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Abstract 
Since their introduction in the late eighties, Bayesian approaches for neuroimaging 

have opened the way to new powerful and quantitative analysis of brain data. Here, 

we apply this statistical framework to evaluate empirically the gain of fused EEG-MEG 

source reconstruction, compared to unimodal (EEG or MEG) one. Combining EEG and 

MEG information for source reconstruction has been consistently evidenced to 

enhance localization performances using simulated data. However, given considerable 

efforts to conduct simultaneous recordings, empirical evaluation becomes necessary 

to quantify the real information gain.  And this is obviously not straightforward due to 

the ill-posedness of the inverse problem. Here, we consider Bayesian model 

comparison to quantify the ability of EEG, MEG and fused (EEG/MEG) inversions of 

individual data to resolve spatial source models. These models consisted in group-

level cortical distributions inferred from real EEG, MEG and EEG/MEG brain 

responses. We applied this comparative evaluation to the timely issue of the 

generators of auditory mismatch responses evoked by unexpected sounds. These 

included the well-known Mismatch Negativity (MMN) but also earlier deviance 

responses. As expected, fused localization was evidenced to outperform unimodal 

inversions with larger model separability. The present methodology confirms with real 

data the theoretical interest of simultaneous EEG/MEG recordings and fused inversion 

to highly inform (spatially and temporally) source modeling. Precisely, a bilateral fronto-

temporal network could be identified for both the MMN and early deviance response. 

Interestingly, multimodal inversions succeeded in revealing spatio-temporal details of 

the functional organization within the supratemporal plane that have not been reported 

so far, nor were visible here with unimodal inversions. The present refined auditory 

network could serve as priors for auditory modeling studies.  
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1. Introduction 
 
Source reconstruction of electrophysiological responses have become a standard 

analysis in neuroimaging, as suggested by the increasing number of papers, as well 

as the numerous methodologies afforded by electrophysiological analysis software. 

Whatever the methodology (Lecaignard and Mattout, 2015), the ill-posed nature of the 

underlying inverse problem remains (from a mathematical point of view, recognition of 

true generators is impossible). This issue calls for highly informed data to be 

confronted to models, as can be achieved with the integration of EEG and MEG signals 

proposed more than 30 years ago (Puce and Hamalainen, 2017). This paper 

addresses the added value of combining EEG and MEG data for distributed source 

localization, which we evaluated here  empirically with auditory mismatch responses. 

 

Merging EEG and MEG aims at accounting for information missed by one modality 

and captured by the other one (Dale and Sereno, 1993; Fuchs et al., 1998), and 

crucially, at reducing the under-determined nature of the ill-posed inverse problem 

thanks to complementary information gathered by these two modalities (Plonsey and 

Heppner, 1967). Fused reconstruction therefore appears promising to reach high 

temporal and spatial resolutions in brain function imaging. Greater performances for 

fusion than separate EEG or MEG source reconstructions were indeed consistently 

reported in simulation-based studies. Quantitative evaluations rested on various 

metrics obtained from the comparison of the true distribution (that has generated the 

synthetic data) and reconstructed ones. In short, reduced localization errors could be 

reported for both superficial and deep sources (Fuchs et al., 1998), as well as for 

different signal-to-noise ratio (SNR) and sensor montages (Babiloni et al., 2004).  

Decrease of the undesirable sensitivity of inversion methods to source orientation 

(Baillet et al., 1999) and enhanced precision of source estimates (Henson et al., 2009b) 

were also reported. Further evaluation with empirical data is a necessary step, but in 

this case the ill-posedness of the inverse problem obviously prevents from using 

simulation-based metrics. To date, only few studies attempted to circumvent this issue. 

They considered specific cases for which fMRI results (Sharon et al., 2007), widely 

described median nerve stimulation (Molins et al., 2008) or intracranial recordings with 

epileptic patients (Chowdhury et al., 2015) were assumed to provide the true solution 

to be compared with. Noticeably, all these studies were in favor of reduced 
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mislocalizations with fused inversion. In the current study, we propose a general 

approach for the quantitative evaluation of fusion that applies to any empirical data. 

We used advanced statistical methods for source reconstruction that formalize model 

inversion as Bayesian inference (Friston et al., 2006; Mattout et al., 2006). This 

framework enabled us to exploit Bayesian model comparison (Penny et al., 2004) to 

investigate the ability of each modality (EEG, MEG and fusion) to separate different 

source distributions (being spatial models). Our approach thus quantifies the spatial 

(model) resolution of each modality. 

 

We applied this evaluation to auditory mismatch (or deviance) responses elicited by a 

change (or deviant) in a regular acoustic environment, including the well-known 

Mismatch Negativity (MMN) (Näätänen et al., 2007). This choice was motivated by the 

outstanding place the MMN has occupied in cognitive and clinical neuroscience 

(Auksztulewicz and Friston, 2016; Morlet and Fischer, 2014; Sussman and Shafer, 

2014), contrasting with the arguably poor consistency of findings in the MMN source 

research (Fulham et al., 2014; Schönwiesner et al., 2007). Beside, recent findings of 

earlier mismatch responses than the MMN (Escera et al., 2014; Lecaignard et al., 

2015) encourage to develop a comprehensive analysis of auditory responses to 

improve our understanding of  auditory (deviance) processing. To date, only a few 

MEG studies addressed the localization of early deviance components (Recasens et 

al., 2014a; 2014b; Ruhnau et al., 2013), with activity circumscribed in the primary 

auditory cortex. Taken together, these recent findings indicate that it is time to combine 

high temporal and spatial information for an in-depth characterization of auditory 

processing.  

 

Strong efforts using different neuroimaging techniques have been made to identify the 

cortical generators of the MMN for about three decades. Functional Magnetic 

Resonance Imaging (fMRI) and electrophysiological techniques (EEG, MEG) were 

mostly employed, that favored spatial or temporal precision respectively. To our 

knowledge no study has been conducted using fused inversion (simultaneous 

recordings but separate source modeling were conducted in Huotilainen et al., 1998; 

Kuuluvainen et al., 2014; Rinne et al., 2000). Taken together, fMRI (see for review 

Deouell, 2007) and electrophysiological studies (Fulham et al., 2014; Giard et al., 1995; 

Lappe et al., 2013a; Marco-Pallarés et al., 2005; Recasens et al., 2014b; Ruhnau et 

reuse, remix, or adapt this material for any purpose without crediting the original authors. 
preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, 

The copyright holder has placed thisthis version posted September 12, 2019. ; https://doi.org/10.1101/765966doi: bioRxiv preprint 

https://doi.org/10.1101/765966


al., 2013; Waberski et al., 2001) suggested that the most prominent sources are 

located in temporal and frontal areas. However, there is a large and acknowledged 

variability across findings that prevents from a reliable and detailed description of the 

MMN network. It is possible that none of these modalities may be sufficiently informed 

spatially and temporally when employed alone, which pleads for advanced methods 

such as fused reconstruction. 

