO frequency is 4. Median
degree (Deg) and Information Content (IC) for GO terms (including duplication) are
proxies for how well annotated the datasets are.

Negative set Positive set

GO freq. Deg IC GO freq. Deg IC

Dataset 1
Human 123400 8 6.063 128666 8 6.142
Mouse 102775 8 5.907 147012 7 6.314

Dataset 2
Human 57678 8 6.221 61708 8 6.158
Fly 28169 10 5.437 41481 8 6.290

Dataset 3
Mouse 48520 9 6.012 67449 8 6.366
Fly 29026 10 5.404 39558 8 6.248

Table 2: AUC for classifying true ortholog pairs in Human, Mouse and Fly, and
interacting proteins in Human and Yeast.

Orthologs data PPI data

Human-Mouse Human-Fly Mouse-Fly Human Yeast

Info Content
Resnik 95.27700 94.19600 89.74800 86.97300 90.67000
AIC 95.79100 93.90600 89.84100 87.88900 87.77500

TF-IDF
SimDef NA NA NA 87.03400 88.22300

GO definition
BiLSTM 95.19232 91.49026 80.28224 86.60700 88.23649
ELMo 92.99974 85.28422 76.84590 86.58324 81.42202
BERTas 96.72200 92.94441 79.61700 88.15400 88.99700
BERT12 95.94186 92.49684 81.64635 88.33334 89.95763
BERT11+12 95.51213 91.53214 80.85883 87.17318 88.44685
BERTCLS 96.05200 90.80000 78.99000 86.94500 89.26698

GO position
BERTname 96.27481 85.39845 70.48564 83.92643 82.66531
GCN 94.98700 85.53500 72.99300 85.45300 86.74929
Onto2vec 91.79953 82.83256 74.41180 79.71700 83.98171

3.3 Annotation task
3.3.1 DeepGO

For this task, we do not aim to design a completely new model that is better than existing
baselines for prediction GO annotations. Rather, our purpose is to determine how much
can the GO vectors affect the prediction results. For this purpose, we use the data and
existing framework of DeepGO [11]. DeepGO data consists of 3 sets BP, MF, and CC. BP,

13

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 8, 2019. ; https://doi.org/10.1101/765644doi: bioRxiv preprint

https://doi.org/10.1101/765644
http://creativecommons.org/licenses/by-nc/4.0/

MFandCC terms in this data (combining train, development, and test set) annotate at least
250, 50, 50 proteins. For this data, the parents of all the GOs annotating one protein are
also added into the label set predicted. In total, the number of GO terms and proteins for
each BP, MF and CC training dataset are 932|36375, 589|25199, and 436|35546. During
training and testing, we use the whole label set size 932, 589 and 436.

Next, we briefly describe the neural network in DeepGO. Given an amino acid se-
quence, for example p = MARS · · · , DeepGO converts p into a list of 3-mer as MAR ARS
· · · . Each 3-mer is assigned a vector of dimension 128, so that if p has length 1002 amino
acids, then the matrix representing p is Ep ∈ R128×1000. A 1D-convolution layer and 1D-
maxpooling are then applied to Ep. Flatten layer is applied to get a vector vp representing
p; loosely speaking, we have vp = flatten(maxpool (conv1d(Ep)). DeepGO includes infor-
mation from a protein-protein interaction network by concatenating cp = [np vp], where
np is a vector for protein p in the interaction network produced in [1] . To predict if GOi

is assigned to p, DeepGO fits a logistic regression layer sigmoid(Bᵀ
i cp + bi), where Bi and

bi are parameter specific to GOi. The loss function is binary cross entropy. DeepGO can
be applied with only the protein sequences and without the additional protein network
in [1]; in Table 3, we use the name DeepGOSeq to refer to this simple implementation, and
Baseline1 as the version of DeepGO having the protein network data.

To add GO encoders into DeepGO, we make one minor change to avoid signifi-
cantly altering the original DeepGO model. Let gi be the vector of GOi, for example
gi = BERTCLS(definition of GOi). We concatenate ĉpi = [cp gi], and apply one linear
transformation c̃pi = relu Wĉpi. c̃pi captures the interaction of the protein and GO vec-
tors. To predict if GOi is assigned to p, we fit sigmoid(Bᵀ

i [c̃pi cp] + bi) where [c̃pi cp] is
the concatenation of the two vectors. For this experiment, we freeze the GO vectors and
train only the DeepGO parameters. In this paper, our intention is to determine which GO
encoders can work best out-of-the-box for predicting functions of unknown sequences.
In future research, we will consider jointly training both GO-to-GO and GO-to-protein
relationships.

The transformation c̃pi = reluW [cp gi] may capture only interactions of values from
the protein vector; in other words, the values of W corresponding to any values in gi can
be all zeros. Thus, we create one more baseline (Baseline2) for this experiment where we
remove gi and let c̃pi = relu Wcp. The rest of the layers follows exactly as in the previous
paragraph. In Baseline2, c̃pi represents the interaction of the protein vector from [1] and
the encoded amino sequence vp without any GO vectors.

We compute threemetrics Fmax score, macro andmicro-AUCwhich do not require the
prediction probabilities to be rounded at a specific threshold. Fmax and micro-AUC put
more weights on frequently occurring GO terms, so that mislabeling infrequent GO terms
do not greatly affect the outcome; whereas macro-AUC treats all the GO labels equally so
that mislabeling infrequent GO terms can significantly affect the outcome [3, 28].

Table 3 shows that our interaction layer relu Wcp alone (Baseline2) improves upon
original model (Baseline1) in [11] for all metrics in the three ontology. This suggests that
there is much more information from the sequences alone which can further be extracted
with a more complex neural network encoder for protein sequences. We reserve this topic
for further research work.

All the GO encoders increase the evaluation metrics with respect to Baseline2 in all

14

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 8, 2019. ; https://doi.org/10.1101/765644doi: bioRxiv preprint

https://doi.org/10.1101/765644
http://creativecommons.org/licenses/by-nc/4.0/

three ontology. Because the frequencies of GO terms in training data affect their predic-
tion accuracy [11, 33], we partition the GO terms based on their frequencies to further
understand how each GO encoder performs. The 25%, 50%, and 75% quantile frequency
for GO terms in the BP, MF, and CC training dataset are 233|365|860, 49|88|227, and
59|111|293 respectively. The number of GO terms in the <25% and >75% quantile groups
are 232|232, 143|147, and 110|110 for BP, MF and CC respectively. We compute recall-
at-k (R@k) and precision-at-k (P@k) for each group (Figure 3). For discovering unknown
functions of protein sequences, having high recall rate is important so that we do not miss
any annotations. However, by also observing precision rate, we can determine which GO
encoders are the most well-balanced.

