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Abstract

To cope with vast amounts of data produced by metabolomic and mixture analysis using
NMR, the employed analysis techniques and tools are very important. In this paper,
we demonstrate quantitative 1H and 2D-JRES NMR analysis of Arabidopsis thaliana
extracts utilizing our ImatraNMR and SimpeleNMR software to automate the processing
the spectra, extracting data, and perform statistical analysis of the results. Metabolomes
of four different strains of Arabidopsis thaliana are analyzed under control conditions and
during acute ozone exposure. Key differences are identified between accessions Col-0 and
Cvi-0 (epithionitriles, iberin nitrile) and ozone damage associated metabolite(s) can be
identified. Sample stability is also addressed.

Keywords: Quantitative NMR, qNMR, automated processing, Arabidopsis thaliana,
metabolomics

1. Introduction

Quantitative techniques and mixture analysis with NMR are becoming increasingly
common, while high-field NMR instruments, cryoprobes and autosamplers are available
to more researchers. Metabolite analysis, reaction monitoring/following or other mixture
analysis can produce vast amounts of complex spectra, which are difficult to analyze with5

traditional NMR processing software, as they are designed from the viewpoint of small-
molecule analysis. To accommodate these needs, features aimed for mixture analysis and
automation have been incorporated into commercial processing software (Agilent/Varian
CRAFT [1], Mnova GSD and qNMR [2], Bruker Biospin AMIX and IconNMR). The
rising popularity of utilizing NMR for metabolomics has also spawned many commercial10

and free tools suited for different stages and aspects of metabolite analysis: NMR Suite
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(Chenomx Inc. [3, 4]), rNMR [5], BATMAN [6, 7], Pathomx [8] and others [9, 10], with
publicly available databases [11, 12] and even web-applications available [13, 14].

Even with these developments, the workflow for processing and analyzing hundreds
of spectra can be a complex, and purpose-built tools might be suitable only for certain15

type of analysis, be vendor specific or expensive. More general purpose raw processing
tools such as NMRPipe [15] and NMRGlue [16] can be used in many tasks, but require
scripting or programming knowledge from the user. To address some aforementioned
limitations, we created simple, free, and multi-vendor processing/analysis software Ima-
traNMR and SimpeleNMR. These tools are more generic and suitable for automation20

than traditional processing programs, but are still somewhat simpler to use than raw
processing tools and provide data-analysis capabilities. While originally developed for
automated hydrocarbon analysis[17], in this paper we use updated versions of these tools
and demonstrate metabolite analysis of Arabidopsis thaliana extracts, and discuss various
difficulties and techniques associated with this type of analysis.25

1.1. Sensitivity and overlap
Metabolite analysis and mixture analysis in general using NMR has two main obsta-

cles: sensitivity and signal overlap. The most sensitive basic technique, 1D 1H NMR,
is simple to acquire and quite easily quantitative, but suffers from low chemical shift
dispersion and signal splitting due J-coupling. Multidimensional NMR techniques such30

as 2D HSQC provide significant boost in resolving power, but come with the cost of
reduced sensitivity and/or increased acquisition time. Multipulse experiments are also
more complex and depend on a large number of phenomena, including usually magnetiza-
tion transfer, rendering most experiments non-quantitative without careful preparation
and/or redesign of the experiment.35

If sample concentration is high enough (such as in hydrocarbon analysis), even quan-
titative 1D 13C NMR can be used, as it is simple to acquire and provides much greater
chemical shift dispersion [17]. While usually not accessible, it can be viable even in
metabolomic context if hyperpolarization can be utilized [18]. Essentially limitations in
resolving power can be generally transformed to limitations in sensitivity, providing that40

the spectrometer at hand can implement modern NMR techniques.
The resolving power of 1H spectra can also be improved by eliminating homonuclear

1H -1H couplings, rendering all signals to singlets. This is not trivially done, but several
modern techniques such as those based on Zangger-Sterk element are capable of creating
homonuclearly decoupled or pure shift 1H spectrum [19, 20], details of which can be found45

in recent review by Zangger [21]. Unfortunately most techniques suffer from prohibitive
sensitivity penalty of retaining only few percents of the signal, making them difficult
to utilize in metabolic analysis. The classic J-resolved spectra (2D-JRES)[22] processed
appropriately can also yield essentially decoupled spectra with less signal loss, while
quantitativity is sacrificed by the use of sine-bell type apodization along absolute value50

processing to avoid dispersive line shape. There are techniques which can be used to
circumvent this, such as advanced time-domain processing [23, 24, 25, 26, 27] and the use
of Zangger-Sterk element [28], but they greatly increase the complexity of the processing,
or again suffer from significant sensitivity penalty.
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1.2. Quantitative NMR55