 

In this context, the aim of the current study was twofold: first, to propose a general 

method to evaluate quantitatively the performance of separate and fused source 

reconstruction with empirical data. The second aim was to provide a detailed 

description of early and late auditory mismatch generators using advanced statistical 

methods including fused inversion (Henson et al., 2009b). We considered data 

originating from a previous passive auditory oddball study (Lecaignard et al., 2015) 

with two deviance features (frequency and intensity, separately manipulated) and 

conducted with simultaneous EEG and MEG recordings. Our results demonstrate the 

larger spatial model resolution of fused inversion and the usefulness of such 

information integration that here produced a fine-grained description of a fronto-

temporal network underlying auditory processing. 
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2. Material and Methods 
 
This section is divided into three parts: first, we briefly describe the methodologies for 

source localization employed in the present study including model inversion with 

group-level inference (Litvak and Friston, 2008) and MEG-EEG fusion (Henson et al., 

2009b). Second, we describe our approach for the quantitative evaluation of EEG, 

MEG and fused MEG-EEG inversions. Finally, the third section presents the 

multimodal dataset used to validate our approach, resting on simultaneous EEG-MEG 

recordings of auditory frequency (FRQ) and intensity (INT) deviance responses.  

 
2.1. Methods for source reconstruction 

 

Forward model computation. For both MEG and EEG modalities, a three-layer realistic 

Boundary Element Model (BEM) (Hämäläinen and Sarvas, 1989) was employed,  with 

homogenous and isotropic conductivities within each layer set to 0.33, 0.0041 and 0.33 

S/m for the scalp, skull and brain, respectively (Rush and Driscoll, 1968). The source 

domain included 𝑁"=20484 sources (mean average distance = 3.4 mm) distributed on 

the cortical mesh (grey-white matter interface) and we used surface normal constraints 

for dipole orientation. All meshes derived from canonical uniformly tessellated 

templates (provided with SPM8) that had been warped from individual MRI to account 

for subject-specific anatomy (Mattout et al., 2007). Coregistration of the resulting head 

model and functional data (EEG, MEG) was achieved for both modalities separately 

using a rigid spatial transformation based on three anatomical landmarks (or fiducials), 

positioned at nasion, left and right pre-auricular points. For MEG data, head position 

was averaged across experimental sessions to allow for a common forward model 

between conditions. For each participant and each modality, computation of accurate 

BEM was performed with the software Openmeeg  (http://openmeeg.github.io) 

(Gramfort et al., 2010). Re-referencing to the average mastoids was applied to EEG 

BEM. The resulting lead-field operator or gain-matrix 𝐿 ∈ ℝ&'×&) (with 𝑁*	sensors and 

𝑁"	sources) embodying the pre-cited anatomical and biophysical assumptions, enters 

the following linear generative model 𝑀 of data 𝑌 ∈ ℝ&'×&.(with 𝑁/	time samples): 

 

 𝑌 = 𝐿𝐽 + 𝜀4 (1) 

 

reuse, remix, or adapt this material for any purpose without crediting the original authors. 
preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, 

The copyright holder has placed thisthis version posted September 12, 2019. ; https://doi.org/10.1101/765966doi: bioRxiv preprint 

https://doi.org/10.1101/765966


where 𝐽 represents the source distribution, i.e. the magnitude of dipole at each node 

of the cortical mesh, and 𝜀4	represents the residual error term. 

 

Model inversion using Multiple Sparse Priors (MSP). Within a hierarchical Bayesian 

framework, we defined 𝐽  as a multivariate Gaussian distribution of the form 𝐽 ∼

𝒩	(0, 𝐶") with 𝐶" ∈ ℝ&)×&)  the (unknown) spatial source covariance. We assumed a 

multivariate Gaussian error term 𝜀4 ∼ 𝒩	(0, 𝐶4)  with 𝐶4 ∈ ℝ&<×&<	 the (unknown) 

spatial noise covariance (relatively to a normalized spatial space composed of 

𝑁=	modes that will be defined in the following section). We used Multiple Sparse Priors 

(Friston et al., 2008b) to estimate both the distribution 𝐽  that satisfies the general 

equation of linear model with Gaussian errors:  

  

 𝐽> = 𝐶"𝐿/(𝐶4 + 𝐿𝐶"𝐿/)?@𝑌 (2) 

 

and the posterior distribution of 𝐶"  and 𝐶4 . Precisely, 𝐶"	 is defined as a linear 

combination of 𝑁Avariance components  𝑄"C ∈ ℝ&)×&) (the sparse priors), weighted by 

hyperparameters 𝜆"C :  

  

 
𝐶" =E𝜆"C

&F

CG@

𝑄"C  (3) 

 

For the initial condition, we used SPM8 default sparse priors including 256 components 

in each hemisphere, and applied a bilaterality constraint, leading to a total of 𝑁A = 712 

variance components. Estimation of the associated hyperparameters K𝜆"C 	LCG@:&Fwas 

driven by the principle of source sparsity implemented in the Greedy-Search (GS) 

algorithm (Friston et al., 2008a). At the sensor level, we assumed a single variance 

component equal to the identity matrix per modality, with hyperparameter weighting as 

follows: 

  

 
N

𝐶4 = 𝜆O𝑄O	 𝑓𝑜𝑟	𝐸𝐸𝐺	𝑖𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛
𝐶4 = 𝜆=𝑄=	 𝑓𝑜𝑟	𝑀𝐸𝐺	𝑖𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛

𝐶4 = 𝜆O𝑄O	 + 𝜆=𝑄=	 𝑓𝑜𝑟	𝑓𝑢𝑠𝑒𝑑	𝑖𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛
 (4) 
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MSP rests upon expectation maximization (EM) and provides Restricted Maximum 

Likelihood (ReML) estimates of hyperparameters 𝜆 = \𝜆"@, . . . , 𝜆"
&F;	𝜆=_`abC/cd  and 

Maximum A Priori  (MAP) estimate of 𝐽	using Eq.(2) (Friston et al., 2007). EM is an 

iterative process guided by the maximization of the free energy ℱ, an approximation of 

the log-evidence of the model (the log-value of 𝑝(𝑌|𝑀), the probability of observing the 

data 𝑌 given the generative model 𝑀 defined in Eq.(1)). 