In Figure 3,weuseBaseline2 because it is themost competitive against theGOencoders.
When evaluating theGO labels altogether, Figure 3 shows that having theGO label vectors
as extra features increases the recall for BP, MF, and CC ontology, and the precision for
only BP and MF (for CC, our precision is at least the same as Baseline2). We next discuss
the GO termswith lower occurrence frequencies. Loosely speaking, these terms are closer
to the true protein functions; for example, the label GO:0005618 perforation plate is more
precise to a protein’s location than its parent term GO:0110165 cellular anatomical entity or
its ancestor GO:0005575 cellular component. We first focus on recall, because it is important
to not miss true protein function labels. Having GO label vectors from any encoder
increases the recall for rare MF and CC terms. Surprisingly, only GO vectors from BERTas
and BERT12 fail to obtain better recall for rare BP terms. Figure 3 shows that we have not
sacrifice precision to attain higher recall on rare labels. For rare BP, MF, and CC terms,
the precisions of GO encoders remain at least the same as Baseline2 (and in fact they are
better than Baseline2 for MF).

When we evaluate more frequently occurring GO labels, having GO vectors as extra
features does not guarantee better recall and precision; for example, these two metrics on
very common CC terms are about the same as Baseline2. This finding agrees with the
general concept in machine learning, that is, by having more observations with certain
labels, we will often attain good prediction outcome for these labels.

Themagnitude of performance differences among the GO encoders are oftenminimal.
For example, the Fmax of all BERT encoders are similar (Table 3), although BERTname
cannot well separate child-parent GOs from unrelated pairs (Figure 2) and is worst than
the other BERT encoders at validating protein-protein interactions (Table 2). We suspect
that the other parameters in the prediction model can be well trained to compensate for
the imperfect GO vectors as the input.

15

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 8, 2019. ; https://doi.org/10.1101/765644doi: bioRxiv preprint

https://doi.org/10.1101/765644
http://creativecommons.org/licenses/by-nc/4.0/

Table 3: Evaluating how much can GO vectors boost DeepGO result. DeepGOSeq
uses only protein sequences to predict GO annotation. Baseline1 adds protein network
data from [1] into DeepGOSeq. Baseline2 improves Baseline1 by adding one linear
layer to convolve vector from protein network and the representation of the amino acid
sequence without any GO vectors.

BP MF CC

AUC AUC AUC

Method Fmax Macro Micro Fmax Macro Micro Fmax Macro Micro

Baseline
DeepGOSeq 34.05 62.67 81.89 38.63 72.42 86.73 57.20 67.01 92.39
+Baseline1 41.80 81.87 89.70 46.77 83.73 90.60 62.70 87.80 96.47
+Baseline2 42.51 82.97 90.27 48.62 87.25 93.14 63.77 89.79 97.10

GO definition
BiLSTM 43.48 83.49 90.73 50.20 88.02 93.84 65.47 90.48 97.25
ELMo 43.94 83.47 90.52 50.23 87.41 93.27 66.45 90.78 97.29
BERTas 43.45 83.11 90.55 49.24 87.43 93.52 65.39 90.27 97.27
BERT12 43.92 83.49 90.77 50.30 87.68 93.66 65.83 90.51 97.30
BERT11+12 43.76 82.84 90.28 50.67 88.05 93.94 65.68 90.62 97.29
BERTCLS 43.15 83.41 90.59 49.93 87.29 93.39 65.24 90.57 97.26

GO entity
BERTname 43.35 83.35 90.26 49.13 87.97 93.07 65.66 90.27 97.24
GCN 43.65 83.46 90.63 49.74 87.78 93.50 65.20 90.39 97.20
Onto2vec 42.91 83.48 90.57 49.35 87.92 93.83 64.82 90.50 97.21

3.3.2 Expand DeepGO dataset

We repeat the experiment above, but extend the number of GO terms to be predicted to
have more rare terms. Using the same annotation file in [11], we expand the GO sets
in their original data; we include BP, MF, and CC terms that have at least 50, 10, and 10
annotations (5× less than the original criteria). We ensure that all the GO terms in the
original dataset are included into this larger dataset; hence, most of these original terms
will have a much larger occurrence frequencies. The BP training dataset now has 2980
terms; the 25%, 50% and 75% quantile occurrence frequency are 62|113|276. Here, our
new BP dataset is harder to predict, because 75% of the GO terms occur less than 276
times (these GO terms barely pass the original cutoff criteria at 250); whereas, the original
data has about 75% of terms occurring more than 276 times.

For MF and CC, the new number of GO terms to be predicted are 1677 and 979. The
25%, 50% and 75% quantile frequency are 13|22|66 and 15|34|117.5 respectively. Here,
the new MF and CC data contain about 75% and 50% of the terms that would barely
make the frequency cutoff at 50 in DeepGO original data [11]. CC data becomes harder
to predict but not as much as BP and MF data. The number of GO terms in the <25% and
>75% quantile groups are 736|742, 417|417, and 232|245 for BP, MF and CC respectively.

16

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 8, 2019. ; https://doi.org/10.1101/765644doi: bioRxiv preprint

https://doi.org/10.1101/765644
http://creativecommons.org/licenses/by-nc/4.0/

Table 4 and Figure 4 show the prediction outcome. Here, we compare the best BERT
architectures in section 3.3.1, BERT12 and BERT11+12, against BiLSTM, ELMo, and GCN
which have showed success in other datasets with many rare labels [21, 31]. In Table 4,
the encoders increase the Fmax but not always macro and micro AUC. As in the previous
section, regardless of the encoders, havingGOvectors as extra features raises the recall and
precision for rare labels (count frequency below 25% quantile) (Figure 4). We discuss three
key observations. First, except for rare CC terms (25% of the training labels), recall and
precision of GCN are worst than Baseline2; hence, when considering every training label,
these two metrics are below Baseline2. Our finding agrees with other works which have
indicated that GCN might increase the accuracy of only rare labels [21]. Second, when
evaluating the CC ontology, BERT12 although better than Baseline2 for rare labels, fails
to increase recall and precision for labels with medium counts, and is about equivalent to
Baseline2 for more common labels. Third, ELMo and BERT11+12 are consistently better
than Baseline2 and the other encoders.

Table 4: Evaluating how much can GO vectors improve Baseline2 for the expanded
DeegGO dataset, where we lower the inclusion criteria to have GO terms with occur-
rence frequency from 250, 50 and 50 to 50, 10, and 10 for BP MF and CC.

