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and identify issues for further inspection 
5. Data analysis of 538 infants imaged at 26-45 weeks post-menstrual age 
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Abstract: 
 
The developing Human Connectome Project (dHCP) aims to create a detailed 4-dimensional 
connectome of early life spanning 20 to 45 weeks post-menstrual age. This is being achieved 
through the acquisition of multi-modal MRI data from over 1000 in- and ex-utero subjects 
combined with the development of optimised pre-processing pipelines. In this paper we 
present an automated and robust pipeline to minimally pre-process highly confounded 
neonatal resting-state fMRI data, robustly, with low failure rates and high quality-assurance. 
The pipeline has been designed to specifically address the challenges that neonatal data 
presents including low and variable contrast and high levels of head motion. We provide a 
detailed description and evaluation of the pipeline which includes integrated slice-to-volume 
motion correction and dynamic susceptibility distortion correction, a robust multimodal 
registration approach, bespoke ICA-based denoising, and an automated QC framework. We 
assess these components on a large cohort of dHCP subjects and demonstrate that processing 
refinements integrated into the pipeline provide substantial reduction in movement related 
distortions, resulting in significant improvements in SNR, and detection of high quality RSNs 
from neonates.  
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1. Introduction 
An increasing focus of neuroimaging science is building accurate models of the human 
brain’s structural and functional architecture at the macro-scale (Kaiser, 2017) through large 
scale neuroimaging enterprises (Van Essen et al., 2013). The mission of the developing 
Human Connectome Project (dHCP, http://www.developingconnectome.org) is to facilitate 
mapping the structural and functional development of brain systems across the perinatal 
period (the period before and after birth).This is being achieved through the acquisition of 
multi-modal MRI data from over 1000 in- and ex-utero subjects of 20–45 weeks post-
menstrual age (PMA), combined with the development of optimised pre-processing pipelines. 
The ambitious scale of the project will enable developing detailed normative models of the 
perinatal connectome. The raw and processed data from the project, along with genetic, 
clinical and developmental information (Hughes et al., 2017), will be made publicly available 
via a series of data releases. 
 
As the human infant enters the world, core functional neural systems are rapidly developing 
to provide essential functional capabilities. Characterisation of the perinatal brain using fMRI 
can provide insights into the relative developmental trajectories of brain systems during this 
crucial period of development (Cusack et al., 2017). FMRI has been used to characterise the 
neural activity associated with the sensorimotor systems (Arichi et al., 2010), olfaction 
(Arichi et al., 2013), and visual (Deen et al., 2017), auditory (Anderson et al., 2001), vocal 
(Dehaene-Lambertz et al., 2002), and emotional perception (Blasi et al., 2011; Graham et al., 
2013). However, whilst task-based studies are informative, they are difficult to perform in 
young, pre-verbal infants. Studies of spontaneous brain activity are ideally suited to the 
perinatal period and can provide an overall view of the spatial and temporal organisation of 
functional systems and their maturation. Using this approach, a number of studies have 
explored the emergence of the resting-state functional networks (RSNs) in infants (Fransson 
et al., 2007; Lin et al., 2008; Liu et al., 2008). These RSNs are found to be emerging in the 
preterm period and are largely present at the age of normal birth (40 weeks PMA), (Doria et 
al., 2010; Fransson et al., 2007; Gao et al., 2015; Smyser et al., 2010), increasing in strength 
over the first year of life (Damaraju et al., 2014).  
 
Acquisition, pre-processing, and analysing MRI data from the fetal and neonatal population 
presents unique challenges as the tissue composition, anatomy, and function undergo rapid 
changes during the perinatal period and markedly differ from those in the adult brain (Ajayi-
Obe et al., 2000; Dubois et al., 2014; Gilmore et al., 2012; Inder et al., 1999; Kapellou et al., 
2006). These differences demand re-evaluation of established pipelines (Cusack et al., 2017; 
Mongerson et al., 2017; Smyser et al., 2016). Changes in tissue composition, due to processes 
such as myelination, and neural and vascular pruning (Dubois et al., 2014; Kozberg and 
Hillman, 2016a) affect imaging contrast (Goksan et al., 2017; Rivkin et al., 2004). These 
changes require bespoke developmental structural templates (Kuklisova-Murgasova et al., 
2011; Schuh et al., 2018; Shi et al., 2018) and optimised registration techniques (Deen et al., 
2017; Goksan et al., 2015). Care is required to ensure that the effects of changing relative 
voxel resolution and SNR on analyses are ameliorated and monitored (Cusack et al., 2017; 
Gao et al., 2015). Infant brain hemodynamics differ from adults, and can show substantial 
changes over the perinatal period (Arichi et al., 2012; Cornelissen et al., 2013; Kozberg and 
Hillman, 2016b). Importantly, levels of head motion over extended fMRI scans are typically 
high and differ in nature from adults (Cusack et al., 2017; Deen et al., 2017; Satterthwaite et 
al., 2012; Smyser et al., 2010). As motion and pulsatile artefacts can have profound effects on 
measures of resting-state connectivity, great care with motion and distortion correction is 
required in the neonate (Deen et al., 2017; Power et al., 2012).  
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A major focus of the dHCP project is therefore the advancement of acquisition and analysis 
protocols optimised for the infant brain (Bastiani et al., 2018; Bozek et al., 2018; Hughes et 
al., 2017; Makropoulos et al., 2018). The present report provides a detailed description of the 
dHCP resting-state functional MRI (rfMRI) pre-processing pipeline for neonates. The 
pipeline is inspired by the Human Connectome Project (HCP) minimal pre-processing 
pipelines (Glasser et al., 2013) and the FSL FEAT pipeline (Jenkinson et al., 2012) for adults; 
however it is designed to specifically address the challenges that neonatal data present. Each 
stage of the pipeline has been assessed and refined to ensure a high level of performance and 
reliability. The pipeline includes integrated dynamic distortion and motion correction, a 
robust multimodal registration approach, bespoke ICA-based denoising, and an automated 
QC framework. We assess these components, showing results from an initial cohort of dHCP 
subjects. The processed data from these pipelines are currently available for download. We 
apply PROFUMO (Harrison et al., 2015), a Bayesian group component decomposition 
algorithm (with a customised neonatal HRF prior), to demonstrate high quality RSNs from 
these data. A companion paper (Baxter et al., 2019) assesses the pipeline, applying it to a 
stimulus response dataset. In order to present the clearest description of the pipeline stages 
throughout the paper, we do not separate out Methods and Results sections, but intermix 
descriptions of methods, their assessment procedures and results. 

2. Subjects and fMRI acquisition 
2.1. Subjects 
MR images were acquired as a part of the dHCP which was approved by the National 
Research Ethics Committee and informed written consent given by the parents of all 
participants.  
 
Data from two cohorts of dHCP subjects are used in this paper, referred to as dHCP-538 and 
dHCP-40. The dHCP-538 is a large cohort that comprises 538 scans and is used to evaluate 
overall performance of the dHCP fMRI pipeline, as well as to assess most processing stages. 
The dHCP-40 is a smaller subset that comprised 40 scans and is used to specifically contrast 
and evaluate the more computationally demanding motion and distortion correction 
algorithms (see Section 3.4). 
 
The dHCP-538 cohort comprises 538 scans that passed upstream (pre-fMRI pipeline) QC, 
and had been processed with the dHCP fMRI pipeline as of the time of writing. These 538 
scans were obtained from 422 subjects scanned once and 58 subjects scanned twice (480 
subjects in total). The first scan was pre-term, <37 weeks PMA, and second scan was term 
equivalent age. The dHCP-538 contains 215 females and 265 males (480 subjects in total), 
and has a mean PMA at scan of 39.81 weeks (!=3.36). This cohort is a superset of the 1st 
(2017) and 2nd (2019) dHCP public data releases. The dHCP-40 scans are from 40 subjects 
(all scanned once) that were released in the 1st dHCP data release, in 2017. The dHCP-40 
contains 15 females and 25 males has a mean PMA at scan of 39.81 weeks (!=2.17). The 
distribution of age at scan for both cohorts is presented in Figure 1 
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Figure 1. Distribution of post-menstrual age at scan (weeks) for the dHCP-538 (left) and dHCP-40 (right) cohorts. 

 

2.2. Acquisition protocol summary 
All data were acquired on a 3T Philips Achieva with a dedicated neonatal imaging system 
including a neonatal 32-channel phased-array head coil, sited within the neonatal intensive 
care unit at the Evelina London Children’s Hospital (Hughes et al., 2017). Anatomical 
images (T1w and T2w), resting-state functional (rfMRI) and diffusion acquisitions were 
acquired without sedation, with a total examination time of 63mins. 
 