 

Group-level inference. Group-level inference (Litvak and Friston, 2008) aims at 

specifying the prior distribution on the source covariance 	𝐶"  by accounting for the 

assumption that distribution 𝐽 should be common to all participants. This is a two-step 

procedure (Figure 1) that we used in the present reconstruction study (using SPM8) 

and that has also inspired our quantitative evaluation of fused inversion (see below): 

• First step performs a single group-level inversion using default sparse priors. 

Resulting posterior hyperparameters are thus informed by the group-level 

variance of the data; they provide a posterior on 𝐶"	(Eq.(3)). 

• Second step proceeds to individual-level inversions, starting with the group-

informed posterior on 𝐶"	as prior, here referred to as group priors. 

In practice, as detailed in Litvak et al., (2008), the second step is left with two/three 

hyperparameters to estimate: {𝜆";	𝜆O}, {𝜆";	𝜆=}, {𝜆";	𝜆O, 𝜆=} for EEG, MEG and fused 

inversions, respectively. Prior to data inversion, group-level inference involves the 

normalization of the individual sensor-level data in a common spatial-mode space 

(Friston et al., 2008b). In short, this space is composed of 𝑁=  orthogonal virtual 

sensors (referred to as spatial modes) resulting from the singular value decomposition 

(SVD) of a group-informed gain matrix. Data reduction is also achieved using a 

subsequent projection of the data on temporal modes (Friston et al., 2006). For each 

subject, the spatially and temporally projected data 𝑌jC ∈ ℝ&<×&.	is rescaled (using the 

trace of 𝑌jC𝑌jC/) to accommodate signal amplitude differences over spatial modes. After 

model inversion, the reconstructed source activity 𝐽	is projected on spatial modes and 

𝑅, the percentage of data explained by 𝐽	is computed to quantify the variance explained 

by 𝐽	relative to the residual variance.  
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Figure 1. Schematic view of group level inference (Litvak et al. 2008). The two-stage 
procedure aims at informing subject-specific inversion with source priors deriving from 
the source distribution common to the group. Notations Y, M, C and J refer to sensor 
data, inversion model, source covariance and source distribution respectively, as 
specified in the main text. 
 

Fused MEG-EEG inversion. The fused inversion approach proposed in Henson et al. 

(2009b) was employed in the current study. This method entails the necessary 

rescaling of data and gain matrix over modalities to accommodate the different physical 

nature of signals. This rescaling leads to two crucial aspects: (1) projected data on 

MEG and EEG spatial modes become homogeneous and (2) sensor-level 

hyperparameters 𝜆O  and 𝜆= can be quantitatively compared to assess the relative 

contribution of each modality to account for the variance of the observed data. Such 

comparison was conducted using paired Student's t-tests in the case of the MMN 

inversion ([150,200] ms) in condition FRQ and INT (see below). 

 
2.2. Quantitative evaluation of separate and fused inversions 

 
Bayesian Model Comparison (BMC) is a formal way to quantitatively compare models 

(𝑀@,𝑀l	,...), based on their inferred model evidences (𝑝(𝑌|𝑀@), 𝑝(𝑌|𝑀l), . ..) that each 

quantifies how likely model 𝑀C	 is to have generated data 𝑌 (Penny et al., 2010). In the 

present case, as illustrated in Figure 2, for each modality: EEG (𝑒), MEG (𝑚), and 

Fusion (𝑓), we conducted a BMC that involved three models differing only on the group 

priors entering individual inversions. The three variants of group priors were inferred 
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by the group-level inversion of EEG data (𝑌O), MEG data (𝑌=), and fused inversion of 

EEG and MEG data (𝑌n = [𝑌jO; 𝑌j=]). These specific models entail the spatial information 

that could be captured by each modality over the group of subjects. Our aim was to 

evaluate the ability of each modality to resolve the resulting source distributions 

(reconstructed at the group level). Such model separability can be interpreted as a 

measure of spatial resolution. In the following, for each modality 𝑚𝑜𝑑 ∈ {𝑒,𝑚, 𝑓}, the 

three group prior models will be denoted 𝑀=_`,O , 𝑀=_`,=  and 𝑀=_`,n . To run this 

evaluation, a total of 9 inversions were thus computed for each subject:  three 

modalities for data (𝑚𝑜𝑑`, 𝑤𝑖𝑡ℎ	𝑑 ∈ {𝑒,𝑚, 𝑓}) combined with three modalities for group 

priors (𝑚𝑜𝑑A,𝑤𝑖𝑡ℎ	𝑝 ∈ {𝑒,𝑚, 𝑓}). Thereafter, for each modality 𝑚𝑜𝑑`, the free energy 

approximating model evidences 𝑝t𝑌=_`uv𝑀=_`u,Ow , 𝑝t𝑌=_`uv𝑀=_`u,=w  and 

𝑝t𝑌=_`uv𝑀=_`u,nw	were compared across subjects with BMC using a random effect 

(RFX) model. To account for inter-individual variability, we also computed the following 

free energy differences for each subject and for each modality 𝑚𝑜𝑑`, approximating 

the log-Bayes Factor: 

  

 
ℱ=_`u,=_`Fxu − ℱ=_`u,=_`Fzu ≈

𝑝 |𝑌=_`u}𝑀=_`u,=_`Fxu~

𝑝 |𝑌=_`u}𝑀=_`u,=_`Fzu~
 (5) 

 

 

Following the usual principles of Kass and Raftery (1995), a free energy difference (in 

absolute terms) lower than or equal to 3 indicates that models have comparable 

evidence: related group priors are of equal plausibility. Under the assumption of non-

identical group priors across modalities (EEG, MEG and fusion do not capture the 

same information), we would thus conclude that modality 𝑚𝑜𝑑` is not informed enough 

to disentangle these different models. On the contrary, an absolute difference greater 

than 3 would support a large spatial resolution of 𝑚𝑜𝑑`  over model space. We 

expected i) EEG to have a poor capacity to separate group prior models, due to volume 

conduction which is acknowledged to degrade the spatial resolution of EEG (Vallaghé 

and Clerc, 2009) and ii) Fusion to have the largest resolution, being informed by the 

complementary EEG and MEG (Lopes da Silva, 2013). An original aspect of the 

proposed method pertains to the fact that it allows comparing quantitatively EEG, MEG 
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and fused source reconstructions applied to real (not simulated) data. We carried out 

this empirical evaluation for the frequency and intensity MMN and early deviance 

response as described below. 