BP MF CC

AUC AUC AUC

Method Fmax Macro Micro Fmax Macro Micro Fmax Macro Micro

Baseline2 40.03 86.06 93.94 46.19 87.01 95.01 63.87 90.52 98.02
BiLSTM 40.58 85.68 93.85 47.46 85.68 95.01 64.17 90.99 98.12
ELMo 41.67 85.98 93.99 48.87 86.91 95.50 65.10 90.35 98.12
BERT12 40.34 86.08 93.90 48.17 88.09 95.50 64.02 90.20 98.05
BERT11+12 41.62 85.70 93.75 48.78 86.40 95.17 65.35 90.39 98.14
GCN 41.10 86.07 93.86 48.02 86.49 95.31 64.64 90.24 97.99

17

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 8, 2019. ; https://doi.org/10.1101/765644doi: bioRxiv preprint

https://doi.org/10.1101/765644
http://creativecommons.org/licenses/by-nc/4.0/

Child−Parent Random

●

●

●●

●●

●
●●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●
●
●
●
●

●

●

●●

●

●

●

●

●

●
●
●

●

●●
●●

●●●

●
●
●
●

●

●●●
●

●

●

●

●

●●
●●
●●

●

●●●
●

●●

●

●

●●

●
●
●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●●

●

●
●
●

●

●

●

●●

●

●●

●
●●

●

●

●

●

●

●
●

●

●
●●●

●
●

●

●

●

●

●

●●

● ●●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

● ●
●

●

●

●

0.00

0.25

0.50

0.75

1.00

[−2.5,2.5]
(2.5,7.5]

(7.5,12.5]

(12.5,17.5]

(17.5,22.5]

(22.5,27.5]

(27.5,32.5]

(32.5,37.5]

(37.5,42.5]

(42.5,47.5]

(47.5,52.5]

(52.5,57.5]

(57.5,62.5]

(62.5,67.5]

(67.5,72.5]

(72.5,77.5]

(77.5,82.5]

(82.5,87.5]

(87.5,92.5]

(92.5,97.5]

Range of max degree of GO pair

sc
or

e
AIC

●
●
●

●

●

●

●●

●

●

●

●●●
●

●●
●

●

●

●●

●
●

●

●●

●

●

●

●
●

●

●
●

●●●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●●

●
●
●
●

●

●

●

●

●

●
●

●

●

●

●
●●●

●

●

●

●

●
●●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●
● ●

●

●

●
●

●

●

●

●

●

●
●●

● ● ●

●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

[−2.5,2.5]
(2.5,7.5]

(7.5,12.5]

(12.5,17.5]

(17.5,22.5]

(22.5,27.5]

(27.5,32.5]

(32.5,37.5]

(37.5,42.5]

(42.5,47.5]

(47.5,52.5]

(52.5,57.5]

(57.5,62.5]

(62.5,67.5]

(67.5,72.5]

(72.5,77.5]

(77.5,82.5]

(82.5,87.5]

(87.5,92.5]

(92.5,97.5]

Range of max degree of GO pair

sc
or

e

BiLSTM

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●
●
●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●●
●

●

●
●
●●

●

●
●

●

●

●
●

●
●

●
●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●●
● ●

●

●●
●

●●
●

●●●

●

●

●
●

●
●

●

●

●

●●

●

−1.0

−0.5

0.0

0.5

1.0

[−2.5,2.5]
(2.5,7.5]

(7.5,12.5]

(12.5,17.5]

(17.5,22.5]

(22.5,27.5]

(27.5,32.5]

(32.5,37.5]

(37.5,42.5]

(42.5,47.5]

(47.5,52.5]

(52.5,57.5]

(57.5,62.5]

(62.5,67.5]

(67.5,72.5]

(72.5,77.5]

(77.5,82.5]

(82.5,87.5]

(87.5,92.5]

(92.5,97.5]

Range of max degree of GO pair

sc
or

e

ELMO

●

●●

●

●

●

●●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●
●●●

●

●

●
●
●

●●

●

●
●

●
●
●
●
●

●●

●●

●

●
●

●

●

●

●

●
● ●●

●
●

●

●
●

●

●

●

●

●

●
●●●●

●

●

●

0.85

0.90

0.95

1.00

[−2.5,2.5]
(2.5,7.5]

(7.5,12.5]

(12.5,17.5]

(17.5,22.5]

(22.5,27.5]

(27.5,32.5]

(32.5,37.5]

(37.5,42.5]

(42.5,47.5]

(47.5,52.5]

(52.5,57.5]

(57.5,62.5]

(62.5,67.5]

(67.5,72.5]

(72.5,77.5]

(77.5,82.5]

(82.5,87.5]

(87.5,92.5]

(92.5,97.5]

Range of max degree of GO pair

sc
or

e

BERTas

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●●

●

●●

●●

●

●

●
●

●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●
●

●

●

●

●●●●

●

●

●

●

●●

●
●●
●

● ●
●●●●

●

●●

●

●
●

●●

−1.0

−0.5

0.0

0.5

1.0

[−2.5,2.5]
(2.5,7.5]

(7.5,12.5]

(12.5,17.5]

(17.5,22.5]

(22.5,27.5]

(27.5,32.5]

(32.5,37.5]

(37.5,42.5]

(42.5,47.5]

(47.5,52.5]

(52.5,57.5]

(57.5,62.5]

(62.5,67.5]

(67.5,72.5]

(72.5,77.5]

(77.5,82.5]

(82.5,87.5]

(87.5,92.5]

(92.5,97.5]

Range of max degree of GO pair

sc
or

e

BERT12

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●
●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●●●

●

●

●

●

●●

●

●

●

●●●

●

●

●
●

●

●

●
●

●

●

●●

●●

●
●

●

●

●

●

●

●
●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●
●

●

●●

●

●

●
●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●
●
●
●

●

●●
●

●●●

●
●

●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

[−2.5,2.5]
(2.5,7.5]

(7.5,12.5]

(12.5,17.5]

(17.5,22.5]

(22.5,27.5]

(27.5,32.5]

(32.5,37.5]

(37.5,42.5]

(42.5,47.5]

(47.5,52.5]

(52.5,57.5]

(57.5,62.5]

(62.5,67.5]

(67.5,72.5]

(72.5,77.5]

(77.5,82.5]

(82.5,87.5]

(87.5,92.5]

(92.5,97.5]

Range of max degree of GO pair

sc
or

e

BERT11+12

●

●

●

●

●●
●

●
●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●●
●

●

●
●
●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●
●

●

●●

●
●

●

●

●

●

●

●
●
●

●

●

●
●●

●

●
●

●
●●
●●●
●●

●

●

●

●
●
●

●
●
●

●

●

●
●

●

●●

●
●

●
●● ●

●

● ●

●●
●

●

●

●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

[−2.5,2.5]
(2.5,7.5]