Anatomical acquisition and pre-processing: T2w (TR=12s; TE=156ms; SENSE factor: 
axial=2.11, sagittal=2.58) and inversion recovery T1w (TR=4795ms; TI=1740ms; 
TE=8.7ms; SENSE factor: axial=2.27, sagittal=2.66) multi-slice fast spin-echo images were 
each acquired in sagittal and axial slice stacks with in-plane resolution 0.8x0.8mm2 and 
1.6mm slices overlapped by 0.8mm. Both T2w and T1w images were reconstructed using a 
dedicated neonatal motion correction algorithm. Retrospective motion-corrected 
reconstruction (Cordero-Grande et al., 2018) and integration of the information from both 
acquired orientations (Kuklisova-Murgasova et al., 2012) were used to obtain 0.8 mm 
isotropic T2w and T1w volumes with significantly reduced motion artefacts. Anatomical pre-
processing of the T2w and T1w images was performed using the dHCP structural processing 
pipeline (Makropoulos et al., 2018). The fMRI pipeline described in this paper specifically 
requires the bias corrected T2w image in native space, the bias corrected T1w image sampled 
to T2w native space, and the tissue segmentation (9 labels). The structural pipeline outputs 
used by this were pre-processed with dHCP structural pipeline version 1.1 (Makropoulos et 
al., 2018). 
 
rfMRI: High temporal resolution multiband EPI (TE=38ms; TR=392ms; MB factor=9x; 
2.15mm isotropic) specifically developed for neonates (Price et al., 2015) was acquired for 
15 minutes. No in-plane acceleration or partial Fourier was used. Single-band EPI reference 
(sbref) scans were also acquired with bandwidth-matched readout, along with additional spin-
echo EPI acquisitions with 4xAP and 4xPA phase-encoding directions. Reconstructions 
follow the extended SENSE framework (Zhu et al., 2016) with sensitivity maps computed 
from the matched single-band data. Field maps were obtained from an interleaved (dual TE) 
spoiled gradient-echo sequence (TR=10ms; TE1=4.6ms; TE2=6.9ms; flip angle=10º; 3mm 
isotropic in-plane resolution, 6mm slice thickness). Phase wraps were resolved by solving a 
Poisson’s equation (Ghiglia and Romero, 1994). 
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3. Pre-processing pipeline 
3.1. Pipeline overview 
The dHCP fMRI pipeline is inspired by the HCP minimal pre-processing pipelines (Glasser 
et al., 2013) and the FSL FEAT pipeline (Jenkinson et al., 2012) for adults; however it is 
designed to specifically address the challenges that neonatal data presents. These challenges 
and their solutions are detailed throughout the paper.  
 
The goal of the pipeline is to generate high-quality minimally pre-processed rfMRI data for 
open-release to the neuroimaging community. The motivation for “minimal” pre-processing 
is to ensure that the scientific community will not be restricted in the subsequent analysis that 
they can perform on the data. Therefore, in building the pipeline we have restricted ourselves 
to the pre-processing steps that we consider absolutely crucial for the widest possible range 
of subsequent analyses.  
 
The inputs to the pipeline are the raw multi-band EPI functional (func), single-band EPI 
reference (sbref), and spin-echo EPI with opposing phase-encode directions, as well as the 
dHCP structural pipeline pre-processed outputs: bias corrected T2w structural image (struct), 
bias corrected T1w image aligned with the T2w, and the T2w discrete segmentation (dseg).  
 
The primary output is the minimally pre-processed 4D functional image which is motion 
corrected, distortion corrected, high-pass filtered and denoised. The secondary outputs are 
transforms to align the pre-processed functional images with the structural (T2w) and 
template (atlas) spaces. 
 
A schematic of the dHCP fMRI pipeline is presented in Figure 2. The main pre-processing 
stages of the pipeline are: 

1. Fieldmap pre-processing: estimate the susceptibility distortion field and align it with 
the functional data 

2. Registration: align all images with the native T2 space and the neonatal atlas space 
3. Susceptibility and motion correction: Perform slice-to-volume motion correction and 

dynamic susceptibility distortion correction, and estimate motion nuisance regressors  
4. Denoising: Estimate artefact nuisance regressors and regress all nuisance regressors 

from the functional data.  
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Figure 2. Schematic of the dHCP fMRI neonatal pre-processing pipeline. The schematic is segregated into the 4 main 
conceptual processing stages by coloured background; fieldmap pre-processing (red), susceptibility and motion correction 
(orange), registration (green), and denoising (purple). Inputs to the pipeline are grouped in the top row, and the main 
pipeline outputs are grouped in the lower right. Blue filled rectangles with rounded corners indicate processing steps, whilst 
black rectangles (with no fill) represent data. (dc) = distortion corrected; (mcdc) = motion and distortion corrected. 

 

3.2. Fieldmap pre-processing 
The EPI sequence is sensitive to field inhomogeneities caused by differences in magnetic 
susceptibility across the infant's head. This results in distortions in the image in the phase-
encode (PE) direction, particularly at tissue interfaces. However, if the susceptibility-induced 
off-resonance field is known, these distortions are predictable and can be corrected.  
 
The dHCP functional pipeline uses FSL TOPUP (Andersson et al., 2003) to estimate the 
susceptibility-induced off-resonance field from the spin-echo EPI with opposing phase-
encoding directions, and converts that to a voxel displacement field to correct the EPI 
distortions. The input to TOPUP is two volumes of the spin-echo EPI for each phase-
encoding direction. These volumes will have different distortions because of the differing PE 
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directions, so TOPUP uses an iterative process to estimate an off-resonance field that 
minimises the distortion corrected difference between the two images.  
 
The dHCP spin-echo EPI has 8 volumes with 2 PE directions (4 x AP, 4 x PA). Any 
movement of the subject during acquisition results in striping artefact in the PE direction (see 
Figure 3). The two-best spin-echo EPI volumes (1 per PE direction) are selected as inputs to 
TOPUP. Here, "best" is defined as the smoothest over the z-dimension, which avoids motion 
artefact characterised by intensity differences between slices, a characteristic "stripy" 
appearance. This z-smoothness metric is obtained per volume by calculating the voxel-wise 
standard deviation of the slice-to-slice difference in the z-dimension and then selecting the 
minimum standard deviation per volume. 
 

 
Figure 3. (A) Eight volumes of the spin-echo EPI from a single subject with AP (left) and PA (right) phase encode 
directions. Z-smoothness scores are presented with each volume. The two volumes in the last row have stereotyped striping 
artefact due to subject movement, resulting in higher z-smoothness scores. The two volumes in the first row were selected as 
the two "best" images based on z-smoothness. (B) Motion and distortion corrected spin-echo EPI (upper) and estimated 
susceptibility-induced off-resonance field (lower) derived from the spin-echo EPI in (A) using FSL TOPUP. (C) Distribution 
of z-smoothness across all subjects (N=538). 