Traditionally, quantitative NMR means that all signal intensities are directly pro-
portional to concentration, and the absolute concentration can be easily derived from
known concentration of internal/external standard. These quantitative conditions are
easily achievable on basic single pulse 1D spectra, and they are possible in some special-
ized versions of more complex experiments such as the quantitative versions of INEPT60

[29, 30], DEPT/POMMIE [31, 32] and HSQC [33, 34, 35]. In other experiments, non-
uniform factors affecting signal intensity makes straightforward comparison impossible
and calibration curves and authentic standards are required, which can be difficult or
infeasible.

This drawback doesn’t render the experiments unsuitable for quantitative analysis65

as such, as the signal intensity can usually assumed to be linearly proportional to con-
centration when measuring all samples under identical conditions and field strength. So
while all signals can’t be directly compared to each other, signals originating from same
compound can still be compared across numerous samples. This enables studying the
relative concentration differences, which in many cases is enough, especially in metabo-70

lite analysis where the absolute concentration might anyway depend strongly on sample
preparation or other factors.

1.3. NMR processing and data extraction
To produce meaningful data, the acquired FIDs must be processed and data extracted

from the resulting spectra, preferably via automatic, consistent and robust process when75

large numbers of spectra are involved. Luckily, almost all of the processing parameters
can be usually predetermined or devised easily from the experimental setup for a set of
similar spectra, at least after looking at few representative samples. Notable exception
is phase correction, which still is required to be performed manually in some cases. Most
phase problems are related to delayed sampling, transient response of analog filters and80

errors in the first few data points, which can lead to significant baseline errors after phase
correction [36, 37, 38]. Recent spectrometers with very high oversampling rates and DSP
filtering (Agilent VNMRS/DD2 consoles) [39, 40, 41] and/or backward prediction of
the first few data points (TopSpin digitizer mode ”BASEOPT” [42, 43]) have diminished
these problems and generally produce spectra with good baseline and low 1st order phase85

correction. Still, some error sources such as phase response of RF pulses can’t be rectified
with these measures, and a totally automatic and robust method suitable for every case
seems to be difficult to devise. Subsequently, new methods have been developed even
quite recently [44, 45]. Phasing can be also avoided with absolute value processing which
renders phase meaningless, but this has severe drawbacks as discussed below.90

After processing the signals must be quantified for analysis, which is easy for few well
separated signals using numerical integration, but rapidly tedious when dealing with
hundreds of spectra without proper automation. Overlapping signals can be separated
with line shape fitting quite accurately, but automation is still limited and the technique
is usually only employed in more targeted analysis, when the signals resulting from95

compounds of interest are known and can be fitted simultaneously [46, 4, 47, 6, 7]. Still,
impressive automation can be achieved with tailored analysis tools for specific class of
samples: for example fully automated analysis of blood plasma has been demonstrated
utilizing advanced statistical methods such as Bayesian models, Markov Chain Monte
Carlo (MCMC) and Sequential Monte Carlo (SMC) [48, 49, 13].100
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Other techniques like Agilent CRAFT [1] based on Bayesian fitting of signals di-
rectly to the FID data or Mnova GSD [2] can in principle decompose the spectrum into
frequency-intensity pairs in full automation, but do not take into account or combine
signals resulting from the same compound. This kind of data requires further refinement
or filtering of the data in non-targeted analysis, and the real-world use of these techniques105

applied for complex mixtures seems to be limited.
If no particular compounds are targeted, the spectrum area is usually divided in

equal integration areas, ”bins”, which are integrated and treated as variables describing
the sample and analyzed with statistical software. In addition to traditional equidistant
binning, several more sophisticated schemes have been developed [50, 51, 52], with the110

aim of more meaningful placement of the bin borders. In ImatraNMR, simple scheme
based on classifying found signals can be used (”histogram binning”).