(7.5,12.5]

(12.5,17.5]

(17.5,22.5]

(22.5,27.5]

(27.5,32.5]

(32.5,37.5]

(37.5,42.5]

(42.5,47.5]

(47.5,52.5]

(52.5,57.5]

(57.5,62.5]

(62.5,67.5]

(67.5,72.5]

(72.5,77.5]

(77.5,82.5]

(82.5,87.5]

(87.5,92.5]

(92.5,97.5]

Range of max degree of GO pair

sc
or

e

BERTCLS

●

●

●

●

●

●●

●●

●

●

●

●●

●●●

●

●
●

●

●

●

●

●●

●

●●
●

●
●

●
● ●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

−0.1

0.0

0.1

0.2

0.3

[−2.5,2.5]
(2.5,7.5]

(7.5,12.5]

(12.5,17.5]

(17.5,22.5]

(22.5,27.5]

(27.5,32.5]

(32.5,37.5]

(37.5,42.5]

(42.5,47.5]

(47.5,52.5]

(52.5,57.5]

(57.5,62.5]

(62.5,67.5]

(67.5,72.5]

(72.5,77.5]

(77.5,82.5]

(82.5,87.5]

(87.5,92.5]

(92.5,97.5]

Range of max degree of GO pair

sc
or

e

BERTname

●

●●●●

●●

●
●

●

●

●
●
●

●

●

●
●
●

●●

●

●
●

●
●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●
●
●

●

●
●●●

●

●

●

●
●
●

●
●

●
●

●

●

●
●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

[−2.5,2.5]
(2.5,7.5]

(7.5,12.5]

(12.5,17.5]

(17.5,22.5]

(22.5,27.5]

(27.5,32.5]

(32.5,37.5]

(37.5,42.5]

(42.5,47.5]

(47.5,52.5]

(52.5,57.5]

(57.5,62.5]

(62.5,67.5]

(67.5,72.5]

(72.5,77.5]

(77.5,82.5]

(82.5,87.5]

(87.5,92.5]

(92.5,97.5]

Range of max degree of GO pair

sc
or

e

GCN

●

●

●

●

●
●

●
●

●
●
●

●

●

●●

●
●
●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●●
●

●

●
●
●

●
●●

●
●
●

●●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●●●●

●

●

●

●●
●

●

●

●

●

●●
●

●

●

●

●

●●
●
●

●●

●

●
●

●

●

●●●●●

●

●●
●
●●
●●
●

●

●●●●

●

●

●

●

●
●

●●
●●

●

●
●

●

●
●●●●
●

●
●
●●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

0.25

0.50

0.75

1.00

[−2.5,2.5]
(2.5,7.5]

(7.5,12.5]

(12.5,17.5]

(17.5,22.5]

(22.5,27.5]

(27.5,32.5]

(32.5,37.5]

(37.5,42.5]

(42.5,47.5]

(47.5,52.5]

(52.5,57.5]

(57.5,62.5]

(62.5,67.5]

(67.5,72.5]

(72.5,77.5]

(77.5,82.5]

(82.5,87.5]

(87.5,92.5]

(92.5,97.5]

Range of max degree of GO pair

sc
or

e

Onto2vec

Child−Parent Random

●●

● ●

●●

●

●

●

●●●●

●

●●
●
●

●●

●●

●
●

●
●

●
●

●

● ●

●

●●

●
●
●

●
●●●
●●

●

●

●

●

●
●

●

●

●
●
●

●

●
●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●
●

●

●●●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●
●

●●
●

●

●
●●

●

●●
●
●

●●

●

●

●

●

●

●●
●

●

●●
●●
●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

0.00

0.25

0.50

0.75

1.00

[0.75,1.25]

(1.25,1.75]

(1.75,2.25]

(2.25,2.75]

(2.75,3.25]

(3.25,3.75]

(3.75,4.25]

(4.25,4.75]

(4.75,5.25]

(5.25,5.75]

(5.75,6.25]

(6.25,6.75]

(6.75,7.25]

(7.25,7.75]

(7.75,8.25]

(8.25,8.75]

(8.75,9.25]

(9.25,9.75]

(9.75,10.2]

(10.2,10.8]

(10.8,11.2]

(11.2,11.8]

Range of min IC of GO pair

sc
or

e

AIC

●
●

●

●

●●

●●
●
●●
●

●
●

● ●

●
●

●

●

●

●●

●

●

●
●●

●
●
●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●
●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●
●

●
●●

●
●
● ●

●
●

●
●

●
●
●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●
●
●

●

●

●

●
●
●

●
●
●

−1.0

−0.5

0.0

0.5

1.0

[0.75,1.25]

(1.25,1.75]

(1.75,2.25]

(2.25,2.75]

(2.75,3.25]

(3.25,3.75]

(3.75,4.25]

(4.25,4.75]

(4.75,5.25]

(5.25,5.75]

(5.75,6.25]

(6.25,6.75]

(6.75,7.25]

(7.25,7.75]

(7.75,8.25]

(8.25,8.75]

(8.75,9.25]

(9.25,9.75]

(9.75,10.2]

(10.2,10.8]

(10.8,11.2]

(11.2,11.8]

Range of min IC of GO pair

sc
or

e

BiLSTM

●

●

●

●●

●●

● ●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●
● ●

●
●

●

●
●●

●
●●
●

●

●

●

●

●

●

●

●●

●●●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●●

●

●
●●●●●

●

●●

●●

−1.0

−0.5

0.0

0.5

1.0

[0.75,1.25]

(1.25,1.75]

(1.75,2.25]

(2.25,2.75]

(2.75,3.25]

(3.25,3.75]

(3.75,4.25]

(4.25,4.75]

(4.75,5.25]

(5.25,5.75]

(5.75,6.25]

(6.25,6.75]

(6.75,7.25]

(7.25,7.75]

(7.75,8.25]

(8.25,8.75]

(8.75,9.25]

(9.25,9.75]

(9.75,10.2]

(10.2,10.8]

(10.8,11.2]

(11.2,11.8]

Range of min IC of GO pair

sc
or

e

ELMO

●

●

●●

● ●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●●

●
●

●
●
● ●●

●

●

●

●
●●●

●

●●

●● ●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

0.85

0.90

0.95

1.00

[0.75,1.25]

(1.25,1.75]

(1.75,2.25]

(2.25,2.75]

(2.75,3.25]

(3.25,3.75]

(3.75,4.25]

(4.25,4.75]

(4.75,5.25]

