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Abstract. The hippocampus plays a critical role in supporting episodic memory. 7	

Although we know that temporal context is a defining feature of episodic memory, we 8	

understand relatively little about how this information may be represented by the 9	

hippocampus. Research in rodents has suggested that the hippocampus represents 10	

temporal information on an absolute scale or in terms of relative temporal intervals, but 11	

cognitive models of memory have argued that temporal context in episodic memory is a 12	

consequence of changes in cognitive states and experiences. Here, we combined high-13	

resolution fMRI imaging with voxel pattern similarity analyses to answer the question of 14	

how human hippocampal subfields represent retrieved information about cognitive 15	

states and the time at which a past event took place. As participants recollected 16	

previously presented items, activity patterns in the CA23DG subregion carried 17	

information about prior cognitive states, along with coarse-grained information about 18	

when the item was previously encountered. These findings are consistent with the idea 19	

that CA23DG supports temporal context in episodic memory by encoding an integrated 20	

representation of discrete and gradually-changing cognitive states. 21	

 22	
Introduction. Converging evidence suggests that the hippocampus plays a critical role 23	

in memory for events and their episodic details (Eichenbaum, Yonelinas, & Ranganath, 24	

2007; Scoville & Milner, 1957; Vargha-Khadem et al., 1997).  For a memory to be 25	

considered episodic, it must be associated with a particular moment in time, or temporal 26	

context (Reiff & Scheerer, 1959; Tulving, 1983). Consistent with its integral role in 27	
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episodic memory, studies in rodents (Allen, Salz, McKenzie, & Fortin, 2016; Cai et al., 28	

2016; Kraus et al., 2015; Kraus, Robinson, White, Eichenbaum, & Hasselmo, 2013; 29	

Salz et al., 2016), non-human primates (Naya, Chen, Yang, & Suzuki, 2017), and 30	

humans (Dimsdale-Zucker, Ritchey, Ekstrom, Yonelinas, & Ranganath, 2018; Hsieh, 31	

Gruber, Jenkins, & Ranganath, 2014; Jenkins & Ranganath, 2010, 2016; Tubridy & 32	

Davachi, 2011) have shown that the hippocampus represents information about time.  33	

At present, there are at least two major accounts of how this might happen. One 34	

possibility is that the hippocampus maintains a continuously varying representation of 35	

temporal context, possibly via internally generated cell assembly sequences (Buzsáki & 36	

Llinás, 2017; Levy, 1996; Rodriguez & Levy, 2001; Wallenstein, Eichenbaum, & 37	

Hasselmo, 1998). Consistent with this idea, results from single-unit recording studies in 38	

rodents have suggested that cell populations in the hippocampus can faithfully 39	

represent temporal relationships across both short (Kraus et al., 2015, 2013; 40	

MacDonald, Lepage, Eden, & Eichenbaum, 2011; Salz et al., 2016) and longer (Cai et 41	

al., 2016; Mankin, Diehl, Sparks, Leutgeb, & Leutgeb, 2015; Mankin et al., 2012; Ziv et 42	

al., 2013) intervals. Another possibly complementary account comes from cognitive 43	

theories of episodic memory that operationalize temporal context in terms of changes in 44	

cognitive states or experiences (Estes, 1955; Howard & Kahana, 2002). Although 45	

temporal context models generally assume that representations of temporal context 46	

change gradually, these models also predict that context can abruptly change to reflect 47	

one’s current cognitive state (Lohnas, Polyn, & Kahana, 2015; Polyn, Norman, & 48	

Kahana, 2009).  49	
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The extent to which the human hippocampus represents cognitive states and 50	

temporal context is unclear, and there is reason to think that different hippocampal 51	

subfields might make distinct contributions (Dimsdale-Zucker et al., 2018). For instance, 52	

some models emphasize the role of area CA1 in encoding of temporal context (e.g., 53	

(Kesner & Rolls, 2015) others emphasize the importance of the dentate gyrus and CA3 54	

(Levy, 1996; Lisman, 1999; Wallenstein et al., 1998), and some recent evidence has 55	

suggested that area CA2 may be disproportionately important (Mankin et al., 2015). 56	