 
The method described above worked well for selecting the best spin-echo EPI volume pair, 
but it was difficult to find a threshold to determine if this pair was "good enough". It was 
therefore combined with visual inspection, and 12.7% (75 of 590) were visually identified as 
having significant movement contamination in all of the volumes for the given subject. In this 
circumstance, the fall-back procedure was to use the dual-echo-time-derived fieldmap instead 
of the spin-echo-EPI-derived fieldmap. Where possible, the spin-echo-EPI-derived fieldmap 
was used in preference to the dual-echo-time-derived fieldmap due to higher anatomical 
contrast in the magnitude image allowing more reliable registration to the structural T2w 
image (see Figure 4). Furthermore, the lack of contrast in the dual-echo-time-derived 
fieldmap magnitude meant that it was often impossible to adequately judge the quality of the 
registration.  
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To ensure that the dual-echo-time and spin-echo-EPI derived fieldmaps could be used 
interchangeably, we evaluated the similarity between the two. For each subject the spin-echo-
EPI and dual-echo-time fieldmaps were resampled to the native functional space and then 
converted to a voxel displacement/shift map using FSL FUGUE. The shift maps were then 
masked by an eroded brain mask, to avoid edge effects as a consequence of registration 
misalignment. Figure 4 presents an example dual-echo-time and spin-echo-EPI derived 
fieldmap from a single subject, as well as the distribution of voxel displacements for all in-
brain voxels from 409 subjects that had good quality dual-echo-time and spin-echo-EPI 
derived fieldmaps. The single-subject fieldmaps look qualitatively similar, although the dual-
echo-time-derived fieldmap appears smoother and the spin-echo-EPI-derived fieldmap 
appears to have greater values. This is supported by the voxel displacement distribution 
where the spin-echo-EPI-derived fieldmap has a slightly greater mean voxel displacement 
and longer tails than the dual-echo-time-derived fieldmap. Two factors likely contribute to 
this difference, 1) the dual-echo-time fieldmap was acquired at lower resolution than the 
spin-echo-EPI (3x3x6mm and 2.15mm isotropic respectively), and 2) the dual-echo-time-
derived fieldmap was low-pass filtered as part of the reconstruction process. Furthermore, the 
distribution of the voxel-wise difference between the dual-echo-time and spin-echo-EPI 
displacement/shift maps shows that 95% of voxels differ by less than 1 voxel shift and 99% 
by less than two voxels. We also inspected the distribution of spatial correlation between 
dual-echo-time and spin-echo-EPI derived fieldmaps across subjects, and observed good 
correspondence with 75% (i.e., 25th percentile) of subjects showing correlation > 0.6. Given 
that the ground truth is unknown and that both the dual-echo-time and spin-echo-EPI derived 
fieldmaps are qualitatively and quantitatively similar, we felt justified in using the dual-echo-
time-derived fieldmap as a back-up in cases where the spin-echo-EPI-derived was 
excessively contaminated by movement.  
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Figure 4. Upper: exemplar gradient-echo and spin-echo derived fieldmaps and magnitude from a single-subject. The spatial 
correlation of the two fieldmaps is 0.71. Middle: distribution of voxel displacement/shift and the voxel-wise difference for in-
brain voxels from 409 subjects. Lower: distribution of spatial correlation between gradient-echo and spin-echo fieldmaps 
from 409 subjects. 

 

3.3. Registration to native structural and group template space 
There are two main target volumetric alignment spaces within the dHCP fMRI pipeline (see 
Table 1); 1) the within-subject structural space defined as the subject’s native T2w space, and 
2) the between-subject group standard space defined as the 40-week template from the dHCP 
volumetric atlas (Schuh et al., 2018). We refer to these spaces as structural and template 
respectively.  
 
The brain is undergoing rapid developmental changes during the perinatal period, that require 
explicit consideration when registering to these spaces. Specifically, 

1. The myelination of the white matter is still maturing, resulting in inversion of 
T1w/T2w MRI contrast when compared to adult brain scans. The impact of this 
inhomogeneous myelination can be mitigated by using the T2w image as the 
structural target space, as opposed to the T1w which is more typical in adult cohorts. 
Furthermore, where possible we use the BBR cost-function for intra-subject 
registrations, which only samples the image intensity along the high-contrast 
GM/WM boundary to create an intensity gradient, and is more resistant to the 
inhomogeneous myelination than other registration cost functions that uniformly 
sample the whole image. 

2. The brain increases greatly in both size and gyrification during the perinatal period, 
which makes it challenging to define an unbiased common template space for group 
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analyses. Therefore, we use a bespoke developmental atlas developed using dHCP 
data (Schuh et al., 2018)(see Figure 7). The dHCP volumetric atlas contains T1w/T2w 
volumetric templates per week from 36-43 weeks PMA. We have augmented it with 
week-to-week nonlinear transforms estimated using a diffeomorphic multi-modal 
(T1w/T2w) registration (ANTs SyN) (Avants et al., 2008). 

 
An additional registration challenge is that the dHCP uses a fast-multi-band EPI sequence 
which is advantageous with regard to minimising the impact of motion (see section 3.4), but 
which results in poorer tissue contrast. We mitigate this by using a single-band reference 
image (sbref) as an intermediate registration target, as per the adult HCP pre-processing 
pipelines (Glasser et al., 2013).  
 
Another consideration when developing the registration protocol was to ensure reliability 
across a large cohort so that we could minimise manual intervention. We found empirically 
that BBR was more robust than other registration cost functions. We attribute this to the fact 
that BBR only samples the image along the more reliable high-contrast WM/GM boundary 
and is therefore less susceptible to image defects.   
 
Table 1. Spaces and transforms used in the dHCP neonatal fMRI pipeline. Superscript (-1) refers to the inverse of the 
transform.  

Spaces 
functional (func) Native multiband EPI space 

sbref Native single-band EPI reference space 
structural (struct) Native T2w space 

fieldmap (fmap) Derived fieldmap space 

template dHCP 40-week template space 

Primary Registrations Degrees of freedom 
(a) fieldmap-to-structural rigid 

(b) sbref-to-structural rigid 

(c) functional-to-sbref (distorted) rigid 
(d) functional-to-sbref (undistorted) rigid 

(e) template-to-structural nonlinear 

Composite Registrations 
(a) Å (b)-1 Å (c)-1 fieldmap-to-functional rigid 

(d) Å (b) functional-to-structural (undistorted) rigid 

(d) Å (b) Å (e)-1 functional-to-template (undistorted) nonlinear 

 
To achieve alignment to structural and template spaces we perform five primary registrations 
(see Table 1): (1) fieldmap-to-structural, (2) sbref-to-structural, (3) functional-to-sbref 
(distorted), (4) functional-to-sbref (distortion-corrected), and (5) template-to-structural. From 
these five primary registrations, a variety of composite alignments can be calculated, most 
importantly: (1) fieldmap-to-functional, (2) functional-to-structural (undistorted), and (3) 
functional-to-template (undistorted). Further detail on these registration steps is presented in 
Supplementary Section 9.1. 
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Registration quality was assessed on the dHCP-538 dataset for each of the primary 
registrations by evaluating the similarity of the source (moving) image (re-sampled to 
reference space) and the reference (fixed) image. Normalised mutual information (NMI) was 
used as a metric of similarity (see Table 2).  
 
The distribution of the NMI for each of the primary registration steps is presented in Figure 5. 
All the distributions appear unimodal and there are very few outliers on the lower tail (i.e., 
less similar). The pipeline flags these outliers for manual investigation. Furthermore, these 
registrations were also manually visually checked.  
 

 
 
Figure 5. Distribution of the z-scored normalised mutual information between the source image and the reference image 
(both in reference space) for each of the primary registration stages fieldmap-to-structural, functional-to-sbref (distorted), 
functional-to-sbref (undistorted), sbref-to-structural, and template-to-structural. More positive NMI z-scores indicate more 
similarity and more negative NMI z-scores indicate less similarity. 

 
Figure 6 presents example representative alignments of the fieldmap-to-structural, the sbref-
to-structural and the standard-to-structural registrations, at differing levels of quality as 
quantified by the NMI similarity metric. We selected the 5th, 50th and 95th percentile of 
NMI distribution, with the 5th representing the lower-end of alignment quality (whilst 
excluding outliers). The 5th percentile fieldmap in this figure is a dual-echo-time-derived 
fieldmap magnitude and the lack of tissue contrast is clear; this not only makes registration to 
the structural space difficult, but also makes it hard to judge the quality of the registration. At 
the 50th and 95th percentiles, the fieldmap magnitude images are spin-echo-EPI-derived and 
have good tissue contrast and alignment to the structural space. The GM/WM boundary of 
the sbref-to-structural qualitatively appears to align well at all three percentiles; however, at 
the 5th percentile there are clear anterior distortions which would impact the quantitative 
assessment of registration quality. Given that the sbref has been distortion corrected, we 
conclude that these distortions are irrecoverable signal loss. There are some observable 
alignment errors in the template-to-structural, most noticeably at the 5th percentile. However, 
this appears qualitatively comparable to aligning adult data to a common template.  
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Figure 6. Examples of fieldmap, sbref, and template images resampled to the native structural reference space. The outline 
of the native structural white-matter discrete segmentation is overlaid in green. Examples were selected at the 5th, 50th and 
95th percentile of normalised mutual information between the source image and the reference image (both in reference 
space). Note: that the 5th percentile fieldmap is dual-echo-time-derived and therefore lacking tissue contrast, whilst the 50th 
and 95th percentile fieldmaps are spin-echo-EPI-derived 