1.4. Metabolite analysis and JRES
While the 2D J-resolved spectroscopy (2D-JRES) as a technique is quite old [22], it is

suitable for metabolomic analysis in many ways, as discussed in review article of Ludwig115

et al.[53]. JRES spectrum is processed in absolute value mode, so phasing is not required
at all, making the automation of processing the spectrum straightforward and robust,
even in the presence of broad signals or water suppression residual. The broadening
caused by dispersive line shape is minimized by sine bell apodization, while shearing,
symmetrization and projection post-processing neutralize the effect of 1H -1H couplings120

producing essentially ”decoupled” spectra. The drawback of the sine window function is
the strong weighting of signal intensity by T2 relaxation rate, which compromises absolute
quantitativity. However this is not essential when comparing relative concentrations, and
JRES has been established as routine tool in metabolite analysis. If needed, a calibration
curve can be used producing accuracy and precision can be comparable to 1H NMR125

spectra [54].
The shear/rotate and symmetrization operations can produce some artifacts, however

they seem to be a minor problem in practice: Parsons et al. have studied the quantifi-
cation errors with real and simulated JRES spectra, and found that the post-processing
causes less than 2% of errors in quantification [55]. Signals in close proximity can cause130

significant errors up to about 33%, but this error falls rapidly to under few percent with
distance. Furthermore, in real-world application to metabolite analysis, the errors were
comparable to those obtained by line shape fitting of 1H spectra [55].

Reducing the proton signals to singlets also simplifies analysis and integration: the
spectrum will have smaller number signals, and if binning is used, the narrower signal135

footprint reduces the probability of a signal being spread into several bins. This can
be expected work well in combination with non-equidistant binning schemes such as the
”seek histogram” feature in ImatraNMR.

1.5. SimpeleNMR and ImatraNMR analysis software
SimpeleNMR can perform the basic processing of the FID using discrete Fourier trans-140

form (DFT) to produce spectrum, along with the usual pre- and post-processing steps
(apodization, baseline correction). ImatraNMR on the other hand is aimed for batch in-
tegration of NMR spectra, with some preprocessing functionality, and can read spectra in
multiple formats as well. Both programs are freely available at http://vltr.fi/imatranmr/,
and can be freely used for research and commercial purposes.145
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Plant line Description
Col-0 Ozone tolerant natural accession
Cvi-0 Ozone sensitive natural accession
Col-s Cvi-0’s ozone sensitivity in Col-0 background
Cvi-t Col-0’s ozone sensitivity in Cvi-0 background

Table 1: The used plant lines.

Series Description Plant lines
1A First growth period Col-0, Cvi-0, Col-s, Cvi-t
1B Second growth Col-0, Cvi-0, Col-s, Cvi-t
2 Ozone stress Col-0, Cvi-0, Col-s
3 Recombinant inbred lines Col-0, Cvi-0 + 6 RILs

Table 2: The analyzed sample sets.

Recently, some new features have been added for both programs, making the them
more suitable for metabolite analysis. In SimpeleNMR, 2D-JRES processing has been
implemented, with limited support for other magnitude mode 2D spectra. The usual
post-processing techniques of 45◦ rotation/shear and symmetrization in F2 dimension
are implemented as well, allowing fast batch processing into projected 1D spectra. Fur-150

thermore, more window functions, improvements in plotting/viewing, supported output
formats and basic multivariate (PCA, PLS-DA) analysis based on Scikit-learn [56] have
been included. In ImatraNMR, probabilistic quotient normalization by Dieterle et al.
has been implemented [57], which can be used for normalization in complex biological
samples, where the concentration of the samples is hard to determine. Most of these155

features are demonstrated in the analysis below.

2. Materials and methods

2.1. Plant lines
The analysis used 4 plant lines: Natural accessions Col-0 (ozone tolerant) and Cvi-0

(ozone sensitive), and near-isogenic lines Col-s and Cvi-t, where the ozone phenotype of160

the other natural accession was introgressed into the other. Additionally, 6 recombinant
inbred lines (RIL) were analyzed. Of these, four different sample sets were measured.
The features are described in Table 1, while the sample sets are described in Table 2.

