
  

Fig. 3: Localization maps of membrane proteins involved in the initial T-cell immune 

response. Positions of protein molecules obtained from SLN (white dots) at the 0 nm plane on either 

Jurkat T cells or human effector T cells are superimposed on membrane topography maps obtained 

from VA-TIRFM. The color bars represent distance from the glass in nm. Scale bars: 1 μm. 
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Fig. 4. Quantitative measures for the distribution of proteins on the T-cell surface: (A) 

Percentage of molecules on microvillar (MV) regions of the membrane. The values for individual 

cells are shown as dots in the plot. (B) Cumulative increase of the fraction of total molecules on 

each cell as a function of the distance from the central microvilli region, normalized by the 

cumulative increase in the fraction of area (Count/Area) as a function of distance from microvilli. 

(C) Maximum cluster sizes. The values for individual cells are shown as dots in the plot. The gray 

bars are averages over all cells measured at the 0 nm plane. Error bars represent standard errors of 

the mean. The E and J superscripts following some protein names denote values obtained with 

effector cells and Jurkat cells, respectively. When no superscript is shown, the values were obtained 

with Jurkat cells. 
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Fig. 5: F-Actin and p-ERM both localize within the microvilli of T cells. (A-B) Super-resolution 

localization maps of Alexa-647-phalloidin labelled F-actin (white dots) overlaid with the 3D surface 

reconstruction map, showing that F-actin localizes within microvilli. The color bars represent 

distance from the glass in nm. Scale bars: 1 μm. (C) TEM images of Jurkat cells showing the parallel 

actin filaments within microvilli (white arrows). (D) The zoomed image of the section indicated by 

red box in C. (E-G) Super-resolution localization maps of p-ERM molecules (white dots) overlaid 

with the 3D surface reconstruction map. The color bars represent distance from the glass in nm. 

Scale bar: 1 μm. (G) Percentage of p-ERM molecules on microvillar (MV) regions at the 0 nm and 

-400 nm planes for effector cells (ERME) and Jurkat cells (ERMJ). The values for individual cells 

are shown as points in the plot. (H) Cumulative increase of the fraction of total molecules on each 

cell as a function of the distance from the central microvilli region, normalized by the cumulative 

increase in the fraction of area as a function of distance from microvilli (δCount/δArea). The plots 

are averages over all cells measured. Error bars represent standard errors of the mean. (I-J) Super-

resolution image of the actin meshwork in the cytoplasmic region of a Jurkat cell.  (I) Super-

resolution image of the actin meshwork in a 1 μm section of the cytoplasmic region of a Jurkat cell, 

captured by a 3D super-resolution microscope. (J) A zoomed image of the section indicated by a 

red box in A 
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Fig. 6: Super-resolution microscopy reveals strong co-localization of p-ERM with F-actin and 

with TCRαβ. (A) Super-resolution image of a Jurkat cell labelled with Alexa 568 conjugated anti-

phospho-ERM antibodies (Green). (B) Super-resolution image of the same cell labelled with Alexa-

647 phalloidin (Red), which stains F-actin. (C) Same as A, but p-ERM molecules that have at least 

one actin molecule within a radius of 45 nm are marked yellow. (D) Super-resolution image of a 

Jurkat cell labelled with Alexa Fluor 647 anti-human TCRαβ antibodies (Red). (E) Super-resolution 

image of the same cell labelled with Alexa 568 conjugated anti-phospho-ERM antibodies (Green). 

(F) Same as in D, but TCRαβ molecules that have at least one p-ERM molecule within a radius of 

45 nm are marked yellow. Scale bars: 0.5 μm. 
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Figure 7. Effect of dominant-negative ezrin transfection on the localization of TCRαβ with 

respect to 3D topography of Jurkat T cells. (A) Percentage of TCRαβ molecules on microvilli as 

a function of different transfection levels. ‘No’ refers to no transfection, ‘L’- low, ‘M’- medium, 

‘H’- high. (B) Cumulative increase of the fraction of total molecules on each cell as a function of 

the distance from the central microvilli region, normalized by the cumulative increase in the fraction 

of area (δCount/δArea plot). The plots are averages over all cells measured. Error bars represent 

standard errors of the mean. (C) Change of maximum cluster sizes of TCRαβ molecules in response 

to different transfection levels. Labels as in A. (D) Correlation of percentage of TCRαβ molecules 

in the microvilli regions and the transfection efficiency, as measured through Alexa-405 intensity. 

The blue line is a guide to the eye. 
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