 

 
Figure 2. Evaluation scheme for multimodal evaluation. The three separate group-level 
inversions performed for each modality provides the source priors for subsequent 
subject-specific inversions (nine per subject). Within each modality (Yi), Bayesian 
model comparison (BMC) proceeds at the group level using approximated model 
evidence to select which source prior models (Mi,e, Mi,m or Mi,f) performs best (example 
is given in the EEG case in the figure). 

 
 
2.3. Empirical data for source reconstruction and multimodal evaluation 
 

Data originate from a passive auditory oddball study with simultaneous MEG-EEG 

recordings where the EEG analysis revealed two deviance responses: an early effect 

occurring within 70 ms after stimulus onset and a late effect (MMN) peaking at 170 ms 

post-stimulus (Lecaignard et al., 2015). We refer the reader to this study for a more 

detailed description of material and methods. 
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Participants. 27 adults (14 female, mean age 25±4 years, ranging from 18 to 35) 

participated in this experiment. All participants were free from neurological or 

psychiatric disorder, and reported normal hearing. All participants gave written 

informed consent and were paid for their participation. Ethical approval was obtained 

from the appropriate regional ethics committee on Human Research (CPP Sud-Est IV 

- 2010-A00301-38). Seven participants were excluded because they paid attention to 

sounds or their data was of low quality, leading the current analysis based on a total 

of 20 participants. 

 

Experimental design. Oddball sequences embedding frequency and intensity deviants 

(conditions UF and UI in Lecaignard et al., 2015) were considered in the present 

analysis, that we rename here as FRQ and INT, respectively. Both sequence types 

had the same deviant probability (𝑝 = 0.17). Two different frequencies (𝑓@=500 Hz and 

𝑓l=550 Hz) and two different intensities (𝑖@=50 dB SL (sensation level) and 𝑖l=60 dB 

SL) were combined to define the four different stimuli that were used across conditions, 

with each condition (FRQ and INT) delivered twice, using reverse sessions where the 

role of the two sounds (standard and deviant) were exchanged. Further details about 

stimuli and sequences can be found in Lecaignard et al. (2015). Participants were 

instructed to ignore the sounds and watch a silent movie of their choice with subtitles. 

 

Data acquisition. Simultaneous MEG and EEG recordings were carried out in a 

magnetically shielded room with a whole-head 275-channel gradiometer (CTF-275 by 

VSM Medtech Inc.) and the CTF-supplied EEG recording system (63 electrodes), 

respectively. We provide here the aspects of particular relevance for the coregistration 

of multimodal data. Details regarding the simultaneous MEG and EEG recordings and 

the experimental setup can be found in (Lecaignard et al., 2015). EEG electrode 

positions relative to the fiducials were localized using a digitization stylus (Fastrak, 

Polhemus, Colchester, VT, USA). Special care was taken to minimize head position 

drifts inside the MEG helmet between sessions. T1-weighted magnetic resonance 

imaging images (MRIs) of the head were obtained for each subject (Magnetom Sonata 

1.5 T, Siemens, Erlangen, Germany). High MRI contrast markers were placed at 

fiducial locations to facilitate their pointing on MRIs and thereby minimize coregistration 

errors. Head position relative to the MEG sensors was acquired continuously 
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(continuous sampling at a rate of 150 Hz) using head localization coils placed at fiducial 

points. 

 

Auditory event-related field/potential (ERF/ERP). MEG evoked responses (2-45 Hz) 

were computed in exactly the same way as EEG ERPs (Lecaignard et al., 2015), with 

MEG-specific preprocessings, namely the rejection of data segments corresponding 

to head movements larger than 15 mm relative to the average position (over the 4 

sessions) and to SQUID jumps.  Importantly, we only used time epochs that survived 

the procedures applied for artifact rejection for both modalities.  

EEG evoked responses were re-referenced to the average of the signal at mastoid 

electrodes in the current study for compatibility with the forward model. Grand-average 

responses at gradiometer MLP56 and electrode FCz in condition FRQ and INT are 

shown in Figure 3. Permutation tests (Lecaignard et al., 2015) revealed an early 

deviance and an MMN in both modalities (EEG, MEG) and both conditions. 

 

 
Figure 3. Mismatch ERPs/ERFs. Left panel: auditory evoked responses at electrode 
FCz (upper row) and gradiometer MLP56 (lower row) for the frequency (left) and 
intensity (right) conditions. Shaded areas correspond to the time intervals of significant 
mismatch emergence over all sensors (modality-condition): (EEG-FRQ): [15 55] ms, 
[65 80] ms, [115 210] ms; (EEG-INT): [5 80] ms, [113 210] ms; (MEG-FRQ): [5 90] ms, 
[105 210] ms; (MEG-INT): [3 90] ms, [140 225] ms. Right panel: scalp topographies at 
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relevant latencies for the early deviance, the rising edge and the peak of the MMN. 
Color-scale range is indicated for each map. 

 
Data for source reconstruction. We used SPM8 software (Wellcome Department of 

Imaging Neuroscience, http://www.fil.ion.ucl.ac.uk/spm). Standard and deviant ERFs 

and ERPs (with averaged mastoid reference) were down-sampled (200Hz) for data 

reduction. Source reconstructions were estimated for difference responses (deviant-

standard) in each condition separately (FRQ, INT) and for each modality (EEG, MEG, 

Fusion).  As sensor-level traces showed a tendency for the intensity MMN to start later 

than the frequency one, we distinguished the rising edge from the peak of this 

component to increase the spatial sensitivity of reconstructions. Three time windows 

were thus considered: from 15 to 75 ms (early deviance effect), from 110 to 150 ms 

(MMN rising edge), and from 150 to 200 ms (MMN peak). Overall, a total of 18 separate 

inversions were computed for each of the 20 participants (3 time-windows × 2 

conditions × 3 modalities). In addition, our comparative evaluation of separate (EEG, 

MEG) and fused (MEG-EEG) inversions was applied to the time interval [150,200] ms 

in both conditions (FRQ, INT). Regarding data normalization, 7 and 21 spatial modes 

(explaining 99.0% and 99.9% of the group-informed gain matrix variance) were 

retained for EEG and MEG, respectively. Data reduction using temporal modes was 

achieved for all inversions. The number of temporal modes allowing for 100.0% of the 

variance of the spatially projected data to be explained was equal to 6, 4 and 5 for [15, 

75] ms, [110, 150] ms and [150,200] ms time intervals, respectively. 

