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Abstract 4 

This study aims to create a tumor heterogeneity-based model for predicting the best features of 5 

lung adenocarcinoma (LUAD) in multiple cancer subtypes using the Least Absolute Shrinking 6 

and Selection Operator (LASSO). The RNA-Seq raw count data of 533 LUAD samples and 59 7 

normal samples were downloaded from the TCGA data portal. Based on consensus clustering 8 

method samples was divided into two subtypes, and clusters were validated using silhouette 9 

width. Furthermore, we estimated subtypes for the abundance of immune and non-immune 10 

stromal cell populations which infiltrated cancer tissue. We established the LASSO model for 11 

predicting each subtype's best features. Enrichment pathway analysis was then carried out. 12 

Finally, the validity of the LASSO model for identifying features was established by the survival 13 

analysis. Our study suggests that the unsupervised clustering and Machine learning methods such 14 

as LASSO model-based feature selection can be effectively used to predict relevant genes which 15 

might play an essential role in cancer diagnosis. 16 
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 19 

1. Introduction 20 

Lung cancer is reported to be the most deadly cancer [1]. Its shows the worst survival rate when 21 

compared with colon, breast, and pancreatic cancers combined.  According to the American 22 

cancer society estimates both small cell and non-small cell lung cancer is the second most 23 

common cancer in both men and women. About 13% of all cancers are lung cancers. Lung 24 

Squamous cell carcinoma (LUSC) and Adenocarcinoma (LUAD) account for 15% and 85% of 25 
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all lung cancer, respectively [2]. Lung cancer is a highly heterogeneous disease, and the 26 

identification of cancer subtypes is decisive for clinicians. Genetic mutations, cancer 27 

microenvironment, immune, and therapeutic selection pressures all dynamically contribute to 28 

tumor heterogeneity. Heterogeneity may lead to cells with a differential molecular signature 29 

within single tumor tissue, and in some cases, it may contribute to therapy resistance [3]. 30 

Therefore, deciphering LUAD heterogeneity will have a significant impact in designing 31 

precision medicine strategy. Heterogeneous data suffers from a large number of covariates, and 32 

identification of variable selection is necessary to obtain more accurate predictions with a large 33 

number of covariates. 34 

Many computer-based diagnostic and predictive models have been used for predicting the risk of 35 

a variety of cancers, such as logistic regression, Cox proportional hazard model, artificial neural 36 

networks, decision trees and support vector machines. Previous studies indicate standard 37 

stepwise selection approaches which are not best for regression models with a vast number of 38 

covariates [4]. Alternatively, least absolute shrinkage and selection operator (LASSO), has 39 

received much attention for identification and selection of best variables. LASSO was introduced 40 

by Robert Tibshirani in 1996 [5]. Regularisation and feature selection are the two critical tasks 41 

LASSO performs.  LASSO estimates the regression coefficients by maximising the log-42 

likelihood function with the constraint that the sum of the absolute values of the regression 43 

coefficients, ∑j=1kβj, is less than or equal to a positive constant. 44 

In this study, we selected the best features using LASSO established model. We downloaded the 45 

RNASeq data for LUAD samples from The Cancer Genome Atlas (TCGA) database. We 46 

differentiated the samples based on clusters into two subtypes to study the tumor heterogeneity. 47 

Differentially expressed genes (DEGs) were identified between two subtypes and normal groups, 48 
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followed by predicting relevant variables that are associated with the response variable using the 49 

LASSO model and validating the variables using survival analysis. We also estimated the 50 

population abundance of tissue-infiltrating immune and stromal cell populations in each subtype 51 

to decipher the inflammatory, antigenic, and desmoplastic reactions occurring in cancer tissue. 52 