(5.25,5.75]

(5.75,6.25]

(6.25,6.75]

(6.75,7.25]

(7.25,7.75]

(7.75,8.25]

(8.25,8.75]

(8.75,9.25]

(9.25,9.75]

(9.75,10.2]

(10.2,10.8]

(10.8,11.2]

(11.2,11.8]

Range of min IC of GO pair

sc
or

e

BERTas

●

●●

●
●
●

●

●

●●

●

●

●●

●

●●

●
●

●

●

●●

●

●●
●
●

●

●
●

●

●●●●

●

●
●●

●

●
●
●
●

●
●

●

●

●

●

●

●●

●
●
●
●

●

●

●

●

●

●
● ●

●

●

●

●

●
●
●

●
●

●
●●

●
●

●

●

●

●

●●
●

●●

●
●

●
●
●

●

●

●
●
●

●●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●
●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●●

●

●
●

●●●

●

●

●

●

●●

●

●
●

●●

●

●

●●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

[0.75,1.25]

(1.25,1.75]

(1.75,2.25]

(2.25,2.75]

(2.75,3.25]

(3.25,3.75]

(3.75,4.25]

(4.25,4.75]

(4.75,5.25]

(5.25,5.75]

(5.75,6.25]

(6.25,6.75]

(6.75,7.25]

(7.25,7.75]

(7.75,8.25]

(8.25,8.75]

(8.75,9.25]

(9.25,9.75]

(9.75,10.2]

(10.2,10.8]

(10.8,11.2]

(11.2,11.8]

Range of min IC of GO pair

sc
or

e

BERT12
●

●

●
●
●

●

●●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●
●

●
●

●
●●

●
●
●
●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●●

●

●

●
●
●

●

●●●

●
●
●
●
●●

●

●●●

●

●●
●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●
●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●
●

●

●

●

●

●

●●

−1.0

−0.5

0.0

0.5

1.0

[0.75,1.25]

(1.25,1.75]

(1.75,2.25]

(2.25,2.75]

(2.75,3.25]

(3.25,3.75]

(3.75,4.25]

(4.25,4.75]

(4.75,5.25]

(5.25,5.75]

(5.75,6.25]

(6.25,6.75]

(6.75,7.25]

(7.25,7.75]

(7.75,8.25]

(8.25,8.75]

(8.75,9.25]

(9.25,9.75]

(9.75,10.2]

(10.2,10.8]

(10.8,11.2]

(11.2,11.8]

Range of min IC of GO pair

sc
or

e

BERT11+12

●

●

● ●

●
●

●

●
●

●
●
●

●

●

●

●

●

●●

●

●
●

●● ●●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●●
●

●●

●

●

●
●●●

●

●

●

● ●

●

●

●

●

●●

●

●●

●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

[0.75,1.25]

(1.25,1.75]

(1.75,2.25]

(2.25,2.75]

(2.75,3.25]

(3.25,3.75]

(3.75,4.25]

(4.25,4.75]

(4.75,5.25]

(5.25,5.75]

(5.75,6.25]

(6.25,6.75]

(6.75,7.25]

(7.25,7.75]

(7.75,8.25]

(8.25,8.75]

(8.75,9.25]

(9.25,9.75]

(9.75,10.2]

(10.2,10.8]

(10.8,11.2]

(11.2,11.8]

Range of min IC of GO pair

sc
or

e

BERTCLS

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●●●
●

●●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●●

●
●●●

●●
●

●
●

●

●

●
●
●

●●●●

●

●

●
●

−0.1

0.0

0.1

0.2

0.3

[0.75,1.25]

(1.25,1.75]

(1.75,2.25]

(2.25,2.75]

(2.75,3.25]

(3.25,3.75]

(3.75,4.25]

(4.25,4.75]

(4.75,5.25]

(5.25,5.75]

(5.75,6.25]

(6.25,6.75]

(6.75,7.25]

(7.25,7.75]

(7.75,8.25]

(8.25,8.75]

(8.75,9.25]

(9.25,9.75]

(9.75,10.2]

(10.2,10.8]

(10.8,11.2]

(11.2,11.8]

Range of min IC of GO pair

sc
or

e

BERTname

●
●
●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●●●

●

●

●
●●

●
●
●

●
●●●

●

●●

●

●

●

●●

●

●
●

●

●
●
●

●●
●

●

●

●

●

● ●●

●

●

●

●●

●

●

−1.0

−0.5

0.0

0.5

1.0

[0.75,1.25]

(1.25,1.75]

(1.75,2.25]

(2.25,2.75]

(2.75,3.25]

(3.25,3.75]

(3.75,4.25]

(4.25,4.75]

(4.75,5.25]

(5.25,5.75]

(5.75,6.25]

(6.25,6.75]

(6.75,7.25]

(7.25,7.75]

(7.75,8.25]

(8.25,8.75]

(8.75,9.25]

(9.25,9.75]

(9.75,10.2]

(10.2,10.8]

(10.8,11.2]

(11.2,11.8]

Range of min IC of GO pair

sc
or

e

GCN

● ●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●●

●

●

●

●
●● ●

●

●

●

●
●

●●

●

●

●

●●

●

●

●
●
●●

●●

●
●
●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●
●

●

●

●

●●

●
●
●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●●

●●

●●

●

●●
●

●

●

●

●●

●

●●
●●

●

●

●

●

●

●
●
●

●

●

●
●●
●

●

●

●●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

0.25

0.50

0.75

1.00

[0.75,1.25]

(1.25,1.75]

(1.75,2.25]

(2.25,2.75]

(2.75,3.25]

(3.25,3.75]

(3.75,4.25]

(4.25,4.75]

(4.75,5.25]

(5.25,5.75]

(5.75,6.25]

(6.25,6.75]

(6.75,7.25]

(7.25,7.75]

(7.75,8.25]

(8.25,8.75]

(8.75,9.25]

(9.25,9.75]

(9.75,10.2]

(10.2,10.8]

(10.8,11.2]

(11.2,11.8]

Range of min IC of GO pair

sc
or

e

Onto2vec

Figure 2: Encoder’s ability to classify GO pairs is inversely correlated to the degrees of
GO terms and is positively correlated to the ICs of GO terms.