 

Statistical analysis on source distributions. We conducted our statistical analyses at 

the group-level using the recent surface-based approach proposed in SPM12. 

Posterior estimates of source activity and associated variance at each node of the 

cortical mesh (the source domain) resulted from posteriors of 𝐽> and 𝐶". The energy of 

posterior mean was considered for statistical analysis. One-sample t-tests were 

performed at each node, thresholded at 𝑝 < 0.05 with Family Wise Error (FWE) whole-

brain correction. In addition, we imposed the size of subsequent significant clusters to 

be greater than 20 nodes. Distance between two local maxima within a cluster was 

constrained to be larger than 5 nodes.  
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3. Results 
 

We first present the comparative evaluation for EEG, MEG and fused inversions that 

we conducted with FRQ and INT difference responses, at the MMN peak ([150, 200] 

ms). Second, as multimodal comparison was in favor of fused MEG-EEG inversion, 

we report the corresponding sources obtained for the time intervals [15, 75] ms, [110, 

150] ms and [150,200] ms in the difference responses, in both conditions FRQ and 

INT, thus applying the current multimodal framework for source reconstruction to the 

localization of the sources of auditory mismatch responses. 

 

3.1. Multimodal evaluation 
  

For each modality, source reconstructions were computed for each subject using 

difference responses in the time interval [150, 200] ms. Resulting 𝑅 (the percentage of 

explained variance) in condition FRQ was equal on average to 95.1% (± 2.1), 94.2% 

(± 2.3) and 93.6% (± 2.6) for EEG, MEG and fused inversions respectively. In condition 

INT, it was equal on average to 94.7% (± 2.5), 93.8% (± 2.3) and 93.1% (± 2.7) for 

EEG, MEG and fused inversions respectively. Regarding the contribution of each 

modality (EEG, MEG) in the case of fused inversion, paired Student's t-tests were used 

to compare the estimated values of hyperparameters 𝜆O and 𝜆=. In both condition FRQ 

and INT, inversions across subjects led to no significant difference between modalities 

(t(19)=1.30, p=0.21 for FRQ; t(19)=1.98, p=0.06 for INT). 
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Figure 4. Comparison of the EEG, MEG and fused MSP inversions corresponding to 
the MMN peak for frequency (left panel) and intensity (right panel) deviance. Red 
clusters indicate the significant source activity over the group (N=20) projected on the 
inflated cortical surface (HG=Heschl's gyrus; STG= superior temporal gyrus; 
P=planum polare; IFG=inferior frontal gyrus; IPS= inferior parietal sulcus; ITG=inferior 
temporal gyrus). 

  

Separate and fused MMN source distributions (qualitative comparison). Figure 4 

shows the results of the statistical analysis projected on the inflated cortical surface in 

each modality (EEG, MEG and MEG-EEG) and each condition (FRQ, INT). In both 

conditions, EEG and MEG inversions led to different (but not inconsistent) 

reconstructed activity, and more focal clusters were found with fused inversion. 

Precisely,  

• In condition FRQ, EEG inversion revealed bilateral activity in the anterior part 

of the supratemporal plane and in the lower bank of the posterior STG. No 

frontal area was found significant. MEG inversion indicated a large cluster in 

the supratemporal plane (number of nodes k > 120) expanding from the lateral 

part of HG through the Planum Polare (PP) in both hemispheres. A bilateral 

frontal area was located in the posterior IFG.  The fused distribution comprised 

smaller supratemporal clusters (right: a single cluster (k=92) including the 

lateral part of HG and PP; left: separate clusters for HG (k=55) and PP (k=25)), 

and bilateral clusters similar to MEG ones in the frontal lobe. 
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• In condition INT, the EEG solution indicated bilateral activity in the posterior 

STG and the intraparietal sulcus (IPS). There was a similar distribution to 

condition FRQ with MEG. Fused inversion gave largest contributions in the 

lateral part of HG in both hemispheres, but also right clusters located in 

posterior IFG, posterior STG and in the inferior temporal gyrus (ITG).  

  

Group prior models (Figure 5). Group priors obtained in condition FRQ vary across 

modalities, with EEG priors strongly diverging from MEG and Fusion ones. Precisely, 

EEG upweights bilateral priors in posterior STG and the anterior temporal lobe. In 

contrast, MEG and Fusion group priors appear similar, upweighting bilateral posterior 

IFG and the supratemporal plane (including HG and PP). In the following, we assume 

that MEG and Fusion group prior models consist in close models, whereas EEG and 

MEG ones, and EEG and Fusion ones are distant over model space. Contrary to 

condition FRQ, group priors in condition INT are different across all the three 

modalities. EEG priors were located bilaterally in posterior STG, ITG and IPS. 

Remarkably, MEG and Fusion both provided bilateral priors in posterior IFG priors, but 

strongly differed in the supratemporal plane, with MEG involving lateral HG and PP 

while Fusion focused on HG only. Like in condition FRQ, models from EEG and MEG, 

and from EEG and Fusion were assumed to be distant over model space. Regarding 

MEG and Fusion models, difference related to PP led us to assume that they were 

more distant in condition INT than in condition FRQ. In both conditions and for all 

modalities, less restrictive priors (smaller cluster size and/or larger variance) were also 

found that we do not report here for they did not survive any individual inversion. 
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Figure 5. Comparison of group prior models obtained for EEG, MEG and fusion (in 
separate rows), with the frequency (left panel) and intensity (right panel) deviances. 
For each modality and each condition, three zoomed views (with relation to the global 
view indicated at the bottom left) indicate the result of MSP inversion performed at the 
group level (first step of group-level inference), hence reflecting the source distribution 
common to the group.   