Thus, this leaves open the question of whether temporal information may be 57	

differentially represented by hippocampus subfields.  58	

Here, we used high-resolution functional magnetic resonance imaging (fMRI) to 59	

clarify whether or how the hippocampus encodes temporal and cognitive contexts 60	

during episodic memory retrieval. We also examined contributions of medial temporal 61	

cortical regions, as, for instance, parahippocampal cortex is known to be important for 62	

representing contextual information (Davachi, 2006; Diana, Yonelinas, & Ranganath, 63	

2007). We scanned participants while they recollected objects that were studied in 64	

sequentially-organized lists, and used voxel pattern similarity (PS) analyses (Dimsdale-65	

Zucker & Ranganath, 2018; Kriegeskorte, Mur, & Bandettini, 2008) to examine whether 66	

patterns of activity in hippocampal subfields at the time of retrieval carried information 67	

about temporal and cognitive contexts instantiated at encoding.  68	

Method. 69	

 Participants. 32 participants were recruited from the community and were 70	

compensated $50 for their time. This study was approved by the Institutional Review 71	

Board at the University of California, Davis. Four participants were excluded due to 72	
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missing behavioral data, two participants were excluded for excessive motion that 73	

prevented tracing of hippocampal subfields, one participant was excluded due to an 74	

experimenter error at data collection that resulted in the incorrect stimuli being seen, 75	

and one participant was excluded because they only had one run of usable data after 76	

discarding motion-contaminated and data-collection contaminated runs. The results 77	

below reflect data from 24 remaining participants (Mage = 22.85 years, SD = 3.06 78	

years, Nfemale = 13). One of these 24 participants was excluded from behavioral 79	

cognitive and temporal context analyses due to partially missing data; since the brain 80	

imaging data for this participant were complete and did not depend on this behavior 81	

being recorded, they were included in all other analyses. 82	

 Encoding. Participants viewed eight 36-item lists of still pictures of everyday 83	

objects (e.g., contact lens case, french fries; http://cvcl.mit.edu/mm/uniqueObjects.html; 84	

see Figure 1). Object assignment to list and presentation order of objects within a list 85	

were uniquely randomized for each participant via the Matlab randperm function. To 86	

encourage participants to learn temporal relationships amongst items in a list (Palombo, 87	

Di Lascio, Howard, & Verfaellie, 2019), each list was presented three times in a mini-88	

block before subjects saw items from the next list (e.g., 1, 1, 1, 2, 2, 2...8, 8, 8). Mini-89	

blocks were separated with a self-paced break. Presentation order of objects within a 90	

list was identical for all three list presentations.  91	

Objects remained on the screen for 2.5 seconds (timing and presentation 92	

parameters were controlled via Presentation [Neurobehavioral Systems, Inc., Berkeley, 93	

CA, www.neurobs.com]) while the participant made a yes/no button response to an 94	

orienting question (cognitive context). To manipulate cognitive context, each object was 95	
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associated with one of four questions: Would this item fit in a refrigerator?, Would this 96	

item fit in a bathtub?, Would you find this item in a convenience store?, Would you find 97	

this item in a supermarket?. Each of the four questions was presented equally often in 98	

each block, and question/object pairs remained the same across all three list 99	

presentations. Participants were instructed that this was a decision-making task and 100	

that there would be some repetition but to concentrate on doing the task. Participants 101	

were not aware that memory for these questions would be tested later, thus the learning 102	

of question and temporal context information was incidental.  103	

Scanned object recognition. While in the MRI scanner, participants saw each 104	

of the 288 old objects from encoding as well as 72 new objects presented one at a time 105	

for 2.5 seconds with a jittered ITI ranging from 2-15 seconds (mean ITI jitter = 6 106	

seconds). Objects were divided into 6 runs (60 trials per run). Object order within a run 107	

was pseudo-randomized such that objects with the same encoding question always had 108	

at least one intervening object (e.g., fridge, convenience store, bathtub, fridge, 109	

supermarket, fridge, etc.) to help minimize encoding context reinstatement biases on PS  110	

results (see Multivariate Results below). Proximity of objects from encoding mini-blocks 111	