18

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 8, 2019. ; https://doi.org/10.1101/765644doi: bioRxiv preprint

https://doi.org/10.1101/765644
http://creativecommons.org/licenses/by-nc/4.0/

B
as

el
in

e2
B

E
R

Ta
s

B
E

R
T

12
B

E
R

T
C

LS
B

E
R

T
na

m
e

B
E

R
T

11
+

12
B

iL
S

T
M

E
LM

O
G

C
N

O
nt

o2
ve

c

0.
25

0.
30

0.
35

0.
40

10
15

20
25

k

Recall@k

B
P

 C
om

pl
et

e
da

ta

0.
27

0.
30

0.
33

0.
36

10
15

20
25

k

Recall@k

B
P

 <
25

%
 q

ua
nt

ile

0.
30

0.
35

0.
40

10
15

20
25

k
Recall@k

B
P

 2
5−

75
%

 q
ua

nt
ile

0.
4

0.
5

10
15

20
25

k

Recall@k

B
P

 >
75

%
 q

ua
nt

ile

0.
55

0.
60

0.
65

0.
70

10
15

20
25

k

Recall@k

M
F

 C
om

pl
et

e
da

ta

0.
16

0.
18

0.
20

0.
22

10
15

20
25

k

Recall@k

M
F

 <
25

%
 q

ua
nt

ile

0.
30

0.
33

0.
36

0.
39

0.
42

10
15

20
25

k

Recall@k

M
F

 2
5−

75
%

 q
ua

nt
ile

0.
65

0.
70

0.
75

0.
80

10
15

20
25

k

Recall@k

M
F

 >
75

%
 q

ua
nt

ile

0.
65

0.
70

0.
75

0.
80

0.
85

10
15

20
25

k

Recall@k

C
C

 C
om

pl
et

e
da

ta

0.
08

0

0.
08

5

0.
09

0

0.
09

5

10
15

20
25

k

Recall@k

C
C

 <
25

%
 q

ua
nt

ile

0.
22

0.
24

0.
26

10
15

20
25

k

Recall@k

C
C

 2
5−

75
%

 q
ua

nt
ile

0.
70

0.
75

0.
80

0.
85

0.
90

10
15

20
25

k

Recall@k

C
C

 >
75

%
 q

ua
nt

ile

B
as

el
in

e2
B

E
R

Ta
s

B
E

R
T

12
B

E
R

T
C

LS
B

E
R

T
na

m
e

B
E

R
T

11
+

12
B

iL
S

T
M

E
LM

O
G

C
N

O
nt

o2
ve

c

0.
40

0.
45

0.
50

10
15

20
25

k

Precision@k

B
P

 C
om

pl
et

e
da

ta

0.
04

0.
05

0.
06

10
15

20
25

k

Precision@k

B
P

 <
25

%
 q

ua
nt

ile

0.
10

0.
12

0.
14

10
15

20
25

k

Precision@k

B
P

 2
5−

75
%

 q
ua

nt
ile

0.
40

0.
45

0.
50

10
15

20
25

k

Precision@k

B
P

 >
75

%
 q

ua
nt

ile

0.
20

0.
25

0.
30

0.
35

10
15

20
25

k

Precision@k

M
F

 C
om

pl
et

e
da

ta

0.
01

2

0.
01

6

0.
02

0

0.
02

4

10
15

20
25

k

Precision@k

M
F

 <
25

%
 q

ua
nt

ile

0.
03

5

0.
04

5

0.
05

5

0.
06

5

10
15

20
25

k

Precision@k

M
F

 2
5−

75
%

 q
ua

nt
ile

0.
20

0.
25

0.
30

0.
35

10
15

20
25

k

Precision@k

M
F

 >
75

%
 q

ua
nt

ile

0.
4

0.
5

10
15

20
25

k

Precision@k

C
C

 C
om

pl
et

e
da

ta

0.
00

6

0.
00

8

0.
01

0

10
15

20
25

k

Precision@k

C
C

 <
25

%
 q

ua
nt

ile

0.
02

5

0.
03

0

0.
03

5

0.
04

0

0.
04

5

0.
05

0

10
15

20
25

k

Precision@k

C
C

 2
5−

75
%

 q
ua

nt
ile

0.
3

0.
4

0.
5

10
15

20
25

k

Precision@k

C
C

 >
75

%
 q

ua
nt

ile

Fi
gu

re
3:

Re
ca
ll
an

d
pr
ec
is
io
n-
at
-k

fo
ra

nn
ot
at
io
ns

of
pr
ot
ei
n
se
qu

en
ce
s.

Fo
re

ac
h
on

to
lo
gy

,w
e
sp

lit
th
e
G
O

te
rm

si
nt
o
3
se
ts

ba
se
d
on

th
ei
rf
re
qu

en
ci
es

in
th
e
tr
ai
ni
ng

da
ta
.

19

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 8, 2019. ; https://doi.org/10.1101/765644doi: bioRxiv preprint