Plants were grown on 1:1 peat:vermiculite mixture in controlled environment cham-
bers (Weiss Bio 1300) with 12-h/12-h (day/night) cycle, temperature 22/19 ◦C, and165

relative humidity of 70/90 % until the age of three weeks. Plants were collected at 2 pm,
after 7 hours of light. Ozone treatment was performed using two similar chambers, other
containing 350 ppb ozone. Plants were transferred from the fresh air chamber to the
ozone chamber 120 minutes, 60 minutes, 40 minutes, or 20 minutes before 2 pm. Then
all samples were collected at 2 pm and flash frozen in liquid nitrogen.170

2.2. Preparation of NMR samples
The plants were harvested and placed in liquid nitrogen, and ground into fine powder

in a mortar cooled with liquid nitrogen. To remove water, the material was lyophilized
5
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for 40 hours. For each sample, 25 mg of dried material were weighted and extracted
with 1.0 ml of NMR solvent, consisting of 2:8 (vol.) mixture of MeOH-d4 and D2O and175

containing 0.05% TSP-d4 as internal standard. The sample was mixed by vortexing for
30 seconds, heated to +50 ◦C for 10 minutes, vortexed 2*10 s during the heating and 30
s after the heating. Then sample was centrifuged at 30000 g for 5 minutes at +4 ◦C and
the supernatant was added to standard 5 mm NMR tubes. The samples were kept on
ice until measurement within a few hours. The preparation protocol was adopted from180

earlier work [58, 59].

2.3. NMR spectroscopy
All spectra were acquired at 27 ◦C on a Varian UNITYINOVA 600 MHz NMR spec-

trometer using 5 mm triple resonance (1H, 13C, 15N) pulsed field gradient probehead.
From every sample, a quantitative 1H spectrum was measured using 45◦ excitation pulse,185

13.0 s relaxation delay and 2.0 s of acquisition time, based on maximum observed T1

values of about 5 s. Initially, 512 transients were collected (sample series 1A), but for
all subsequent samples 256 transients were used as the signal-to-noise ratio seemed suf-
ficient, yielding total experiment time of 1 hour 4 minutes. Pulse length for 90◦ pulse
was calibrated to be ∼7.45 us, spectrum window was 7165 Hz (11.94 ppm), while the190

transmitter was centered at 4.18 ppm.
From sample set 2 (oxidative stress), 2D J-resolved (JRES) spectra were obtained

using the same spectrum window and transmitter position, but with 5 s relaxation delay
and 1 s acquisition time. In indirect dimension, 64 increments were collected, and for
each increment, 8 transients were used, yielding total experiment time of 56 minutes.195

Additionally, HSQC, HMBC, TOCSY and COSY experiments were measured from select
samples to aid in metabolite assignment.

To investigate sample stability, two samples were measured for extended periods of
44 and 160 hours in 27 ◦C, acquiring 1H spectrum for every ∼15 minutes. The same
parameters were used as in regular quantitative 1H experiments, but only 64 transients200

were collected to achieve the shorter acquisition time.

2.4. NMR processing (SimpeleNMR)
All spectra were processed using SimpeleNMR. For regular 1H spectra, FIDs were

zerofilled doubling the number of data points, and apodized by exponential decay func-
tion producing linear broadening of 0.5 Hz. After Fourier transform, automatic phasing205

(autophase mode 4) was applied, and 1st order baseline correction (drift correction) per-
formed. For JRES, zerofill was performed identically, but a sine bell apodization was
used matched to the length of the FID. As typical with JRES, 45 degrees rotation/shear
and symmetrization in indirect dimension was performed, and both 2D and 1D versions
(via skyline projection of the spectra) were produced. The exact configuration files used210

with SimpeleNMR can be found in supporting information.

2.5. Data extraction (ImatraNMR)
Further processing and extraction of integrals were carried out in ImatraNMR. The

processing ”recipes” are determined by ImatraNMR script files, which can be found in
the supporting information to provide more details. First all spectra were referenced215

and normalized to the TSP-d4 signal present, which was aligned to 0.0 ppm. Methanol
6
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and water residual signals were removed from the spectrum using the nuke function,
and signal seek was performed in the region of 0.5-9.0 ppm. From the results, ”signal
histogram” was generated combining similar signals, and the resulting integral areas
integrated (histogram binning). In this method, close signals are classified into same220

bins and the integral area is determined from the included signals. This avoids including
areas lacking detected signals, and produces integration areas which more closely match
the present signals compared to equidistant binning. It is also usable in 2D spectra, for
which equidistant binning becomes impractical, at least without filtering bins actually
containing meaningful signals. For comparison, equidistant binning with 700 regions in225

the interval of 0.5 - 9.0 ppm was also performed.
While the TSP-d4 acted as internal standard with constant concentration compared

to plant material, probabilistic quotient normalization [57] implemented in ImatraNMR
was used to generate alternative data sets which does not rely on TSP-d4 concentration.