Bayesian Model Comparison (Figure 6). Three BMC per condition were conducted 

based on the approximated model evidences inferred from the nine cross-modal 

inversions. In condition FRQ, no difference between modalities was measured: model 

𝑀=_`u,=_`Fxu	was each time selected as the winning model. Precisely, BMC gave the 

following model exceedance probabilities: 𝑝t𝑀O,Ov𝑌Ow =1.00, 𝑝t𝑀=,=v𝑌=w=0.97  and 

𝑝t𝑀n,nv𝑌nw=0.88. In condition INT, model 𝑀=_`u,=_`Fxu	won in the case of EEG and 

MEG-EEG inversions, with 𝑝t𝑀O,Ov𝑌Ow =1.00 and 𝑝t𝑀n,nv𝑌nw =0.97, but BMC was 

inconclusive for MEG inversion, ( 𝑝t𝑀=,=v𝑌=w = 0.52 and 𝑝t𝑀=,nv𝑌=w = 0.48, 

respectively). In conclusion, in all cases but MEG inversion in condition INT, model 

separability was always evidenced with each time the preferred model corresponding 

to the group-level solution obtained with the modality used for inversion 

(𝑀=_`u,=_`Fxu	) . In the case of MEG in condition INT, fused priors were found 

performing as well as MEG ones, despite their difference related to the implication of 

PP. The opposite was not observed: in fused inversion, BMC clearly decided in favor 
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of Fusion priors. This asymmetrical result demonstrates larger model separability in 

Fusion than in MEG.  

 
Figure 6. Bayesian model comparison of group prior models within each modality (in 
separate columns) for the frequency (upper row) and intensity (lower row) deviances. 
Each graph displays model exceedance probabilities for each prior model.  Diagrams 
on the left summarize the distance between models that we classified into close or 
distant models. This highlights the fact that the lower model separability of MEG than 
fusion could be revealed in the case of distant models, as was the case for INT. 

 

Individual free energy difference (Figure 7). This second analysis accounting for 

within-subject variability enabled us to identify even more subtle patterns across 

modalities. The key points to take from Figure 7 are:  

• EEG exhibited a poor ability to separate models: EEG inversion was found to 

perform as well with EEG group priors than with MEG and fused ones. In addition, 

EEG inversion at the group level provided solutions (the group priors) that were 

rejected by other modalities, suggesting that priors derived from EEG inversions 

were too poorly informed to be compatible with MEG data.   

• Regarding MEG and Fusion performances: in the (easy) case of clearly distinct 

models (EEG vs. MEG priors, EEG vs. Fusion priors, in all conditions), individual 

results indicate that both MEG and Fusion could resolve models. In the 
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intermediate case (MEG vs. Fusion priors, condition INT) and in the case of close 

priors (MEG vs. Fusion priors, condition FRQ), differences between modalities can 

be reported: MEG could not conclude in favor of a model in most subjects (14/20 

inconclusive in both conditions), whereas Fusion could (12/20 and 14/20 conclusive 

in FRQ and INT, respectively) and selected fused priors (9/12 and 12/14, 

respectively).  

 

 
Figure 7. Model comparison based on individual free energy differences computed for 
each modality (in separate rows) and for each condition (in separate columns). The 
two diagrams provided for each modality and each condition summarize the free 
energy differences (over the group) between this modality and the two others, 
separately, as indicated below each graph. Pink areas indicate the proportion of 
subjects (with exact number indicated) for whom model comparison concludes in favor 
of equal plausibility (absolute difference ≤ 3). Grey and yellow areas indicate the 
proportion of subjects in favor of group priors from the concerned modality (diff. > 3) 
and from the other one (diff. < -3), respectively. In short, the smaller the pink area, the 
larger model separability. modd and modp refer to the modality used for data inversion 
and for group priors, respectively. 
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Summary. Reconstructions of the sources of the frequency and intensity MMN were 

performed using EEG, MEG and MEG-EEG inversions. Source distributions all 

provided a very good fit of data and in fused inversion EEG and MEG contributed 

equally to the inversion process. Our evaluation approach relying on group prior model 

comparison succeeded at quantifying the performance of each modality for the 

reconstruction of empirical data. Precisely, we found larger performances for fused 

inversion to resolve group-level informed distributions. In the following section, we 

therefore present the deviance-related source reconstructions obtained only with this 

modality.  

 

3.2. Fused MEG-EEG sources for auditory mismatch responses  
  

 
Figure 8. Deviance generators (fused MSP reconstruction). Significant clusters (red) 
are displayed on the inflated cortical surface (right and left views) for each time interval 
(rows) and each condition (frequency =left panel, intensity=right panel). Black dots 
indicate the local maxima within each cluster (with a minimum distance of 5 adjacent 
nodes). MNI coordinates are provided in Table 1 (frequency) and Table 2 (intensity). 
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Figure 8 shows the results obtained for each deviance type and each time interval with 

fused inversion. Cluster sizes and peak location in MNI space for each local maxima for 

significant activated areas are summarized in Table 1 for condition FRQ, and Table 2 

for condition INT. 

 

Condition FRQ. Reconstructions of deviance generators within time windows [15, 75] 

ms, [110, 150] ms and [150,200] ms were performed with resulting 𝑅 equal on average 

to 90.7% (± 4.8), 92.3% (± 4.4) and 93.6% (± 2.6), respectively. Early-deviance effect 

([15, 75] ms) was found to involve HG in both hemispheres and left posterior IFG. 

Following this, reconstruction of the rising edge of the MMN ([110, 150] ms) indicated 

supratemporal activity in HG and PP, within a large cluster in the right hemisphere 

(comprising two local maxima), and separated in two distinct clusters in the left 

hemisphere (with HG cluster being smaller). Significant activity was also found in 

bilateral posterior IFG. Finally, as described in previous section, the peak of the MMN 

([150,200] ms) was associated with activity in both hemispheres peaking in HG, PP 

and posterior frontal IFG. The total number of significant nodes within bilateral 

supratemporal planes was larger for the peak than for the rising edge of the MMN (178 

and 108 respectively), while it remained constant within IFG (116 and 112 

respectively).  

  

FRQ Side 
Source 
Cluster Cluster Size Peak Location 

            
Early deviance, [15 75] ms L HG 56 -60 -9 2 

-45 -23 7 
R HG 57 59 -3 2 

48 -17 6 
L IFG 50 -53 10 15 

-58 -2 2 
MMN Rising Edge, [110 150] ms L HG 19 -54 -12 4 

L PP 21 -49 -8 -10 
R HG/PP 68 52 -8 4 

49 -7 -8 
L IFG 57 -56 6 9 

-56 -6 8 
R IFG 55 57 2 6 

MMN Peak, [150 200] ms L HG 55 -60 -9 2 
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-45 -23 7 
L PP 25 -50 -6 -8 
R HG/PP 92 55 -5 4 

48 -19 6 
49 -7 -8 

L IFG 55 -56 6 9 
-53 -6 6 

R IFG 61 57 2 6 
Table 1. Results of MSP inversion for frequency deviance with fused inversion. 