https://doi.org/10.1101/765644
http://creativecommons.org/licenses/by-nc/4.0/

B
as

el
in

e2
B

iL
S

T
M

E
LM

O
B

E
R

T
11

+
12

B
E

R
T

12
G

C
N

0.
25

0.
30

0.
35

10
15

20
25

k

Recall@k

B
P

 C
om

pl
et

e
da

ta

0.
17

5

0.
20

0

0.
22

5

10
15

20
25

k

Recall@k

B
P

 <
25

%
 q

ua
nt

ile

0.
20

0.
25

0.
30

10
15

20
25

k

Recall@k

B
P

 2
5−

75
%

 q
ua

nt
ile

0.
25

0.
30

0.
35

0.
40

0.
45

10
15

20
25

k

Recall@k

B
P

 >
75

%
 q

ua
nt

ile

0.
50

0.
55

0.
60

0.
65

10
15

20
25

k

Recall@k

M
F

 C
om

pl
et

e
da

ta

0.
06

0.
07

0.
08

0.
09

0.
10

10
15

20
25

k

Recall@k

M
F

 <
25

%
 q

ua
nt

ile

0.
20

0.
22

0.
24

0.
26

10
15

20
25

k

Recall@k
M

F
 2

5−
75

%
 q

ua
nt

ile

0.
55

0.
60

0.
65

0.
70

10
15

20
25

k

Recall@k

M
F

 >
75

%
 q

ua
nt

ile

0.
65

0.
70

0.
75

0.
80

0.
85

10
15

20
25

k

Recall@k

C
C

 C
om

pl
et

e
da

ta

0.
03

5

0.
04

0

0.
04

5

0.
05

0

10
15

20
25

k

Recall@k

C
C

 <
25

%
 q

ua
nt

ile

0.
13

0.
14

0.
15

0.
16

0.
17

10
15

20
25

k

Recall@k

C
C

 2
5−

75
%

 q
ua

nt
ile

0.
70

0.
75

0.
80

0.
85

10
15

20
25

k

Recall@k

C
C

 >
75

%
 q

ua
nt

ile

B
as

el
in

e2
B

iL
S

T
M

E
LM

O
B

E
R

T
11

+
12

B
E

R
T

12
G

C
N

0.
40

0.
45

0.
50

10
15

20
25

k

Precision@k

B
P

 C
om

pl
et

e
da

ta

0.
02

5

0.
03

0

0.
03

5

0.
04

0

10
15

20
25

k

Precision@k

B
P

 <
25

%
 q

ua
nt

ile

0.
07

0.
08

0.
09

0.
10

0.
11

10
15

20
25

k

Precision@k

B
P

 2
5−

75
%

 q
ua

nt
ile

0.
40

0.
45

0.
50

10
15

20
25

k

Precision@k

B
P

 >
75

%
 q

ua
nt

ile

0.
25

0.
30

0.
35

10
15

20
25

k

Precision@k

M
F

 C
om

pl
et

e
da

ta

0.
00

6

0.
00

8

0.
01

0

10
15

20
25

k

Precision@k

M
F

 <
25

%
 q

ua
nt

ile

0.
02

0

0.
02

5

0.
03

0

0.
03

5

0.
04

0

10
15

20
25

k

Precision@k

M
F

 2
5−

75
%

 q
ua

nt
ile

0.
20

0.
25

0.
30

0.
35

10
15

20
25

k

Precision@k

M
F

 >
75

%
 q

ua
nt

ile

0.
4

0.
5

10
15

20
25

k

Precision@k

C
C

 C
om

pl
et

e
da

ta

0.
00

3

0.
00

4

0.
00

5

10
15

20
25

k

Precision@k

C
C

 <
25

%
 q

ua
nt

ile

0.
01

6

0.
02

0

0.
02

4

0.
02

8

10
15

20
25

k

Precision@k

C
C

 2
5−

75
%

 q
ua

nt
ile

0.
4

0.
5

10
15

20
25

k

Precision@k

C
C

 >
75

%
 q

ua
nt

ile

Fi
gu

re
4:

M
et
ho

ds
ar
e
te
st
ed

on
th
e
ex
pa

nd
ed

D
ee
pG

O
da

ta
se
t,
w
he

re
w
e
lo
w
er

th
e
in
cl
us

io
n
cr
ite

ri
a
to

ha
ve

G
O
te
rm

sw
ith

oc
cu

rr
en

ce
fr
eq

ue
nc

y
ab

ov
e
50
,1
0,
an

d
10

fo
rB

P
M
F
an

d
C
C
.R

ec
al
la

nd
pr
ec
is
io
n-
at
-k

fo
ra

nn
ot
at
io
ns

of
pr
ot
ei
n
se
qu

en
ce
s.

Fo
re

ac
h
on

to
lo
gy

,w
e
sp

lit
th
e
G
O

te
rm

si
nt
o
3
se
ts
ba

se
d
on

th
ei
rf
re
qu

en
ci
es

in
th
e
tr
ai
ni
ng

da
ta
.

20

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 8, 2019. ; https://doi.org/10.1101/765644doi: bioRxiv preprint

https://doi.org/10.1101/765644
http://creativecommons.org/licenses/by-nc/4.0/

4 Conclusion
In this paper, we evaluate how well GO terms can be encoded by neural network models
developed from the architecture of Word2vec (e.g. Onto2vec), LSTM (e.g. BiLSTM and
ELMo), and Transformer (e.g. BERTas, BERT12, BERT11+12, BERTCLS, BERTname).

In task 1, we encode the GO terms into vectors and observe how the ICs and degrees
can affect their cosine distances. We focus on two key types of relation: child-parent
versus random. In principle, the scores of child-parent pairs must be higher than those
of unrelated ones regardless of the ICs and degrees of the terms found in the pairs. In
practice, the IC-based method AIC is least affected by ICs and degrees of the terms;
whereas, the GO encoders can well differentiate the two groups only if the terms in the
pairs have high ICs and/or low degrees. In task 2, when asserting relationship between
genes and/or proteins based on their annotations, the encoders outperform Resnik and
AIC for datasets annotatedwithmore specificGO terms (e.g. termswith lower degree and
higher ICs), but their accuracies drop compared to Resnik and AIC for less well annotated
datasets. In task 1 and 2, encoding the GO definition is often better than encoding GO
position in the ontology. Here, definition encoders based on BERT framework perform the
best. We emphasize that our BERT encoders are trained on data created from the ontology
tree; for example, we sample path from a leaf GO label to the root node, and train BERT
parameters to recognize that theseGOdefinitions are related. Loosely speaking, our BERT
encoders use both GO definitions and GO positions on the ontology. Lastly, results in task
1 and 2 indicate that, to attain the best performance, future research direction must focus
on integrating the ICs and degrees of GO terms as explicit features for the neural network
encoders.

In task 3, we edit the DeepGO architecture so that our new predictor takes as extra
features the GO vectors computed from the encoders. This new model is evaluated
on the original DeepGO dataset and our own expanded DeepGO dataset. This new
dataset is created by lowering the exclusion criteria where we only remove GO terms with
frequencies below 50, 10, and 10 (from the original criteria of 250, 50, and 50) for BP, MF,
and CC, respectively. On both datasets, we find that recall and precision of rare labels,
but not of common labels, benefit the most from having GO vectors as extra features.
Interestingly, we observe that parameters in the DeepGO architecture can be trained to
compensate for the imperfect GO vectors as the input, so that GO encoders not performing
well in task 1 and 2 can still produce high accuracy scores. This fact indicates that having
GO vectors as features definitely helps, but the choice of encoders does not greatly affect
the outcome.

We hope that our encoders for GO terms can provide the basis for more advanced
encoding techniques. In the future work, we will continue developing better encoders for
GO terms, and integrate them with other predictors besides DeepGO to better estimate
protein functions.

21

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 8, 2019. ; https://doi.org/10.1101/765644doi: bioRxiv preprint

https://doi.org/10.1101/765644
http://creativecommons.org/licenses/by-nc/4.0/

References
[1] Alshahrani, M., Khan, M.A., Maddouri, O., Kinjo, A.R., Queralt-Rosinach, N. and Hoehndorf, R. (2017).

Neuro-symbolic representation learning on biological knowledge graphs. Bioinformatics, 33(17), 2723–
2730.

[2] Belanger, D. and McCallum, A. (2016). Structured prediction energy networks. In International
Conference on Machine Learning, pages 983–992.

[3] Chase Lipton, Z., Elkan, C. and Narayanaswamy, B. (2014). Thresholding classifiers to maximize f1
score. arXiv preprint arXiv:1402.1892.