 
Figure 7 presents the dHCP 40-week T1w/T2w template, as well as group average and 
standard deviation of the structural T2w and functional (temporal mean) in the template 
space. The group mean structural (T2w) has good anatomical contrast, although it is not as 
sharp as the template image, which likely reflects our decision to balance alignment with 
regularisation as discussed in Supplementary Section 9.1. The group mean functional also 
demonstrates anatomical contrast, but there are two distinct areas of lower intensity (observed 
in the mean) and high variability (observed in the stdev). The first is in inferior temporal and 
frontal areas which are most affected by susceptibility distortions and signal loss, and the 
second is in inferior occipital and superior-anterior cerebellum. It appears that this latter 
effect may be related to higher susceptibility induced variation (compared to adults) close to 
the transverse sinus in neonates, which is large in diameter and “ballooned” in the neonatal 
period as the venous system is still developing (Okudera et al., 1994). This observation is 
under further investigation. 
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Figure 7. Upper: 40-week T2w and T1w dHCP templates. Middle: group mean and standard deviation (N=512) of structural T2w in template space. Lower: group mean and standard deviation 
(N=512) of functional (mean) in template space. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 12, 2019. ; https://doi.org/10.1101/766030doi: bioRxiv preprint 

https://doi.org/10.1101/766030
http://creativecommons.org/licenses/by/4.0/


	 16	

 

3.4. Susceptibility and motion correction 
 
It is well documented that rfMRI analyses are very sensitive to subject head motion (Power et 
al., 2014). Head motion results in a number of imaging artefacts, many of which are not 
typically corrected in traditional adult pipelines, specifically: 

1. Volume and slice misalignment. Volume misalignment is due to inter-volume 
movement and is usually effectively corrected using rigid-body registration-based 
motion correction. Intra-volume movement artefacts are a consequence of rapid 
subject movement during the sequential acquisition of the slices, or multi-band 
groups of slices, that constitute a volume. If, for example, the subject moves between 
the acquisition of the first and the second group of slices, the slices will no longer 
constitute a true volumetric representation of the object when stacked together, most 
noticeably by jagged edges of the brain (see Figure 8: Raw).  

2. Susceptibility-by-movement distortion. Placing a subject in the scanner disrupts the 
static magnetic field because different tissues have different susceptibility to 
magnetisation. This field inhomogeneity results in distortions in the acquired image. 
The exact details of the disruption are defined by the configuration of tissue and air 
(sinuses, ear canals etc). To correct these distortions, it is common to estimate the 
field and use this to correct (unwarp) the acquired image. However, any subject 
movement that involves a rotation of the head around an axis non-parallel to the 
magnetic flux (z-axis) changes that field, which in turn changes the distortions in the 
image. That means that volumes acquired with the subject in different orientations 
will be subject to different distortions, and correction with a static estimate of the 
field, even with a rigid-body (re-)alignment, will not be sufficient to correct the 
changing distortions due to motion (see Figure 9: Raw). 

3. Spin-history artefacts. Movement during scanning can cause subsequent excitations 
to be misaligned with previous ones, resulting in differential excitation of 
magnetization at the slice boundaries; this leads to a striping effect in the image 
intensity (see Figure 11: Multi-band). The dHCP fMRI pipeline employs an ICA-
based denoising method to remove spin history effects (see Section 3.5). 
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Figure 8. Exemplar single-volume of an EPI from a single-subject with intra-volume movement contamination from a left-
right head movement (upper) and a front-back head movement (lower), before (Raw) and after motion and susceptibility 
distortion correction (MCDC), and after FIX denoising (Denoised).  

 
Figure 9. Five exemplar volumes of an EPI from a single-subject with susceptibility-by-movement distortion due to head 
motion. The rigid data in the top row have been rigid-body motion corrected, and anterior distortions can be observed in 
volumes 1154 and 1156 where the front of the brain extends beyond the reference line (green-dashed line). The anterior 
distortions are diminished after motion and susceptibility distortion correction (MCDC), and more so after denoising.  
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A popular and effective method of dealing with head motion is using spike regression 
(Satterthwaite et al., 2012) or scrubbing (Power et al., 2014, 2012). These techniques both 
identify time-points (whole volumes) and then censor these volumes so that they do not affect 
downstream analysis. The methods differ in how they identify the contaminated volumes and 
how they censor the contaminated volumes (Parkes et al., 2018). Both methods use 
framewise displacement (FD; see Table 2) with a fixed displacement threshold to identify 
contaminated volumes. Scrubbing additionally uses DVARS (see Table 2), also with a fixed 
threshold. Censoring in spike regression is achieved by creating a nuisance regressor per 
contaminated volume, whereas scrubbing either excludes contaminated volumes and/or 
replaces contaminated volumes with surrogate data depending upon what is appropriate for 
downstream processing. Additionally, both techniques employ a heuristic that discards entire 
subjects if there are insufficient uncontaminated time-points.  
 
These censoring methods can be expensive in terms of the number of volumes censored, 
particularly in high-motion cohorts such as neonates. This is particularly true for the dHCP 
because the babies are scanned without sedation. Using framewise displacement as a 
surrogate for head motion and a threshold of 0.25 mm, as advocated by Satterthwaite et al. 
(2013), results in ~20% of TRs being flagged as motion corrupted. Furthermore, if we 
exclude subjects with < 4 minutes of continuous uncorrupted data, the minimum 
recommended in spike regression and scrubbing (Parkes et al., 2018; Power et al., 2014; 
Satterthwaite et al., 2013), then only 18 of 538 subjects are retained. Thus, given the nature of 
the data, a more precise approach is desirable. Furthermore, we would ideally wish to avoid 
introducing a hard-censoring step at an intermediate processing point, which may have 
ramifications for downstream processing.  Therefore, we have opted for a principled 
approach of correcting for artefacts introduced by motion (described in this section) 
combined with ICA-based denoising (see Section 3.5) which enables us to mitigate the 
effects of motion without excluding any subjects or time-points. Censoring methods remain a 
downstream option for researchers using the released data.  
 
Motion and distortion correction (MCDC) are performed using the FSL EDDY tool. EDDY 
was designed for diffusion data and its extension for functional data is novel. When applied 
to fMRI, EDDY does not model eddy currents (as these are extremely low in fMRI), it 
instead treats each fMRI volume as a diffusion B0, using the temporal mean as a predictive 
model. The motivation for using EDDY on fMRI data is that it is capable of correcting for 
intra-volume movement artefacts (Andersson et al., 2017) and for artefacts associated with 
susceptibility-induced off-resonance field changes (susceptibility-by-movement artefacts) 
(Andersson et al., 2001).  
 
EDDY performs a slice-to-volume (S2V) reconstruction to correct for intra-volume 
movement. This is achieved by using a continuous discrete cosine transform model of 
movement over time with degrees of freedom less than or equal to the number of slices (or 
multiband groups) (Andersson et al., 2017).   
 
EDDY corrects for the susceptibility-by-movement distortion (MBS) by estimating rate-of-
change of off-resonance fields with respect to subject orientation (Andersson et al., 2018, 
2001). These form parts of a Taylor-expansion of the susceptibility-induced field as a 
continuous function of subject orientation and allows for the estimation of a unique 
susceptibility field for each volume. 
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The fieldmap in native functional space (fieldmap-to-functional, see Section 3.2) is input to 
EDDY and is used as the zeroth term of the Taylor-expansion of the field. The full MCDC 
proceeds by first estimating volume-to-volume movement, followed by estimation of slice-to-
volume (intra-volume) movement. Finally, the changing susceptibility field is estimated, 
interspersed with updating of the slice-to-volume movement estimates. Once all the 
parameters have been estimated a single resampling of the data is performed using a hybrid 
2D+1D spline interpolation (Andersson et al., 2017). 
 
MCDC was evaluated on the dHCP-40 fMRI. For comparison, a rigid-body (between-
volume) motion correction was also applied to the fMRI data using FSL MCFLIRT 
(Jenkinson et al., 2002). Temporal signal-to-noise (tSNR) spatial maps were calculated for 
each subject on the raw (RAW) fMRI time-series, after rigid-body motion correction 
(RIGID), after slice-to-volume reconstruction (S2V), and after S2V and susceptibility-by-
movement distortion correction combined (S2V+MBS). The tSNR maps, for each MCDC 
condition per subject, were resampled to standard space and voxel-wise group differences 
between the MCDC conditions calculated. Statistical evaluation of each of the tSNR 
difference maps was performed with a voxel-wise one-sample t-test using FSL 
RANDOMISE with 5000 permutations (Winkler et al., 2014). Thresholded group activity 
maps were corrected for multiple comparisons with false discovery rate (FDR) correction and 
a threshold of 1.67% (calculated as 5% divided by the number of tests).  
 