2.6. Statistical analysis230

The bin integral files produced by ImatraNMR were loaded easily into the R statistical
package [60], in which several PCAs (Principal Component Analysis) were performed for
the different sample sets [61]. PCA is a statistical method which decomposes the data
into principal components of decreasing importance, each one describing part of the
variance between samples. The meaning of the components can be interpreted from the235

the component loading coefficients, which correspond to integral areas and subsequently
chemical shifts of distinct metabolites. The highest loads and their bin numbers were
extracted from the results and plotted with SimpeleNMR simp_view.py to visualize the
related signals.

At later stage basic PCA and the related PLS/PLS-DA analysis tools were incorpo-240

rated to SimpeleNMR using Scikit-learn [56, 62] (simp_mvar.py), and the analysis was
duplicated. In addition, PLS analyses were conducted for the ozone treatment samples
(Set 2) using the exposure time as a response variable.

2.7. Metabolite assignment
Most of the metabolites were assigned with BMRB and SDBS databases [11, 63], pre-245

vious literature concerning similar samples[64, 65, 66] and HSQC, HMBC and COSY/TOCSY
obtained from select samples. Epithionitriles and iberin nitrile were not found in the
databases, and were simulated by ACD/NMR Predictors 2012 software to obtain refer-
ence spectra. A spectrum of C5 epithionitrile was obtained from Koichiro Shimomura
[66], but it was also decided to synthesize it as a reference compound, as it was a central250

differentiator (Figure 1). The synthesis presented in supplementary material. During
the assignment process, SimpeleNMR viewer simp_view.py was used to overlay spectra,
and correlation group tool (simp_corrg.py) was used to search for bins whose intensity
is collinear with a bin of interest. This is not direct evidence, but can give hints which
signals are related even without correlations in 2D spectra, similarly to STOCSY[67].255
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Figure 1: The structure and chemical shift assignments for epithionitriles and iberin nitrile. The iberin
nitrile assignments are from a plant extract sample.
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3. Results and discussion

3.1. Separation of plant lines (set 1A and 1B)
The initial sample set included four biological replicates of four different plant lines,

however the repetitions were grown in two different time periods, yielding sample sets
1A and 1B. This is reflected in the PCA results (Figure 2), where the first principal260

component (PC1) separates the sample sets, while the second (PC2) separates the plant
lines. The difference between sample sets seems to be related to citric acid cycle, which
apparently is more active in 1A. To emphasize the metabolic differences between plant
lines, PCA can be performed separately for only 1A or 1B. This approach can be seen
in the lower PCA plot, in which the PC1 separates the plant lines already, while PC2265

separates the Col-0 and Col-s species further.
The main difference between Col-0 and Cvi-0 samples is the C4/C5 epithionitrile and

iberin nitrile concentration (Figure 1), which appears to be the characteristic and easily
detected distinction, even just by comparing the spectra visually (Figure 3). Differences
between Col-0 and Col-s seem to be related to sinapic acid, methanol and citric acid270

cycle. The C5 epithionitrile and iberin nitrile seem to be result of alternate pathways,
and mostly one size was found to be present (Figure 3).
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Figure 2: The basic PCA analysis of the four different plant lines, including sample sets 1A and 1B
(top), and only 1B (bottom). The growing period can be separated easily (top) while plant lines are
separated nicely when analyzing each set individually. All data presented is regular 1H spectra with
ImatraNMR histogram binning and PQ normalization.
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Figure 3: The dissimilarity of Col-0 and Cvi-0 samples can be seen easily by comparison of the 1H spectra,
as epithionitriles and iberin nitrile have several characteristic signals. Especially the C5 epithionitrile
signal at ∼1.7 ppm is easy to observe.
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3.2. Ozone treatment (set 2)
The Cvi-0, Col-0 and Col-s strains exposed to ozone for 0, 20, 40, 60 and 120 minutes

were analysed with both regular 1H NMR spectra and JRES spectra, as more subtle275

differences were expected. The resulting PCA analysis obtained from JRES is presented
in Figure 4. Unsurprisingly, the first component separates Col-0 and Cvi-0 strains with
similar metabolites as in the first analysis, but PC2 is clearly related to ozone exposure.
Short ozone exposure seems to be related with (small) positive score and long exposure
with negative score on PC2. The negative PC2 loadings are associated with GABA280