Our study provides new insight into tumor heterogeneity and its importance in sample 53 

classification for predicting biomarkers of LUAD. 54 

2. Materials and Methods 55 

2.1. Data source. 56 

The RNASeq data of LUAD, including 533 LUAD samples, and 59 normal samples were 57 

downloaded from the TCGA database (https://portal.gdc.cancer.gov/) in June 2019. All the raw, 58 

preprocessed data, images, supplemental tables and supporting files can be accessed at 59 

https://github.com/AteeqKhaliq/LUAD/. 60 

2.2. Data preprocessing and grouping. 61 

533 Primary solid Tumor samples and 59 Solid Tissue Normal samples were downloaded from 62 

the TCGA database. We calculated a variance stabilising transformation (VST) from the raw 63 

count data and transformed the counts yielding a matrix of values approximately homoskedastic. 64 

2.3. Molecular subtyping analysis. 65 

Feature dimension reduction was needed to remove irrelevant features and to reduce noises, and 66 

we used median absolute deviation (MAD) method and the features with MAD>0.5 were 67 

selected from set 2 groups. Consensus clustering (CC) [6] was used for the identification of 68 

subtypes on tumor samples. Silhouette width [7] was used to validate sample clustering.  69 
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2.4. Differential gene expression analysis.  70 

Differential gene expression (DGE) was assessed by using the DESeq2 package [8] (Version 71 

1.24.0, https://bioconductor.org/packages/release/bioc/html/DESeq2.html) on Subtype-1 and 72 

Subtype-2 samples when compared with normal samples. Log2 fold change </> +/- 2 and P-73 

value <0.05 were used as the cut-off values to identify the DEGs. 74 

2.5. Construction of the LASSO model. 75 

Glmnet Package [9](Version 2.0-18, https://cran.r-project.org/web/packages/glmnet/index.html) 76 

was used to fit a generalised linear model via penalised maximum likelihood, LASSO model was 77 

established (Least Absolute Shrinkage and Selection Operator) on the DEGs from individual 78 

Subtype-1 and Subtype-2 cancer samples. We built a single pass (single fold) lasso-penalised 79 

model and performed 10-fold cross-validation to identify the best predictor. 80 

2.6. Survival Analysis.  81 

To find clinically or biologically meaningful biomarkers Kaplan-Meier survival curves [10] were 82 

generated by selecting the best predictors from individual subtypes. Kaplan-Meier curves were 83 

generated using the TRGAted [11] (https://github.com/ncborcherding/TRGAted) package 84 

implemented in R. 85 

2.7. Quantification of the abundance of the immune and stromal cell population in Cancer 86 

Subtypes.  87 

We estimated the abundance of tissue-infiltrating immune and non-immune stromal cell 88 

populations in Subtype-1 and Subtype-2 samples. MCP-counter [12] 89 

(https://github.com/ebecht/MCPcounter) Package was used to estimate the Microenvironment 90 
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Cell Populations. VST normalised gene expression matrix was used for the estimation of an 91 

immune and stromal cell population in tumor samples. 92 

2.8. Gene classification and enrichment analyses.  93 

clusterProfiler [13](Version 3.12.0, 94 

http://bioconductor.org/packages/release/bioc/html/clusterProfiler.html) was used to annotate the 95 

DEGs from Subtype-1 and Subtype-2 groups to biological processes, molecular functions, and 96 

cellular components in a directed acyclic graph structure with a q-value cutoff of 0.2, Kyoto 97 

Encyclopedia of Genes and Genomes (KEGG) [14] was utilized to annotate genes to pathways, 98 

and Disease Ontologies. 99 

 100 

3. Results 101 

3.1. Cancer subtype identification in LUAD samples 102 

We used Consensus clustering (CC) method, an unsupervised clustering method for grouping 103 

subtypes in LUAD. CC method is the most widely used for subtype discovery in high 104 

dimensional datasets. We used settings of the agglomerative hierarchical clustering algorithm 105 

using Pearson correlation distance. Two distinct clusters were discovered in our datasets, 89 and 106 

444 samples were clustered in Subtype-1 and Subtype-2 respectively (Fig.1.A). We have 107 

validated consistency within clusters of data using Silhouette width (Fig.1.B). 108 