Rigid-body (RIGID) motion correction significantly improves tSNR compared to the RAW 
data (see Figure 10) mostly at the cortex and edges of the brain. S2V correction significantly 
improves tSNR compared to RIGID across the whole brain, and S2V+MBS further improves 
tSNR in anterior and posterior areas where susceptibility distortions are expected. The 
correction of intra-volume motion artefacts can be visually observed in an exemplar volume 
from a single subject in Figure 8 (MCDC), and the correction of susceptibility-by-movement 
distortions can be observed in an example subject in Figure 9 (MCDC). On the larger cohort 
of the dHCP-512, the combined motion and distortion correction stage (comprising S2V and 
MBS) significantly improves tSNR across the whole brain compared to the raw data (Figure 
14).  
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Figure 10. Left: mean tSNR (N=40) for raw EPI (RAW), rigid-body motion correction (RIGID), slice-to-volume motion 
correction (S2V), and S2V + susceptibility-by-movement distortion correction (S2V+MBS). Centre and right: difference 
maps and t-statistics for RIGID tSNR minus RAW tSNR (upper), S2V tSNR minus RIGID tSNR (middle) and S2V+MBS tSNR 
minus S2V tSNR (lower). Only significant results shown. Multiple comparison correction was achieved by FDR correction 
with a 1.67% threshold (5% divided by the number of tests). The slice coordinates for the difference maps and t-statistic 
maps were selected by the maximum t-statistic. 

 

3.5. Denoising 
Even after motion and susceptibility distortion correction there are still residual motion-
related artefacts (for example, due to spin history effects) that need to be dealt with. There are 
also a number of additional structured noise artefacts, unrelated to head motion, that need to 
be addressed. Therefore, we perform a denoising procedure based on spatial independent 
component analysis (sICA) to remove these structured noise artefacts. SICA has proven to be 
a powerful tool for separating structured noise from neural signal and is widely used for 
denoising fMRI in both adults and infants (Alfaro-Almagro et al., 2018; Griffanti et al., 2017; 
Mongerson et al., 2017; Smith et al., 2013) and has proven to be of great value in connectome 
projects including the (adult) Human Connectome Project and UK Biobank. 
 
sICA 
 
The (motion and distortion corrected) single-subject functional time-series was high-pass 
filtered (150s high-pass cutoff) to remove slow drifts, but no spatial smoothing was 
performed. SICA was performed using FSL MELODIC (Beckmann and Smith, 2004). The 
sICA dimensionality was automatically set using MELODIC's Bayesian dimensionality 
estimation, however it was capped at an upper limit of 600 components (26% of the number 
of timepoints). Whilst we were conscious of not wanting to reduce the DOF too much, the 
decision to implement the cap was a pragmatic attempt to reduce the computational cost of 
the pipeline. We found in earlier iterations of the pipeline on smaller subsets of data that very 
few subjects were constrained by the 600 cap, and those that were constrained mostly 
contained a higher number of unclassified noise components (data not shown). 
 
The main types of component observed in the dHCP sICA (see Figure 11 for examples) were: 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 12, 2019. ; https://doi.org/10.1101/766030doi: bioRxiv preprint 

https://doi.org/10.1101/766030
http://creativecommons.org/licenses/by/4.0/


	 21	

1. Signal. Characterised by low frequencies and spatial clustering. Unlike adult ICs we 
often observe residual motion related jumps in the signal time-course, therefore we do 
not use that as a basis for exclusion.  

2. Multi-band artefact. Characterised by the “venetian blind” effect (stripes in the 
sagittal and coronal planes) in the spatial maps and the time-course typically shows 
jumps that correlate with motion spikes. This artefact likely comprises the spin-
history effects (described Section 3.4) as well as inter-slice leakage.  Leakage results 
from imperfect multi-band reconstruction, and therefore residual signal from any 
given slice can “leak" to co-excited slices after separation, which results in 
correlations between the slices over time.  

3. Residual head-movement. Characterised by a ring (or partial ring) at the edge of the 
brain in the spatial map, and time-course that strongly reflects the motion parameters 
or framewise displacement.  

4. Arteries. In adults this would be characterised by activity in the spatial maps in the 
middle cerebral branches and a distinctive high-frequency spectrum. However, with 
the neonates we do not have sufficient spatial resolution and so rely almost 
exclusively on the power spectrum. This artefact is less commonly observed than the 
other artefacts in the dHCP data.  

5. Sagittal sinus. Similar to adults, the main characteristic used to identify the sagittal 
sinus artefact is the superior inter-hemispheric ring in the sagittal plane of the spatial 
map. The sagittal sinus was often difficult to identify, and potential candidates were 
often labelled as “unknown” because the rater was not completely confident in the 
classification.  

6. Unclassified noise. Does not clearly belong to one of the other structured noise 
categories and is characterised by a scattered spatial pattern, and often has jumps in 
the time course consistent with motion spikes.  

7. CSF pulsation. Although not shown in the figure, we occasionally observe CSF 
pulsation characterised by a spatial overlap with the ventricles. 
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Figure 11. Exemplar spatial maps (left), time-courses (center), and power spectra (right) for independent components (IC) 
from a single subject. Each row is a different IC that was manually classified as stereotypical for signal, multi-band artefact, 
head movement, arteries, sagittal sinus, and unclassified noise. Framewise displacement is plotted in the last row as a 
reference for the amount and timing of movement for this subject. 

FIX 
 
Artefactual independent components (ICs) were identified automatically using FMRIB's 
ICA-based Xnoiseifier (FIX) v1.066 (Salimi-Khorshidi et al., 2014) which uses an ensemble 
machine learning classifier to label ICs as either artefact or not (ergo signal).  
FIX was trained on a subset of manually labelled independent components (ICs) from 35 
subjects. This subset was labelled using the scheme outlined in Griffanti et al. (2017) by a 
single investigator as signal, artefact, or unknown. The age range of the 35 subjects was 27.2 
– 45.1 weeks PMA, the total number of manually labelled ICs was 4947.  
 
As is the general theme of this paper, the nature of the neonatal data posed specific 
challenges for the manual IC labelling. In particular, the low spatial resolution relative to the 
size of the brain and the resulting partial-voluming made it more challenging to identify some 
of the components that would typically rely heavily on spatial features in adults, such as 
overlap with GM, WM and CSF. Therefore, we tended to rely more heavily on the time-
courses. However, even in the time-courses, Griffanti et al. (2017) would recommend that 
signal should be “without sudden, abrupt changes” which we found to be too constraining in 
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these data. Clearly stereotyped artefact components (head-movement, multi-band artefact, 
sagittal sinus, arteries, CSF pulsation, and unclassified noise) were labelled as “noise”. Any 
components that were unclear and/or difficult to judge were labelled as “signal”.  
 
FIX was trained on the manually-labelled sICA data with a leave-one-out (LOO) training 
scheme. The median LOO true positive rate (TPR) was 100% and the median true negative 
rate (TNR) was 96%, indicating that the classifier erred on the side of inclusion (i.e. more 
likely to include noise than discard signal). This is a desired characteristic and is the reason 
that uncertain components were labelled as “signal”. 
 
MELODIC/FIX was applied to the dHCP-538 dataset. The minimum number of ICs 
decomposed for a subject (i.e., ICA dimensionality) was 42, whilst the cap on the automatic 
dimensionality estimation of MELODIC resulted in 40 (7.4%) decompositions being 
constrained to the maximum dimensionality of 600. The proportion of ICs per 
subject/decomposition classified as noise and flagged for removal ranged from 53.2% to 
100%, with a mean of 92.1% (see Figure 12). This is consistent with adults where the mean 
percentage of ICs classified as noise is typically ~70-90% (Griffanti et al., 2017). The 
number of ICs per subject/decomposition classified as signal, and therefore flagged for 
retention, ranged from 0 to 46.8% with a mean of 7.9%.  
 

 
Figure 12. Distribution across decompositions of percentage of components (per decomposition) classified as signal or 
noise by FIX. 

 
There were 19 subjects for whom all ICs were classified as noise. However, this does not 
necessarily mean that these data contained no signal, rather it means that signal information 
was not contained within the (constrained) reduced dimensionality on which the ICA was 
performed (and hence such signal would not be removed by the ICA denoising). Therefore, 
these data were still retained for further analysis.  
 