(Gamma-Aminobutyric acid) and various amino acids, and the GABA concentration
indeed rises sharply in 120 min samples in both strains showing visible cell death in that
time point (Cvi-0 and Col-s), but not in ozone tolerant Col-0 (Figure 5). This is clearly
reflected in the PCA results, where 120 min samples of Col-s and Cvi-0 have much higher
negative score on PC2. The rise in the GABA levels coinciding with ozone-induced cell285

death was an intriguing finding, since Arabidopsis gene GAD4 (AT2G02010), one of the
five glutamate decarboxylases catalysing the final step in GABA biosynthesis, has been
reported to be one of the most highly ozone-induced transcripts [68]. This implies that
GABA might play a significant role during ozone-induced programmed cell death.

In this analysis, the impact of using PQ normalization (as opposed to TSP-d4 internal290

standard) and ImatraNMR histogram binning (as opposed to equidistant binning) can
be demonstrated. As seen in Figure 4, using only histogram binning or equidistant
binning with PQ normalization produce inferior results when compared with combined
use of both histogram binning and PQ normalization. Histogram binning alone produces
similar results to equidistant binning, but works much better in conjunction with PQ295

normalization, showing clear separation of 120 min samples. Similar results could be
achieved with PLS analysis of the same JRES data, but it also revealed the somewhat
rising MeOH concentration corresponding to ozone exposure time (non-deuterated MeOH
can be separated from the solvent residue due to slight difference in chemical shift). PCA
analysis of regular 1H derived data also produced similar results, while the improvement300

provided by histogram binning and PQ normalization was milder. Additional plots can
be found in supplementary material.
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Figure 4: The PCA created from 1D JRES of ozone treated samples, with the exposure time noted in
label. Ozone tolerant Col-0 species (black square) can be differentiated easily. The ”histogram binning”
combined with PQ normalization clearly produces best separation.
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Figure 5: The relative concentration of GABA during ozone exposure (3.01 ppm CH2, JRES). The
concentration is effectively below detection limit until 60 min, after which it is observed only in the
ozone sensitive lines Cvi-0 and Col-s.

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 18, 2019. ; https://doi.org/10.1101/766295doi: bioRxiv preprint 

https://doi.org/10.1101/766295
http://creativecommons.org/licenses/by-nc-nd/4.0/


3.3. Sample stablity
Obtaining repetitive quantitative 1H spectra for extensive period of time produces a

data set which ImatraNMR and SimpeleNMR are well suited: a large number of similar305

and complex spectra, which must be processed identically and examined.
The two samples were analyzed with PCA similarly as the sample sets 1A/1B and 2,

producing a quite interesting plot (Figure 6). The spectra is separated nicely by time by
PC1, while PC2 contains much smaller scores. From the the corresponding metabolites
of PC1, it can be clearly seen that sucrose and ascorbic acid are decomposing, which can310

be confirmed easily by looking the spectra and integrals directly (Figure 6). The increase
of glucose and fructose are also in line with this observation, suggesting slow hydrolysis
of sucrose, and the reaction seems also approximately follow first order kinetics, with
a half life of 25.5 hours. Other metabolites seem to be stable, and even the unstable
metabolites seem to have half-life of more than >20 h, making the decomposition during315

the acquisition time relatively small.