3.2. Identification of DEGs in Subtype-1 and Subtype-2 LUAD samples. 109 

We compared the subtype-1 and subtype-2 with the normal samples and based on the p-value 110 

cutoff < 0.05 and log2 fold change </> +/- 2 we identified significant DEGs. 2033 genes were 111 
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upregulated, and 505 were downregulated in case of subtype-1 (Fig.2.A), and 5309 genes were 112 

upregulated, and 1219 were downregulated in case of subtype-2 (Fig.2.B) shows differential 113 

expression pattern in subtype-1 and subtype-2. The DEGs in both subtypes were used for 114 

building the LASSO predictive model and for the identification of best predictor genes in LUAD 115 

heterogeneous cancer data. 116 

3.3. LASSO model for identification of best predictive genes. 117 

LASSO was first described by Robert Tibshirani in 1996. Regularisation and feature selection 118 

are the two crucial task performed by LASSO. RNASeq datasets are high dimensional datasets, 119 

with smaller sample size and a large number of features also called small-n-large-p datasets (p 120 

>> n). High dimensional data will be sparse, and only a few features affect the response variable, 121 

and LASSO is known to identify the best features that affect the response variable. We deal with 122 

a p >> n situation for feature selection in our Subtype-1 and Subtype-2 datasets, thus probably 123 

not all DEGs are relevant for the identification of features which affect the response variable. 124 

The purpose of our analysis is to identify the feature selection task and underline which genes are 125 

more relevant to predict and to classify them as biomarkers, to do so, we have used the LASSO 126 

model. 127 

The result shows the trends of the 40 and 43 most relevant features selected by our model in 128 

subtype-1 and subtype-2 LUAD, respectively. The next step would be to find the most 129 

appropriate values for λ for our LASSO model. We analysed the λ value using the 10 fold cross-130 

validation, between λ min that gives minimum mean cross-validated error or λ1se, that gives a 131 

model such that error is within one standard error of the minimum. Using this analysis, we 132 

obtained the most relevant genes which are unique to subtype-1 and subtype-2 in the detection of 133 

a LUAD. A list of best-predicted genes available for each cancer subtypes is shown in Table 1. 134 
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3.4. Analysis of the microenvironment of Subtype-1 and Subtype-2 LUAD samples. 135 

The abundance of tissue-infiltrating immune and non-immune stromal cell populations is highly 136 

informative. It has been shown that the extent of infiltrating immune cells is associated with 137 

disease prognosis. T-cell infiltrates, endothelial cells and fibroblasts are associated with a 138 

favorable outcome and also poor prognosis in some cancer types [15]. To understand the 139 

immunological microenvironment in our expression subset-1 and subset-2 we used MCP-counter 140 

method as described by Becht et al.[12]. The estimations consist of single sample scores which 141 

are computed on each sample independently in two subtypes. The heatmap shown in Figure 3 142 

clearly distinguish our subtype-1 and subtype-2 into two different categories based on tissue-143 

infiltrating immune and non-immune stromal cell populations. Subtype-1 shows apparent 144 

increase in B lineage cells, monocytic cells, Cytotoxic lymphocytes, Natural killer cells, and CB 145 

8 T cells and Subtype-2 shows decreased levels of T-cells, macrophages, B cells, and natural 146 

killer (NK) cells, as well as endothelial cells and fibroblasts. Our study clearly distinguishes 147 

LUAD subtypes based on their inflammatory and stromal profiles, and Subtype-1 LUAD 148 

samples show increased expression of immunological markers than Subtype 2 samples. 149 

3.5. Pathway analysis. 150 

Subtype-1 and Subtype-2 showed distinct and unique features which are involved in cancer 151 

progression. Genes such as IL22RA2, PLA2G2C identified in subtype1 are upregulated and 152 

found to be involved in canonical cancer regulatory pathways such as the JAK-STAT signalling 153 

pathway and RAS signalling pathway (Fig. 4). The PLA2G2C gene is associated with alpha-154 

Linolenic acid as well as ether lipid metabolism, and both are known to play a role in cancer 155 

progression [16]. Our model identified ONECUT1 gene in subtype1, which is associated with 156 

regulating pluripotency of stem cells and DEFA3 gene which is associated with Transcriptional 157 
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misregulation in cancer. The gene AWAT2 identified in subtype1 is found to be involved in 158 