Figure 13 shows that motion has a strong impact on the IC classification with the number of 
signal ICs decreasing with head movement (Spearman r=-0.5) and the number of noise ICs 
increasing (r=0.64). Age has a smaller impact with older babies tending to have more signal 
ICs (r=0.44) and less noise ICs (=-0.28). This could be related to older babies tending to 
move more (see Figure 19), or could be a consequence of relative spatial resolution with 
younger babies having smaller brains relative to the resolution of the acquisition.  
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Figure 13. Correlation of the number of ICs classified by FIX as signal (left) and noise (right) with head movement, where 
mean framewise displacement is used as a surrogate for motion contamination. Age is the post-menstrual age-at-scan in 
weeks. 

Nuisance regression 
 
The FIX noise ICs and the motion parameters (see Table 2) were simultaneously regressed 
from the motion and distortion corrected functional time-series. The pipeline also supports 
inclusion of other nuisance regressors, such as FD outliers and DVARS outliers (see Table 
2), physiological noise regressors, and tissue regressors. The inclusion of FD/DVARS 
outliers would effectively perform spike regression (Satterthwaite et al., 2013). However, 
given our motivation to minimise pre-processing we have not included additional nuisance 
regressors (beyond artefact ICs and motion parameters).  
 
TSNR spatial maps were calculated for each subject on the raw (Raw) fMRI time-series, after 
motion and distortion correction combined (MCDC), and after denoising (Denoised). The 
tSNR maps were resampled to standard space and voxel-wise group differences between 
conditions calculated. Statistical evaluation of each of the tSNR difference maps was 
performed with a voxel-wise one-sample t-test using FSL RANDOMISE with 5000 
permutations (Winkler et al., 2014). Thresholded group activity maps were corrected for 
multiple comparisons with FDR and a 2.5% threshold (calculated as 5% divided by the 
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number of tests). After FIX denoising, the tSNR is substantially and significantly improved 
across the whole brain, with the greatest improvement seen in cortical areas (see Figure 14).  
 

 
Figure 14. Left: mean tSNR (N=512) for raw EPI (RAW), motion and distortion corrected EPI (MCDC), and denoised EPI. 
Centre and right: difference maps and t-statistics for MCDC minus RAW tSNR (upper), and denoised minus MCDC tSNR 
(lower). Only significant results shown. Multiple comparison correction was achieved by FDR correction with a 2.5% 
threshold (5% divided by the number of tests) 

 
Voxplots (aka. “carpetplots” and “grayplots”) comprise a heat-map of voxel x time fMRI 
intensities (with mean and linear trend removed) along with plots of nuisance time-series 
such as DVARS and framewise displacement (surrogates for motion). Voxplots were 
developed by Power (2017) and are advocated as an informative way to visualise and asses 
scan quality. We have adapted them by converting each heat-map to a z-score and using a 
diverging colormap so that it accentuates divergence from the mean of zero. Voxplots for a 
single example subject for raw, motion and distortion corrected (MCDC), and denoised fMRI 
are presented in Figure 15.  
 
Strong vertical stripes can be observed in the pre-denoised data (raw and MCDC) that are 
contemporaneous with the worst spikes in the nuisance time-series (DVARS and framewise 
displacement).  
 
After motion and distortion correction, there is less variation in-between the vertical stripes 
compared to the raw fMRI, which can also be observed in the DVARS plot as lower values 
between the major spikes. The heat-map also shows that this reduced variation is largely 
limited to the white and gray-matter. The intensity of the vertical stripes also drops after 
motion and distortion correction, which is difficult to see in the heat-maps because each map 
is independently normalised to the standard score; however, it can be observed as lower 
amplitudes of the major spikes in the in the DVARS plot.  
 
After denoising, there a several striking differences in the voxplot. Firstly, the strong vertical 
stripes are replaced with closer-to-zero vertical stripes, indicating that the denoising has 
removed much of the variation at these times and the remaining signal is closer to the mean. 
This is represented by dips in the DVARS plot during these times. If spike regression were 
used we would expect to see that these periods would be exactly the mean and would thus be 
zero in both the heat-map and DVARS plot. Thus, ICA-based denoising seems to provide a 
qualitatively similar result to spike regression in these periods of time when motion is the 
worst. Secondly, the tSNR difference between the white-gray-matter and the sub-cortical 
areas is further increased, consistent with the spatial group-maps presented in Figure 14.  
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ICA-based denoising can subsume the role of spike regression when the motion is severe, 
however, it is less aggressive and does not simply remove all information during these 
periods. In practise, it will often remove much of the variance, but it can in principle leave 
residual signal if it is not modelled as artefact. We consider that scrubbing and spike 
regression are a “hard” form of temporal censoring, whereas ICA-based denoising is a less 
aggressive “soft” spatio-temporal censoring. In either case, subsequent analyses must 
appropriately account for the noise removal approach and the reduction or removal of BOLD 
signal during high motion periods. 
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Figure 15. “Carpet plots” for raw, motion and distortion corrected (MCDC), and denoised fMRI from a single exemplar 
subject. Carpet plots are adapted from (Power, 2017) with the modification that each heat-map is converted to a z-score and 
a diverging colormap is used.. Mean and trend were removed from each heat-map. GM=gray-matter, WM=white-matter, 
SC=sub-cortical, CB=cerebellum, BS=brainstem. 
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3.6. Quality control/assurance 
 
The fMRI pipeline automatically calculates a number of QC metrics (see Table 2) and 
generates an HTML QC report for each subject (Supplementary Figure 1). The report 
presents the QC metrics for the individual within the context of group distributions for the 
corresponding metrics.  
 
Table 2. Quality control metrics used in the dHCP fMRI pipeline. 

Metric Description 
Motion parameters (MP) 6 rigid-body motion time-series (3 rotation, 3 

translation) as estimated during motion correction 
DVARS DVARS is the RMS intensity difference between 

successive volumes (Power et al., 2012) 
DVARS outliers Binarised DVARS with threshold = 75th 

percentile + (1.5 x inter-quartile range) 
Framewise displacement (FD) FD is calculated as the average of the rotation and 

translation motion parameter differences (Power 
et al., 2012) 

FD outliers Binarised FD with threshold = 0.25 mm 
Temporal signal-to-noise ratio (tSNR) Per-voxel temporal mean divided by the temporal 

standard deviation 
Contrast-to-noise ratio (CNR) Temporal standard deviation of the contrast 

divided by the standard deviation of the noise, 
where the contrast is the functional image minus 
the noise, and the noise is the residual of dual 
regressing the group spatial maps onto the 
functional image.  

Normalised mutual information (NMI) The normalised mutual information between a 
source image and a reference image (both in 
reference space). 

 
A subset of the metrics are converted to z-scores (using the median absolute deviation which 
is more robust to outliers than the standard deviation), and sign flipped as necessary so that 
more positive values are better and negative values are worse (see Figure 16). Subjects that 
score less than -2.5 on any of the subset of metrics are considered to have failed the QC and 
are flagged for further manual inspection. The specific subset of measures used are mean 
denoised DVARS, mean denoised tSNR, func-to-sbref NMI, sbref-to-structural NMI, 
structural-to-template NMI, and fieldmap-to-structural NMI. Under this regime, out of the 
total of 538 subjects, 5 subjects failed mean denoised DVARS, 4 failed denoised tSNR, 3 
failed sbref-to-struct NMI, 18 failed template-to-struct NMI, and 4 failed fmap-to-struct. 
However, there was overlap of subjects between these failures, with a total of 26 subjects 
failing and thus 512 subjects passing. It is anticipated that a large proportion of the failed 
subjects can be recovered with improvements to the template-to-struct registration that are 
currently under investigation. 
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Figure 16. Group z-distributions of QC metrics. More negative z-scores indicate poorer quality on the respective metric.  Z-
scores less than -2.5 (indicated by red dashed line) are flagged as failing the pipeline and require further inspection.  

 

3.7. Resting-state networks 
 
Here we present group RSNs and their association with PMA as a validation that the dHCP 
fMRI pipeline can identify plausible RSNs, and to demonstrate the granularity of what can be 
extracted from this challenging cohort with suitable pre-processing.  
 