(1-8) was not considered in the pseudo-randomization.  112	

While in the scanner, participants were instructed to indicate via button press 113	

whether or not they remembered the object on a 4-point scale: 1=new, 2=familiar (old 114	

but no remembered details), 3=remembered non-temporal details (e.g., the encoding 115	

question, something about the object itself, or an association they made with the 116	

object), 4=remembered temporal detail (e.g., in what list or when they had seen the 117	
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object during encoding). Responses for remembered judgments were collapsed into a 118	

single response bin for behavioral and fMRI analyses. 119	

Source memory: Cognitive context. After completing MRI scanning, 120	

participants returned to the lab where they completed a cognitive context source 121	

memory task. In this phase, participants saw all 288 studied objects from encoding and 122	

were asked to indicate which encoding question (fridge/bathtub/convenience 123	

store/grocery store) had been associated with the object. Objects were presented 124	

across four blocks of 72 trials each. Within each block, there were an equal number of 125	

objects from each encoding mini-block (1-8). Presentation order of objects was uniquely 126	

randomized by participant within each source memory block. Objects appeared on the 127	

screen until the participant had made their source memory judgment. There was no 128	

opportunity to guess or skip objects.  129	

Source memory: Temporal context. After completing the cognitive context 130	

source memory test, participants again saw the 288 old objects from encoding and this 131	

time were asked to indicate in which mini-block (1-8) the object had appeared. Objects 132	

were again divided across four blocks of 72 trials with a different randomization order 133	

than was used in the task context source memory test. Objects remained on the screen 134	

until the participant had made their response. There was no opportunity to guess or skip 135	

temporal context judgments. 136	

fMRI acquisition and pre-processing. Scans were acquired on a Siemens 137	

Skyra 3T scanner with a 32 channel head coil. Two sets of structural images were 138	

acquired to enable subfield segmentation: A T1-weighted magnetization prepared rapid 139	

acquisition gradient echo (MP-RAGE) pulse sequence image (1 mm isotropic voxels), 140	
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and a high-resolution T2-weighted image (TR = 4200 ms; TE= 93 ms; field of view = 141	

200 mm2; flip angle = 139°; bandwidth = 199 Hz/pixel; voxel size = 0.4 x 0.4 x 1.9 mm; 142	

58 coronal slices acquired perpendicular to the long-axis of the hippocampus). High-143	

resolution functional (T2*) images were acquired using a multiband gradient echo planar 144	

(EPI) imaging sequence (TR = 2010 ms; TE = 25 ms; field of view = 216 mm; image 145	

matrix = 144 x 152; flip angle = 79°; bandwidth = 1240 Hx/pixel; partial phase Fourier = 146	

6/8; parallel imaging = GRAPPA acceleration factor 2 with 72 reference lines; multiband 147	

factor = 2; 52 oblique axial slices acquired parallel to the long-axis of the hippocampus 148	

slices; voxel size = 1.5 mm isotropic).  149	

SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) was used for image pre-processing. 150	

Functional EPI images were realigned to the first image and resliced. No slice timing 151	

correction was performed due to the acquisition of multiple simultaneous slices with the 152	

multiband sequence (capabilities to handle multiband timing do not exist in SPM8). Co-153	

registration between the native-space ROIs defined in T2 space and the functional 154	

images was done with SPM's Coregister: Estimate and Reslice procedure. This 155	

procedure uses a linear normalized mutual information cost-function between a 156	

reference (mean functional) image and source (T2) image to compute and apply a 157	

voxel-by-voxel affine transformation matrix. This transformation matrix was then applied 158	

to the subfield ROIs that had been defined in T2 space (see ROI segmentation) to bring 159	

them into register with the functional images. The T1 image was co-registered to the 160	

mean EPI. Then, nonlinear spatial normalization parameters were derived by 161	

segmenting the coregistered T1 image. Quality assurance included identifying suspect 162	

timepoints via custom code (https://github.com/memobc/memolab-fmri-qa) defined as 163	
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time-points in excess of 0.5 mm frame displacement (based on (Power, Barnes, Snyder, 164	