[4] Chen,M., Ju, C.J.T., Zhou, G., Chen, X., Zhang, T., Chang, K.W. et al (2019). Multifaceted protein–protein
interaction prediction based on siamese residual rcnn. Bioinformatics, 35(14), i305–i314.

[5] Conneau, A., Kiela, D., Schwenk, H., Barrault, L. and Bordes, A. (2017). Supervised learning of universal
sentence representations from natural language inference data. arXiv preprint arXiv:1705.02364.

[6] Cui, Z., Ke, R. andWang, Y. (2018). Deep bidirectional and unidirectional lstm recurrent neural network
for network-wide traffic speed prediction. arXiv preprint arXiv:1801.02143.

[7] Devlin, J., Chang, M.W., Lee, K. and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805.

[8] Duong, D., Ahmad, W.U., Eskin, E., Chang, K.W. and Li, J.J. (2018). Word and sentence embedding tools
to measure semantic similarity of gene ontology terms by their definitions. Journal of Computational
Biology, 26(1), 38–52.

[9] Gene Ontology Consortium (2017). Expansion of the gene ontology knowledgebase and resources.
Nucleic acids research, 45(D1), D331–D338.

[10] Kipf, T.N. and Welling, M. (2016). Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907.

[11] Kulmanov, M., Khan, M.A. and Hoehndorf, R. (2017). Deepgo: predicting protein functions from
sequence and interactions using a deep ontology-aware classifier. Bioinformatics, 34(4), 660–668.

[12] Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C.H. et al (2019). Biobert: pre-trained biomedical
language representation model for biomedical text mining. arXiv preprint arXiv:1901.08746.

[13] Mazandu, G.K. andMulder, N.J. (2014). Information content-based gene ontology functional similarity
measures: Which one to use for a given biological data type? PLoS ONE, 9(12), e113859.

[14] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S. and Dean, J. (2013). Distributed representations of
words and phrases and their compositionality. In Advances in neural information processing systems,
pages 3111–3119.

[15] Pesaranghader, A., Matwin, S., Sokolova, M. and Beiko, R.G. (2015). simdef: definition-based semantic
similarity measure of gene ontology terms for functional similarity analysis of genes. Bioinformatics,
32(9), 1380–1387.

[16] Pesquita, C., Faria, D., Bastos, H., Ferreira, A.E., Falcão, A.O. and Couto, F.M. (2008). Metrics for go
based protein semantic similarity: a systematic evaluation. BMC bioinformatics, 9(5), S4.

[17] Pesquita, C., Pessoa, D., Faria, D. and Couto, F. (2009). Cessm: Collaborative evaluation of semantic
similarity measures. JB2009: Challenges in Bioinformatics, 157, 190.

22

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 8, 2019. ; https://doi.org/10.1101/765644doi: bioRxiv preprint

https://doi.org/10.1101/765644
http://creativecommons.org/licenses/by-nc/4.0/

[18] Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K. et al (2018). Deep contextualized
word representations. In Proc. of NAACL.

[19] Profiti, G., Martelli, P.L. and Casadio, R. (2017). The bologna annotation resource (bar 3.0): improving
protein functional annotation. Nucleic acids research, 45(W1), W285–W290.

[20] Resnik, P. (1999). Semantic similarity in a taxonomy: An information-basedmeasure and its application
to problems of ambiguity in natural language. J. Artif. Intell. Res.(JAIR), 11, 95–130.

[21] Rios, A. and Kavuluru, R. (2018). Few-shot and zero-shot multi-label learning for structured la-
bel spaces. In Proceedings of the Conference on Empirical Methods in Natural Language Processing.
Conference on Empirical Methods in Natural Language Processing, volume 2018, page 3132. NIH Public
Access.

[22] Rong, X. (2014). word2vec parameter learning explained. arXiv preprint arXiv:1411.2738.

[23] Sak, H., Senior, A. and Beaufays, F. (2014). Long short-term memory recurrent neural network archi-
tectures for large scale acoustic modeling. In Fifteenth annual conference of the international speech
communication association.

[24] Smaili, F.Z., Gao, X. andHoehndorf, R. (2018). Onto2vec: joint vector-based representation of biological
entities and their ontology-based annotations. Bioinformatics, 34(13), i52–i60.

[25] Song, X., Li, L., Srimani, P.K., Yu, P.S. and Wang, J.Z. (2014). Measure the semantic similarity of GO
terms using aggregate information content. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 11(3), 468–476.

[26] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N. et al (2017). Attention is all
you need. In Advances in neural information processing systems, pages 5998–6008.

[27] Wang, S., Cho, H., Zhai, C., Berger, B. and Peng, J. (2015). Exploiting ontology graph for predicting
sparsely annotated gene function. Bioinformatics, 31(12), i357–i364.

[28] Wu, X.Z. and Zhou, Z.H. (2017). A unified view of multi-label performance measures. In Proceedings
of the 34th International Conference on Machine Learning-Volume 70, pages 3780–3788. JMLR. org.

[29] Xiao, H. (2018). bert-as-service. github.com/hanxiao/bert-as-service.

[30] Xiong, W., Yu, M., Chang, S., Guo, X. and Wang, W.Y. (2018a). One-shot relational learning for
knowledge graphs. CoRR, abs/1808.09040.

[31] Xiong, W., Yu, M., Chang, S., Guo, X. and Wang, W.Y. (2018b). One-shot relational learning for
knowledge graphs. arXiv preprint arXiv:1808.09040.

[32] Yang, H., Nepusz, T. and Paccanaro, A. (2012). Improving go semantic similaritymeasures by exploring
the ontology beneath the terms and modelling uncertainty. Bioinformatics, 28(10), 1383–1389.

[33] Zhang, C., Zheng, W., Freddolino, P.L. and Zhang, Y. (2018). Metago: Predicting gene ontology of non-
homologous proteins through low-resolution protein structure prediction and protein–protein network
mapping. Journal of molecular biology, 430(15), 2256–2265.

[34] Zhang, Z., Zhang, J., Fan, C., Tang, Y. andDeng, L. (2017). Katzlgo: large-scale prediction of lncrna func-
tions by using the katz measure based on multiple networks. IEEE/ACM transactions on computational
biology and bioinformatics, 16(2), 407–416.

23

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 8, 2019. ; https://doi.org/10.1101/765644doi: bioRxiv preprint

https://doi.org/10.1101/765644
http://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	result
	Sentence encoders
	BiLSTM
	ELMo
	BERT

	Entity encoders
	GCN
	Onto2vec
	BERT as entity encoder

	Training data

	Evaluation
	Semantic similarity task
	Set comparison task
	Orthologs
	Protein interaction network

	Annotation task
	DeepGO
	Expand DeepGO dataset

	Conclusion