Retinol metabolism, and studies suggest that retinoid signalling triggers tumor development [17]. 159 

The NECTIN4 gene highlighted in our study is associated with Adherens junction, which plays 160 

an essential role in cancer initiation and progression [18]. PYCR1 gene involved in proline 161 

metabolism which is highly correlated with cancer is also found to be differentially expressed in 162 

subtype1. EFNA3 is upregulated in Subtype-2, and previous studies show that it contributes to 163 

the metastatic spread of breast cancer [19]. Our model predicted that increased expression of 164 

LGR4, TESC, TOP2A, and ZNF695 is suggestive of increased invasive and metastatic activity in 165 

Subtype-2 [20]. Decreased expression of FGF10 is seen in Subtype-2 and predicted by our model 166 

is suggestive of dysplasia in LUAD subtype-2 samples [21]. 167 

3.6. Validation with survival analysis. 168 

The LUAD samples were classified into two subtypes based on the consensus clustering method. 169 

Overall survival analysis for the most predictive genes identified by our model in Subtype-1 and 170 

Subtype-2 groups was conducted. The genes predicted by our LASSO model accurately 171 

predicted the outcome of a patient's survival using gene expression data. Genes such as LAD1, 172 

NECTIN4, SLC25A48, LYVE1, EFNA3, FGF10, HELT, HTR3C, and LGI3 yielded accurate 173 

predictions for the risk of LUAD and can be used in cancer prediction.  Survival plots and its p-174 

value is shown in Supplemental Figures. 175 

4. Discussion 176 

In this study, we developed a LASSO based model for accurate feature selection in LUAD. Our 177 

model removed variables that are redundant and removed features which do not add any valuable 178 

information in disease prediction. Analysis using the survival data for the predicted genes 179 
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showed that the model could effectively predict genes responsible for disease prognosis in high 180 

dimensional datasets. Deciphering cancer heterogeneity is very critical in understanding cancer 181 

dynamics and also for the development of personalised cancer treatment [22]. We used 182 

Consensus clustering method to determine the number of clusters in our samples, and we 183 

clustered the samples into two groups which produced optimal silhouette width for the 184 

determined clusters. Differential gene expression analysis showed distinct expression patterns in 185 

both Subtype-1 and Subtype-2. 186 

The number of differentially expressed genes was very high, and in these situations, it is difficult 187 

to predict the relevant variables. LASSO model was established around DE genes in Subtype-1 188 

and Subtype-2 groups. Not all the expressed genes were relevant, and our model predicted the 189 

most relevant genes which were involved in disease progression.  Decreased expression of 190 

LYVE1 and MED28P8 in Subtype-1 and FGF10, HELT, HTR3C, LGI3, PACRG, PLAC9P1, 191 

and STX11 in Subtype-2 showed worse overall survival in LUAD samples. Whereas increased 192 

expression of genes such as CDC37P2, DCST1, IL22RA2, LAD1, NECTIN4, SLC25A48, 193 

TMEM51.AS1, TMPRSS4, VPS9D1-AS1, AWAT2, BCL9P1 and CD5L in Subtype-1 and 194 

EFNA3, LGR4, TESC, TOP2A and ZNF695 in subtype-2 showed decreased overall survival in 195 

LUAD samples. 196 

Long intervening noncoding RNAs (lncRNAs) are known to be critical regulators of numerous 197 

biological processes, and substantial evidence supports that lncRNA expression plays a 198 

significant role in tumorigenesis and tumor progression. Increased expression of LINC00862 in 199 

Subtype-1 samples correlates with worse survival in LUAD subtypes. Whereas, decreased 200 

expression of LINC00211 in Subtype-1 and LINC01506, LINC01785 and LINC01996 in 201 