Schlaggar, & Petersen, 2012) or 1.5% global mean signal change (based on ARTRepair 165	

recommendations, (Mazaika, Whitfield-Gabrieli, & Cooper, 2005)). Runs were excluded 166	

if the frame displacement exceeded the voxel size. As reported earlier, three 167	

participants were excluded for motion in excess of these thresholds; of the 24 subjects 168	

included in the analyses, 9 had runs excluded based on these thresholds (mean 169	

number of removed runs = 0.92, SD = 1.38; ranging from 0-4 runs).  170	

Pattern similarity analyses. PS analyses were conducted on beta maps 171	

generated from unsmoothed data in native subject space. Following the least squares 172	

separate procedure described by Mumford (2012), single trial models were generated to 173	

estimate the unique beta map for every trial in a run (N=60). Within each single trial 174	

model, the first regressor modeled the trial of interest with a stick function, the second 175	

regressor modeled all other trials in that run, six regressors were used to capture 176	

motion, and any additional spike regressors as identified by our QA scripts were used to 177	

capture additional residual variance. Voxel-wise patterns of hemodynamic activity were 178	

separately extracted for each ROI from the single trial beta images. To ensure robust 179	

ability to detect differences in PS, we required temporal signal-to-noise ratios (TSNR) in 180	

a region to be above 20 (approximately 2 standard deviations below the mean global 181	

TSNR of 50.4). This required the removal of entorhinal cortex and its subregions (mean 182	

TSNR ranged between 10-20), despite its compelling role in the representation of 183	

temporal context (Bellmund, Deuker, & Doeller, 2019; Montchal, Reagh, & Yassa, 2019) 184	

Within each ROI, correlations (Pearson’s r) were computed between these trial-185	

wise betas to yield a trial-by-trial correlation matrix that related each voxel’s signal on a 186	
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trial to all other trials across all runs. We restricted comparisons to those trials for which 187	

participants made a correct “remember” response (during MRI scanning). Correlation 188	

values were z-transformed prior to statistical analysis. Statistical analyses tested for 189	

differences in correlations between trial pairs on the basis of encoding context (cognitive 190	

context: same vs. different encoding question; temporal context: same vs. different 191	

encoding list, or similar vs. different list half). To more accurately characterize both 192	

within- and across-subject error variance (Baayen, Davidson, & Bates, 2008; Clark, 193	

1973; Dixon, 2008; Jaeger, 2008; Mumford & Poldrack, 2007; Singmann & Kellen, in 194	

press), we implemented a mixed-modelling approach to evaluate statistical significance 195	

with the lme4 packing in R (Bates, Mächler, Bolker, & Walker, 2014); for a similar 196	

approach, see (Dimsdale-Zucker et al., 2018). Only between-run correlations were used 197	

to maximize the number of possible trial pairs without mixing within- and between-run 198	

correlations. Trial pairs of interest were extracted from these trial-by-trial correlation 199	

matrices. 200	

All relevant code (https://github.com/hallez/tempcon_pub), a reproducible 201	

compute environment (https://doi.org/10.24433/CO.0129473.v1), and relevant data 202	

(https://osf.io/qfcjg/) are available online.  203	

ROI definition. Hippocampal subfields were defined following the procedure 204	

reported in (Dimsdale-Zucker et al., 2018). In short, the ASHS automated segmentation 205	

procedure was used to delineate subfields in subject-native space (Yushkevich et al., 206	

2010). We restricted our analyses to hippocampal body where discriminating subfields 207	

is most agreed upon. Medial temporal lobe cortical regions were manually-traced (see 208	

the Libby and Ranganath protocol in (Yushkevich et al., 2015)). In accordance with prior 209	
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findings suggesting functional distinctions between anterior and posterior 210	

parahippocampal gyrus (Aminoff, Gronau, & Bar, 2007; Baldassano, Beck, & Fei-Fei, 211	

2013; Baldassano, Esteva, Fei-Fei, & Beck, 2016), we subdivided parahippocampal 212	

cortex one slice posterior to the wing of the ambient cistern (Frankó, Insausti, Artacho-213	