Condition INT. 𝑅 was equal on average to 91.4% (± 5.2), 90.5% (±5.4) and 93.1% (± 

2.7) for the reconstructions within time windows [15, 75] ms, [110, 150] ms and 

[150,200] ms, respectively. Within the early-deviance window ([15, 75] ms), activity 

was mostly found in bilateral HG but was also located in posterior IFG. Reconstructions 

within [110, 150] ms produced significant clusters in bilateral HG and posterior IFG. In 

addition, there was a contribution from left middle occipital gyrus (MOG). Finally, 

sources in HG and posterior IFG were observed in both hemispheres for the MMN 

peak reconstruction ([150,200] ms). Smaller clusters were found in ITG and posterior 

STG in the right hemisphere. With the thresholds chosen in the current study, no 

contribution of PP could be reported at any latency. 

  

INT Side 
Source 
Cluster Cluster Size Peak Location 

            
Early deviance, [15 75] ms L HG 70 -58 -10 5 

-43 -25 9 
R HG 71 49 -11 4 

55 -16 3 
L IFG 28 -58 -2 2 
R IFG 37 57 2 6 

MMN Rising Edge, [110 150] ms L HG 55 -48 -18 5 
-59 -11 -5 

R HG 56 59 -3 2 
48 -17 6 

L IFG 57 -55 8 13 
-58 -2 2 

R IFG 45 51 9 5 
57 0 12 

L MOG 46 -41 -74 -1 
-40 -74 4 

MMN Rising Edge, [110 150] ms L HG 76 -45 -20 6 
-61 -9 -2 
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-60 -18 2 
R HG 77 49 -16 3 

50 -9 0 
R STG 33 62 -37 20 
R ITG 31 57 -29 -27 
R IFG 46 51 6 5 

51 -3 14 
Table 2. Results of MSP inversion for intensity deviance with fused inversion 

Summary. The fused reconstructions of deviance responses observed in ERP/ERF 

revealed a bilateral fronto-temporal network in both conditions (FRQ, INT). Temporal 

activity was clustered in the supratemporal plane, where fused inversion improved the 

spatio-temporal description of deviance-related activity. In particular, fused inversion 

could separate HG and PP clusters spatially, but also temporally as PP contribution 

varies over time and across conditions. Frontal contributions could be recovered in 

both conditions as soon as the early deviance window. 
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4. Discussion 
 

In the present study, we propose a general approach to tackle the long-standing issue 

of quantifying the gain of EEG-MEG fusion in empirical source reconstruction. This 

was achieved here by no longer addressing the intractable problem of localization 

performances but by considering the spatial separability of modalities that can be 

formally assessed in a Bayesian framework. State-of-the-art methodologies employed 

throughout the study encompass an advanced realistic forward model, Bayesian 

inverse methods with group-level inversion and fused EEG-MEG inversion, coupled 

with surface-based statistical tools. Evaluation applied to the reconstruction of MMN 

sources revealed a larger resolution with fused inversion, as predicted by the existing 

simulation-based literature. Fused inversion applied to early and late deviance 

responses resulted in a fronto-temporal network consistent with EEG and MEG alone 

existing findings, but described here to our knowledge with a spatio-temporal precision 

not hitherto attained. 

 
A general method to compare modalities for distributed source reconstruction. 

The originality of the proposed procedure pertains to its suitability for empirical data, 

without the need for establishing a priori a true distribution to refer to. It fully exploits 

advantages of the Bayesian inversion framework, namely the acknowledged Bayesian 

model selection and recent group-level inference. In this way, we derived an easy-to-

achieve comparison tool, estimating the capacity of each modality to resolve source 

distributions. Model space for such priors is infinite and was restricted here to three 

distributions in particular: the group priors (or equivalently, the source covariance 

common to all subjects) inferred for each modality. Their great relevance for the 

comparison scheme comes from the fact that they reflect the information gathered by 

each modality over the group of subjects. Application to auditory responses indicates 

that each modality selected its own priors (but MEG in condition INT). Following this, 

individual inspection revealed however the lack of information in EEG data that 

prevented to disentangle source distributions, whereas MEG and most clearly fusion 

were sufficiently informed to do so. Looking closely at the differences across the two 

conditions (FRQ, INT) underlines the importance of the distance between models to 

refine the evaluation: the large (PP-related) difference between MEG and fusion priors 

in condition INT revealed the larger separability of fused inversion that was not 
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observable with condition FRQ. Going further, parameterizing distance over model 

space using synthetic priors could provide a quantitative tool to estimate the spatial 

resolution of each modality. Importantly, our approach illustrates the power and the 

flexibility of a statistical framework to test precise hypotheses that, in the present case, 

allowed us to provide practical guidelines to improve model inversion (namely, we 

recommend fused inversion to model auditory cortical activations). Bayesian model 

comparison has already been employed to improve forward modeling (Henson et al., 

2009a; Strobbe et al., 2014). In the same vein, one could extend our approach to virtual 

modalities composed of subsets of sensors to identify the most informed ones 

(according to our criterion of model separability) to enter subsequent analysis. Sensor 

selection (in EEG in particular) is an important practical aspect to consider when 

designing a new experiment.   

 

Fused inversion has a larger spatial model resolution. 

Application of our evaluation procedure to auditory mismatch responses (in two 

separate conditions) indicated a larger ability of fused inversion to separate spatial 

distributions and to select the fused one. Fused priors (reflecting the source distribution 

common to the group) appear sufficiently informed to improve EEG, MEG and fusion 

individual inversion. Of course, generalizability of the present results to other brain 

activations should be evaluated, that could further help to characterize the spatial 

complementarity of EEG and MEG recordings. Still, our findings are definitely in 

accordance with expectations from the simulation-based literature and constitute 

robust empirical evidence resting on a sizeable group of subjects (N=20) and a 

quantitative procedure. Importantly, no significant difference between the 

measurement noise estimate (hyperparameter 𝜆4) obtained for the two modalities in 

the case of fused inversion led us to assume that both modalities equally contributed 

to the inversion. This is an important control that Bayesian framework for inversion 

provides (Henson et al., 2009b). It strongly supports the great performances of fused 

inversion being the result of the complementary information gathered by each 

modalities rather than one modality prevailing the other. We know that EEG and MEG 

data comprise a mixture of neuronal contributions from various origins, and that they 

capture different aspects of the same underlying biophysical activity (Lopes da Silva, 

2013). An illustration was given here where at the scalp level, there were significant 

differences between conditions at the latency of the MMN in MEG that were not visible 
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with EEG (statistical analysis not shown in the present report). At the source level, it is 

well known that EEG and MEG do not have the same sensibility to various assumptions 

embedded in forward modeling (Lecaignard and Mattout, 2015). They possibly explain 

the observed differences across unimodal inversions within the IFG (further discussed 

below) and temporal regions. Regarding more precisely the latter, current MEG 

sources in the primary auditory cortex corroborate the acknowledged potential of MEG 

to resolve temporal lobe activity (see for instance early ECD findings in Alho, 1995). 