Subtype-2 showed worse survival in LUAD samples. Our LASSO model predicts the most 202 
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relevant and distinct genes from Subtype-1 and Subtype-2 samples which might be an important 203 

factor in cancer diagnosis and management. 204 

The best predictors for subtype-1 and subtype-2 from the LASSO model were found to be 205 

involved in several regulatory pathways. Subtype-1 gene such as S100A12 is a vital serum 206 

inflammatory marker and has been illustrated in several cancer types such as oropharyngeal 207 

squamous cell carcinoma and gastric cancers [23]. Subtype-1 samples show increased expression 208 

of CD5L and TMPRSS4, which induces cancer stem cell-like properties and promotes malignant 209 

transformation by limiting lung epithelial cell apoptosis and promoting immune escape in 210 

NSCLC patients [24]. Long noncoding RNA VPS9D1-AS1 overexpression in subtype-1 predicts 211 

poor prognosis and serves as a biomarker to predict the prognosis of NSCLC [25]. 212 

Overexpression of nectin-4 oncoprotein, LYVE-1/PCAB, PROM2, and LAD1 are associated 213 

with poor overall survival in subtype-1 samples and can be considered as candidate serum and 214 

tissue biomarker as well as therapeutic target [26]. 215 

Overexpression of Lgr4 in Subtype-2 samples promotes tumor aggressiveness may potentially 216 

become a novel target for cancer therapy [27]. Subtype-2 samples show upregulation of TOP2A 217 

and ZNF695 is associated with worse prognosis and induces overrepresentation of growth and 218 

proliferation pathways and can act as prognostic and predictive markers [28]. Hypoxia-inducible 219 

oncogene EFNA3 is overexpressed in subtype-2 samples may play a critical role in the focal 220 

adhesion kinase (FAK) signalling and VEGF-associated tumor angiogenesis pathway [19]. 221 

Downregulation of tumor suppressor gene STX11 in Subtype-2 samples predicts poor prognosis. 222 

Various studies indicate the role of STX11 expression in suppressing the proliferation of T-cell 223 

[29]. 224 
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Our model predicts lncRNAs such as LINC01506, LINC01785, LINC01996, LINC00862, and 225 

LINC02014 were expressed in subtype-1 and subtype-2 samples which can be considered as 226 

potential biomarkers and shows poor overall survival in LUAD. LncRNAs might be used as 227 

biomarkers and drug targets for early diagnosis, prognosis and personalised treatment of LUAD 228 

patients.  229 

Our study suggests that Consensus Clustering methods and LASSO combined will help us to 230 

develop a model with the most appropriate characteristics. Consistent with these finding, 231 

different subtypes showed distinct unique features which underscore the importance of sample 232 

grouping and assessment. Furthermore, Survival analyses validate that the survival time of the 233 

predicted genes correlates with gene expression pattern, which is recognisably different in both 234 

the Subtypes, indicating that LASSO model could effectively be used to overcome the feature 235 

selection problem and can be used for accurate prediction of risk in LUAD. 236 

 237 
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Table description: 241 

Table 1: List of best-predicted genes by LASSO Model for cancer Subtype-1 and Subtype-2 242 

Figures description: 243 

Figure 1 244 

Fig. 1. LUAD sample clustering. (A) CC plot shows the clustering of samples into two distinct 245 

subtypes. (B) Silhouette plot for validating the sample clustering. (C) PCA plot indicates distinct 246 

sample groups. 247 

Figure 2: 248 

Fig. 2. DGE analysis at standard cutoff of </>+/- 2 fold change at p value of <0.05. (A) DGE 249 

volcano plot for Subtype-1 samples. (B) DGE volcano plot for Subtype-2 samples. 250 

Figure 3: 251 

Fig. 3. The heatmap distinguish subtype-1 and subtype-2 into two different categories based on 252 

tissue-infiltrating immune and non-immune stromal cell population. 253 

Figure 4: 254 

Fig.4. Fig.4. Pathway analysis for the best predicted genes by LASSO model. (A) Subtype-1 255 

LASSO predicted genes pathway analysis. (B) Subtype-2 LASSO predicted genes pathway 256 

analysis. 257 

 258 

 259 

 260 
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