For the derivation of resting-state networks, we use PROFUMO, an implementation of the 
probabilistic functional modes (PFM) model as defined in Harrison et al. (2015). This 
approach uses a hierarchical Bayesian model to decompose the data into a set of functional 
modes (i.e., RSNs). Unlike most ICA-based approaches, group and subject-specific spatial 
maps associated with these modes are estimated simultaneously. The PFM model includes a 
number of different terms that regularise the decomposition, including, for example, 
hierarchical priors that encourage consistency in both the spatial layout of RSNs across 
subjects, and their patterns of functional connectivity (i.e., connectomes). The model also 
takes haemodynamics into account, as these dominate the temporal characteristics of the 
BOLD signal. As such, we base these priors on the work of Arichi et al. (2012), who quantify 
haemodynamic responses for neonates. Specifically, we used the FSL FLOBS tool (Woolrich 
et al., 2004) to construct a term and pre-term HRF model using the reported haemodynamic 
response characteristics described in Arichi et al. (2012). Figure 17 depicts the term and pre-
term HRFs that we constructed, along with the default adult HRF used in PROFUMO. Only a 
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single HRF model can be used within a PROFUMO analysis, therefore we used the term 
HRF model as the majority of the dHCP neonatal cohort are term age. The term HRF is 
characterised by a longer time to peak positive amplitude, a smaller positive peak amplitude 
and a deeper negative undershoot period relative to the adult HRF (Arichi et al., 2012). 
 

 
Figure 17. Term and pre-term HRF models constructed for this study, and the default adult HRF model within PROFUMO. 
The term and pre-term haemodynamic response characteristics are adapted from Arichi et al. (2012).  The amplitude of 
each HRF is rescaled as part of the fitting process, however, for visualisation purposes the peak amplitudes here have been 
scaled to be consistent with the measured amplitudes in Arichi et al. (2012).  

 
Formally, the PFM model simultaneously decomposes each dataset, !"#×%, into a set of M 
modes. These consist of subject-specific spatial maps &"#×', amplitudes ("', time courses 
)"'×% and network matrices ∑"'×'. These can be combined into a matrix factorisation 
model at the subject level i.e. !" ≈ &" × ,-./((") × )". These subject-level 
decompositions are linked via a set of hierarchical priors, which represent the group-level 
description of the data (and include, amongst others, the group-mean spatial maps and 
connectomes). This forms a complete probabilistic model for the data, and the group- and 
subject-level information is inferred together via a variational Bayesian inversion scheme. In 
other words, we not only infer subject-specific information in a sensitive manner, but we also 
infer the group-level properties of the RSNs themselves. 
 
PROFUMO was performed on the denoised volumetric data of 512 dHCP subjects that 
passed the pipeline QC (see Section 3.6) to resolve resting-state networks (RSNs). Prior to 
PROFUMO the data were spatially smoothed (FWHM=3mm) using FSL SUSAN, with an 
intensity threshold of 75% of the contrast between the median brain intensity and the 
background (Smith and Brady, 1997), and normalised to the grand median intensity as per 
FSL FEAT (Jenkinson et al., 2012). 16 RSNs were identified (see Figure 18) that show good 
correspondence to both adult (Smith et al., 2013) and infant RSNs (Doria et al., 2010; 
Mongerson et al., 2017).  
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Figure 18. PROFUMO modes qualitatively assessed as corresponding to adult resting-state networks. Hierarchical clustering based on spatial correlation between the modes. 
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Before regressing the RSNs on age to look for developmental changes, we examined a 
number of age-related confounds. Specifically, we correlated DVARS and FD (as surrogates 
for motion), tSNR, and brain volume (estimated as the number of voxels in the subject’s 
brain mask in func space). We observed a strong positive correlation of brain volume with 
age (r=0.86), a small positive correlation of mean DVARS (r=0.05) and mean FD (r=0.16) 
with age, and a small negative correlation of tSNR (r=-0.15) with age (see Figure 19). 
Movement and tSNR are clear confounds that we wish to control for, however brain volume 
is more challenging because it can be both a confound (due to differences in relative 
resolution and signal) and a legitimate feature of development. Here we control for brain 
volume and present RSN correlations with development.  
 

 
Figure 19. Age-related confounds. Age is the post-menstrual age-at-scan in weeks. 

 
We used FSL dual-regression (DR)(Nickerson et al., 2017) to regress all the PFM-group-
maps onto the individual subject fMRI to yield subject-specific time-courses and spatial 
maps. As recommended by Nickerson et al. (2017), when performing DR the subject-specific 
time-courses were variance normalised before the second stage of DR which means that the 
single-subject DR spatial maps capture both the spatial distribution of the network (i.e. 
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“shape”) as well as the “amplitude” of the network activity. To allow us to delineate the 
contribution of just amplitude alone, we additionally calculated the median absolute deviation 
of the DR time-courses (not variance-normalised) as an estimate of amplitude. To investigate 
changes with age, we regressed the spatial maps and amplitudes on age, controlling for 
DVARS, FD, tSNR, and brain volume (see Figure 20) using FSL RANDOMISE (Winkler et 
al., 2014) with 5000 permutations. Multiple comparison correction was achieved by FDR 
correction with a threshold of 0.31% (calculated as 5% divided by the number of tests; one 
test per RSN). 
 
The DR spatial maps show a significant effect for age in all modes, in voxels that are 
spatially consistent with the group PFM map. Furthermore, the DR amplitudes show a 
significant increase in network amplitudes with age for all modes, which indicates that the 
age effects are, at least partially, driven by this increased amplitude of network activity.  
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Figure 20. PROFUMO group spatial maps (PFM Map), t-statistic of age regressed on the DR spatial maps (t-stat), and DR 
amplitudes with age (Amplitude) for the 16 modes qualitative assessed as corresponding to adult resting-state networks. Age 
is the post-menstrual age-at-scan in weeks. Brain volume, mean DVARS, mean tSNR, and mean FD confounds are 
controlled. Only significant results are shown. Multiple comparison correction was achieved by FDR correction with a 
0.31% threshold (calculated as 5% divided by the number of tests; one test per RSN) 

4. Discussion 
In this paper we present an automated and robust, open source pipeline to generate high-
quality minimally pre-processed neonatal fMRI data. The pipeline was developed to pre-
process the rfMRI data from the dHCP project for open-access release to the neuroimaging 
community. Using this pipeline on the dHCP neonatal cohort, we have been able to resolve 
16 resting-state networks with fine spatial resolution that are consistent with adult networks 
from the Human Connectome Project. Furthermore, we have sufficient spatio-temporal 
granularity to demonstrate significant changes in shape and amplitude of these networks with 
development from 27-45 weeks post-menstrual age.  
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A strong motivation during development of the pipeline was that it should perform “minimal” 
pre-processing to ensure that the scientific community would not be restricted in the 
subsequent analysis that they can perform on the data (although the fully raw data is also 
being made available). To this end, we have sought to minimise pre-processing, particularly 
resampling, whilst maximising output quality. The pre-processing steps we have included 
were selected and evaluated to ensure they provided a robust and principled approach to 
mitigating the specific challenges of neonatal data. The pipeline was run on 538 subjects 
from the dHCP neonatal cohort and only 26 failed due to quality control restrictions. These 
failures were mostly due to poor registration of the structural T1w/T2w to the template/atlas 
space. This is discussed further below. 
 
Automation was another key motivator in developing the pipeline. Given the number of 
subjects to be scanned as part of the dHCP project it was important to minimize manual 
intervention as much as possible. To this end, the pipeline is entirely automated including 
quality control and reporting. Operator intervention is required at only two stages, 1) to 
manually label a subset of independent components to train FIX, and 2) to visually inspect 
cases flagged by QC as outliers. Furthermore, the FIX classifier trained on dHCP data will be 
released along with the pipeline, which means that the first manual intervention step may be 
avoided if one’s data are sufficiently similar to the dHCP acquisition data.  
 
Subject head motion is the most challenging confound observed in the dHCP neonatal cohort. 
This motion disrupts the BOLD signal and can result in slice misalignments, susceptibility-
by-movement distortions, and spin history artefacts. Such artefacts are not typically dealt 
with in existing fMRI pre-processing pipelines. We present a novel application of the EDDY 
tool, which was originally designed for diffusion data, to correct for the slice misalignments 
and susceptibility-by-movement distortions. We further incorporate an ICA-based denoising 
procedure to remove spin-history effects and any residual motion artefacts. This ICA-based 
denoising can also account for a variety of other artefacts including multi-band artefacts, 
arteries, CSF pulsation, and sagittal sinus. As a consequence of these pre-processing 
strategies, we see large and significant improvement in tSNR across the whole brain, but 
particularly in cortical areas. This improvement is driven largely by a reduction in variation 
from the aforementioned artefacts.  
 