Yet, only fused inversion succeeded in revealing subtle patterns within the 

supratemporal plane with modulations over the temporal dynamics and over deviance 

features. This highlights the importance to include EEG information to improve MEG 

spatial resolution in the particular case of supra-temporal activations.  

 

 
Mismatch sources with fused inversion. 

The comparative analysis performed at the peak of the MMN strongly encouraged us 

to merge EEG and MEG data to finely characterize other mismatch sources, as never 

done before. The main finding of this subsequent analysis is the identification of a 

bilateral fronto-temporal network at play during early and late deviance responses and 

for both conditions (FRQ, INT). The MMN result (including the rising edge and the peak 

of the MMN) is totally consistent with the existing literature. Perhaps the most striking 

point is that expected contributions (frontal and temporal sources, bilaterally) could be 

all identified at once, which is far not so common. The spatial specificity of the network 

(and in the supra-temporal plane in particular) is also noticeable in comparison to the 

large cluster sizes often reported. In fact, the present findings are comparable to fMRI 

results, likewise those reported in the study of Schönwiesner and collaborators (2007). 

From a qualitative point of view, fused inversion could thus reach the spatial resolution 

of fMRI (at least in the temporal lobe), which made possible to reveal distinct spatial 

patterns across specific time intervals in the first 200 ms of auditory processing (which 

is obviously not feasible with slow metabolic imaging). In particular, we could observe 

in the supratemporal plane a posterior to anterior progression (from HG to PP) between 

the rising edge and the MMN peak for the frequency condition, that appears in keeping 

with several studies that explored the N1 and the MMN generators (Recasens et al., 

2014a; Scherg et al., 1989). Comparison of frequency and intensity distributions 

(although beyond the scope of the study) also shows subtle spatio-temporal patterns: 
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similar activations at early latency are followed by differences within the supratemporal 

plane and frontal regions during the MMN. This supports different sensory processes 

at the MMN latency, as proposed by early ECD studies conducted with EEG (Giard et 

al., 1995) and MEG (Levänen et al., 1996). Regarding early deviance generators, 

temporal activity was clearly circumscribed within bilateral Heschl's gyrus for both 

deviance features. This is totally consistent with MLR findings from intracranial 

recordings studies (Liégeois-Chauvel et al., 1994; Pantev et al., 1995; Yvert et al., 

2002). Recent MEG findings also reported temporal contributions including HG, in the 

right hemisphere (Recasens et al., 2014a) and bilaterally (Recasens et al., 2014b). 

Crucially, a major difference with these studies pertains to frontal sources that we were 

able to recover.  Under the assumption of a hierarchical organization for deviance 

processing that could unfold from subcortical areas to higher cognitive cortical levels 

(Escera and Malmierca, 2014), such frontal contribution as soon as these early latency 

has now become highly expected.  

 
Limitations of mismatch findings.   

Unexpected findings reported here should however be discussed.  First concerns the 

failure to identify any frontal contribution with EEG at the MMN peak. Deep inspection 

of the MMN literature reveals that it is not straightforward to locate the IFG with EEG 

responses, unless considering specific priors with discrete ECD models (Jemel et al., 

2002; MacLean et al., 2015; Rissling et al., 2014). With distributed source localization, 

two recent reports of an IFG contribution can be cited (Fulham et al., 2014; in a 

language study: Hanna, 2014). In our case, it is likely that inferior frontal activations 

were less plausible (possibly weaker) than supra-temporal ones, and as such they 

have been canceled out by MSP, which implements the principle of sparsity to 

activated sources.  It should also be noted that few MEG studies also succeeded in 

localizing these regions (Lappe et al., 2013b; Recasens et al., 2015). Another 

unexpected result pertains to the contribution of the left middle occipital gyrus and the 

right inferior temporal gyrus for intensity deviance with fused inversion. It is worth 

recalling that the intensity MMN was not significant at the scalp-level over the time 

interval from 100 to 150 ms. We therefore assume that these sources constitute false 

positive (deriving from a convergence into local minima). Finally, frontal contributions 

were located in the very posterior part of the IFG, mirroring supratemporal regions. The 

fact that we observed activations in IFG but not in PP (rising edge of the MMN, INT) 
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and in HG but not in IFG (peak of the MMN, INT) allows to reject the hypothesis of two 

mis-localized and correlated clusters of opposite sign. All these considerations 

constitute however a reminder of the ill-posed nature of the source reconstruction 

problem, that will always remain whatever the advanced methodologies integrated in 

the inversion framework. 

 

 
5. Conclusion 
   

This paper develops an evaluation procedure to test quantitatively the gain of fusing 

EEG and MEG data for distributed source localization. Critically, it consists in a general 

approach that applies to empirical data. It thus paves the way to go beyond stimulations 

to test the better performances of fusion predicted by biophysical and information 

theory principles. From a practical point of view, it also appears convenient for the 

experimenter to quantify the gain of fusion for particular brain responses of interest. In 

the present case of auditory responses with recent methods in distributed source 

modeling, fusion was found to outperform EEG and MEG alone, as expected, and can 

now be formally highly advised in subsequent auditory studies.  We identified a bilateral 

fronto-temporal network for both frequency and intensity deviance responses that 

conforms the existing mismatch literature. Promisingly, the spatial resolution reached 

with fused inversion allowed a detailed spatio-temporal description within the 

supratemporal plane. These findings should however be balanced against the 

experimental cost of simultaneous EEG-MEG acquisitions that remain somewhat less 

straightforward that unimodal ones. Still, they should be considered as an attractive 

and powerful option that we recommend, particularly in the case of auditory studies. 

As a result, the refined auditory network achieved here represents a crucial step to 

further address auditory processing using mismatch responses, be it at the 

neurophysiological or the cognitive levels.  
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