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 18, 2019. ; https://doi.org/10.1101/766295doi: bioRxiv preprint 

https://doi.org/10.1101/766295
http://creativecommons.org/licenses/by-nc-nd/4.0/


●
●

●

●
●

●

●

●
●
●●●
●

●●●
●
●

●

●

●

●●
●●
●

●

●

●
●
●●
●●

●

●
●●
●
●●

●
●●●

●
●

●
●
●
●
●●

●

●

●

●

●●
●●

●

●
●

●●●
●●

●

●

●

●

●

●
●
●

●
●

●●
●

●

●

●

●

●●

●
●

●

●

●
●

●
●
●

●

●
●●●
●
●
●
●●
●

●
●●
●

●

●●
●
●
●
●
●
●●

●
●

●

●●●

●●●
●●
●

●●●
●

●
●●
●
●●
●

●
●
●●
●●●●●●
●

●
●
●

●●

●●●

●

●

●

●
●●●●
●
●
●
●
●
●

●●
●

●●●●●●●

●

●●●●
●●
●●●
●
●
●●

●●
●●

●

●
●●
●

●
●●●
●●
●

●●●●
●●●●●

●

●●●●
●●●
●

●●
●
●
●

●

●●●

●
●

●

●●

●
●●●●●
●

●

●●

●

●
●
●

●
●●
●●
●
●●

●
●●
●
●●
●●●
●
●●
●●●●

●

●
●
●
●●

●

●●

●

●

●
●

●●
●

●
●

●

●●
●

●
●
●

●

●●
●
●

●
●
●

●
●
●

●●
●
●

●

●
●
●●
●
●

●

●
●
●●●
●
●

●

●

●

●●●
●

●
●●
●●
●

●●

●●
●
●

●

●
●
●
●●
●●

●

●●●●
●
●
●●

●
●

●

●

●
●●●

●

●

●
●
●

●
●●●
●●

●

●

●
●●
●
●

●
●
●
●●●
●
●
●●
●●●
●
●

●●
●

●

●●

●

●

●

●

●

●●●●
●●●
●●

●
●●
●●
●

●●

●
●

●
●●
●●

●
●●●

●

●

●

●
●●
●
●●
●

●●

●

●

●
●●●
●●
●●
●●●
●●
●

●

●

●

●
●
●●

●●●●
●

●

●
●

●●
●
●
●●
●
●

●

●

●●●
●●●
●
●●
●
●
●
●
●
●
●
●●
●

●

●
●
●
●
●

●
●

●
●●●
●
●
●

●

●●

●
●●
●
●●●●
●

●

●
●●

●

●●●
●●●
●

●
●
●●
●
●
●

●
●●●
●

●

●

●
●
●●●●●
●
●
●●●
●●

●●
●●●
●●●●
●
●
●●

●●
●
●●
●
●●

●

●
●

●
●
●
●●
●●
●●

●

●

●
●●●●●
●

−0.04 −0.03 −0.02 −0.01 0.00 0.01 0.02

−0
.0
05

0.
00
0

0.
00
5

0.
01
0

Sucrose concentration

Co
nc

en
tr

at
io

n 
(re

la
tiv

e 
to

 in
iti

al
)

Time (h)

PC1sucrose
ascorbic acid

glucose
fructose
choline

PC
2

Stability

“Time”

Half life 25.5h
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4. Conclusions

ImatraNMR and SimpeleNMR are free tools for quantitative NMR analysis, which
can be used for efficient processing of quantitative NMR spectra. Using these tools, an-
alyzes of both 1H and JRES spectra acquired from different lines of Arabidopsis thaliana320

extracts were demonstrated. The results indicate that a combination of JRES spectra,
histogram binning (ImatraNMR) and PQ normalization seems to produce suitable data
for statistical analysis, yielding superior results compared to basic 1D 1H spectra and
equidistant binning. This is in line with previous work [69, 58]. JRES spectra seems to
work providing more resolution in 1H spectra, with the drawback of strong dependence325

of transverse relaxation rate due to the employed apodization. Relative concentration
differences can be observed, but changing field strength, solution viscosity or any other
factor affecting T2 relaxation rate can alter the measured values.

Several metabolite differences could be identified with multivariate statistical analysis.
Especially epithionitriles and iberin nitrile concentration were shown to differ in the main330

plant lines. In addition, changes during oxidative stress (ozone exposure) were detected,
with GABA found as a clear marker for ozone incurred damage. Sample stability was
also examined by measuring repetitive 1H spectra for extended period of time, with
some unstable metabolites found (sucrose, ascorbic acid). These compounds are still
sufficiently stable for quantitative analysis, provided that the measurements are done335

within few hours after sample preparation.
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