An important consideration that needs to be made when using the pipeline is that EDDY can 
only be run using a GPU. The EDDY-based motion and distortion correction on a single 
dHCP subject (2300 volumes) takes 6-12 hours on a NVIDIA K80 GPU. If limited resources 
mean that EDDY is not viable, the pipeline can fallback to a (CPU-based) rigid-body 
volume-to-volume registration-based motion correction and static fieldmap-based distortion 
correction. An fMRI-specific version of EDDY is intended to be released in a future version 
of FSL.  
 
The dHCP neonatal fMRI pipeline includes a robust registration framework to align the 
functional data with both the subject structural space (T2w) and the group standard space. 
Registration is made challenging by the rapidly changing size and gyrification of the neonatal 
brain, and the variable contrast caused by maturing myelination and the fast-multi-band EPI 
sequence. The protocol uses a series of primary registrations which can then be combined 
into composite transforms to move between the target spaces.  Care was taken to achieve 
high-quality primary registrations so that alignment errors would not accumulate when 
creating the composite registrations. To this end, the BBR cost function was found to be 
superior for intra-subject registrations and was used wherever possible. The weakest link in 
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the registration protocol was the template-to-structural non-linear registration, which resulted 
in 18 subjects being excluded by the automated QC due to insufficient alignment quality. 
Ongoing work is examining improvements to this registration step, including using the GM 
probability as another registration channel, as per Makropoulos et al. (2018), and optimising 
the parameters of the registration tools. 
 
The dHCP fMRI pipeline is not intended to be a single static release just for processing the 
dHCP data. During development we have focussed on flexibility and generalisability of the 
pipeline beyond the dHCP data. We have evaluated the pipeline on non-dHCP neonatal task 
fMRI data (Baxter et al., 2019), and collaborators within our centre have been evaluating the 
pipeline on non-neonatal data. To coincide with this paper, the first version of the pipeline 
will be released publicly (https://git.fmrib.ox.ac.uk/seanf/dhcp-fmri-pipeline-release) and this 
will mark the beginning of what we plan to be an ongoing, open, and hopefully collaborative, 
development process. To this end there is a roadmap of future features that are either already 
under development or planned: 

1. We have developed bespoke methods (adapted from adult HCP pipelines) for 
mapping the fMRI data to the surface and writing out to CIFTI format. These methods 
are still under evaluation. 

2. We are investigating alternative methods for dealing with contaminated fieldmaps, 
including the utility of a group average fieldmap. 

3. An fMRI-specific version of EDDY is under development that will be faster as well 
as incorporating a model that is better suited to fMRI data. 

4. Improvements to template-to-structural registration. 
5. Partial BIDs derivatives support is implemented, but full support is planned. 
6. Extensions for task fMRI have been developed and tested and will be merged into the 

pipeline  

5. Conclusion 
We have presented an automated and robust pipeline to minimally pre-process highly 
confounded neonatal data, robustly, with low failure rates and high quality-assurance.  
Processing refinements integrated into the dHCP fMRI framework provide substantial 
reduction in movement related distortions, resulting in significant improvements in SNR, and 
detection of high quality RSNs from neonates that are consistent with previously reported 
infant RSNs (Doria et al., 2010; Mongerson et al., 2017). Ongoing analyses are probing the 
fine structure of these networks, and their variability across subjects and age, with the aim of 
defining a multi-modal time-varying map of the neonatal connectome. The scientific 
community will be able to apply this pipeline to explore their own neonatal data, or to use 
publicly released dHCP data (pre-processed with this pipeline) to explore neonatal 
connectomics. 
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9. Supplementary 
9.1. Detailed registration methods 

Primary registrations: 
1. fieldmap-to-structural: rigidly align the derived fieldmap magnitude image (see 

Section 3.2) to the native structural T2w space using FSL FLIRT (Jenkinson et al., 
2002; Jenkinson and Smith, 2001). A boundary-based registration (BBR) (Greve and 
Fischl, 2009) cost function is used if the fieldmap was derived from the spin-echo 
using TOPUP. However, the correlation ratio cost function is used if the fieldmap was 
derived from the gradient-echo, because the magnitude image lacked sufficient 
anatomical detail for BBR. The fieldmap-to-structural transform is then applied to re-
sample the fieldmap image into the native structural space.  

2. sbref-to-structural: rigidly align the single-band EPI image (sbref) with the native 
structural T2w space and correct for susceptibility distortions in the sbref using FSL 
FLIRT, with the BBR cost function, and FSL FUGUE. This step requires the 
fieldmap to be in the native structural space (calculated in the previous registration 
stage) to correct for susceptibility distortions in the sbref. 

3. functional-to-sbref (distorted): rigidly align the functional multiband EPI image with 
the sbref using FSL FLIRT with the default correlation ratio cost function. This 
registration step is performed prior to susceptibility distortion correction of the 
functional multiband EPI as described in Section 3.4, therefore both the functional 
multiband EPI image and the sbref will contain susceptibility distortions. The first 
volume of the functional multiband EPI is used as the source (moving) image in this 
registration because the subsequent motion correction and distortion correction stage 
defines the functional space from the first volume (see Section 3.4).   

4. functional-to-sbref (undistorted): after motion correction and distortion correction, 
rigidly align the distortion-corrected functional multiband EPI image with the 
distortion-corrected sbref using FSL FLIRT with the default correlation ratio cost 
function. All volumes in the corrected functional multiband EPI image are aligned as 
consequence of the motion correction, therefore the temporal mean is used as the 
source (moving) image in this registration as it typically has superior SNR compared 
to a single volume.  

5. template-to-structural: align the structural image to the dHCP volumetric template 
(Schuh et al., 2018). Template-to-structural registration is performed with a multi-
modal non-linear registration (ANTs SyN)(Avants et al., 2008) of the age-matched 
T1w and T2w template to the subject’s T1w and T2w structural, which is then 
combined with the appropriate atlas week-to-week transforms to yield a (40 week) 
template-to-structural transform. We also evaluated FSL FNIRT (Jenkinson et al., 
2012) and MIRTK Register (Similarity+Affine+FFD transformation model) (Schuh et 
al., 2018) and found that Register achieved excellent alignment but was not 
sufficiently regularised, resulting in inversion inaccuracy, whilst FNIRT was well 
regularised but did not produce alignments with sufficient accuracy (data not shown). 
We expect that good results could be achieved with both tools if their parameters 
were optimised, however ANTs SyN provided a good trade-off between alignment 
and regularisation with minimal parameterisation. In the event that the age of the 
subject is outside the range covered by the atlas, the closest template age within the 
atlas is used. Furthermore, some subjects do not have a T1w image, so in this instance 
only the T2w is used.  

 
Composite registrations:  
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1. fieldmap-to-functional: constructed by combining the fieldmap-to-structural transform 
with the inverse sbref-to-structural and inverse functional-to-sbref (distorted) 
transforms. This allows for the fieldmap to be resampled to the native functional 
space, which is essential for the subsequent motion correction and distortion 
correction (Section 3.4). We have found that aligning the fieldmap with the functional 
via the structural is very robust and precise, largely because both sub-steps use BBR 
cost functions.  

2. functional-to-structural (undistorted): constructed by combining the functional-to-
sbref (undistorted) affine with the sbref-to-structural affine, which yields a linear 
transform that aligns the motion and distortion corrected functional multiband EPI 
with structural T2w.  

3. functional-to-template (undistorted): constructed by combining the functional-to-
structural (undistorted) transform with the inverse template-to-structural transform to 
yield the functional-to-template (undistorted) non-linear transform to align the motion 
and distortion corrected functional multiband EPI with the 40-week dHCP template 
space with a single resampling. 
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11. Supplementary Figures 
 

 
Supplementary Figure 1. Screen shot of automated QC report for a single subject. The fMRI pipeline automatically 
calculates a number of QC metrics (MP, DVARS, FD, tSNR, CNR, NMI; see Table 2) and generates this HTML QC report 
for each subject. The report presents each QC metric for the individual within the context of the group distribution for the 
corresponding metric. Additionally, the report also presents descriptive/qualitative summaries of the subject’s data quality 
in the form of “carpet plots” and spatial maps for each metric as applicable. The report generation tool utilises a variety of 
open source packages including Jinja2 (http://jinja.pocoo.org/docs/2.10/), Bootstrap (https://getbootstrap.com/), Pandas 
(https://pandas.pydata.org/), Numpy (https://www.numpy.org/), Seaborn (https://seaborn.pydata.org), Nilearn 
(http://nilearn.github.io/), FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki), and PtitPrince (https://github.com/pog87/PtitPrince). 
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