Pérula, Insausti, & Chavoix, 2014).  214	

 215	
Figure 1. Task structure. During the encoding phase, each participant studied lists of 216	
36 objects that were each randomly paired with one of four encoding questions (“Would 217	
this item fit in a fridge?”, “Would this item fit in a bathtub?”, “Would you find this item in a 218	
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supermarket?”, “Would you find this item in a convenience store?”). Each list was 219	
repeated three times in a row to promote learning of the temporal relationships amongst 220	
the items. Objects appeared in the same order and with the same question (cognitive 221	
context) across all repetitions. High-resolution functional magnetic resonance brain 222	
imaging (fMRI) was used to examine hippocampal activity patterns during a recognition 223	
memory test for these objects, allowing us to examine activity pattern similarity as a 224	
function of whether pairs of items were encoded within the same or similar temporal 225	
contexts (i.e., studied in the same list or temporally proximal lists), and/or the same 226	
cognitive context (i.e., associated encoding question)  227	

 228	
Results.  229	

 Behavioral results. During MRI scanning participants performed a recognition 230	

memory test requiring judgments as to whether each item was recognized on the basis 231	

of recollection of specific item and source information from the study phase (see 232	

Method). Pattern similarity analyses were restricted to correctly remembered items. 233	

 Correct remember judgments were the most common response (mean hit rate = 234	

0.69, SD = 0.19), and, for these items, participants showed high accuracy at 235	

remembering the associated encoding task context (mean hit rate = 0.71, SD = 0.12). 236	

Memory for the exact (“same”) temporal context (list 1-8) was poor (mean hit rate = 237	

0.18, SD = 0.03), but, we reasoned that, even if participants were unable to recall the 238	

exact list identity, they might have memory for the “similar” temporal context associated 239	

with each item. We therefore re-scored each trial according to whether the participant 240	

could accurately determine whether it was presented in the “similar” (first half (lists 1-4) 241	

or the second half (lists 5-8)) versus “different” (across halves, i.e., list 1/list5, list 1/list 6, 242	

etc.) temporal context of the encoding phase. On this metric, memory for similar 243	

temporal context (mean hit rate for list half = 0.59, SD = 0.04) was reliably greater than 244	

chance of 0.5, t(22) = 8.74, p < 0.001. Thus, although participants did not have access 245	
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to the precise list in which an item had been studied, they were able to retrieve 246	

information about the item’s temporal context at a coarse level. 247	

fMRI results: Hippocampal Subfields We next tested whether activity patterns 248	

in the hippocampal subfields (CA1, CA23DG, subiculum) during memory retrieval 249	

carried information about the context in which the item was previously encountered. 250	

Specifically, we examined voxel PS during retrieval as a function of whether pairs of 251	

trials shared a temporal (defined either as same list vs. different list [same temporal 252	

context] or as same half of the experiment vs. different halves of the experiment [similar 253	

temporal context]) and/or cognitive (i.e., same encoding task vs. different encoding task) 254	

context when the items were originally learned.   255	

We first considered when items came from the “same” temporal encoding context 256	

(same vs. different list). No hippocampal subfield varied its PS at retrieval with respect 257	

to the same temporal context (all X2 < 0.5, all ps > 0.40). In CA23DG, we found that PS 258	

was higher during retrieval of items associated with the same cognitive context 259	

compared to items associated with different cognitive contexts (X2(1) = 4.63, pperm1000 = 260	

0.031). No other subfield varied its PS at retrieval with respect to cognitive context alone 261	

(all X2 < 0.3, all ps > 0.55) nor the combination of temporal and cognitive context (all X2 262	

< 0.80, all ps > 0.30). 263	

We next considered whether PS might depend on whether items shared a 264	

“similar” temporal context at encoding (same vs. different half of the encoding phase). 265	

PS levels did not vary by similar temporal context alone (X2(1) = 0.08, pperm1000 = 0.815). 266	

Thus, PS levels were not modulated by same or similar temporal context alone. In 267	

CA23DG, we found that PS was higher during retrieval of items that were associated 268	
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with the same cognitive context than for items that were associated with different 269	

cognitive contexts (X2(1) = 4.68, pperm1000 = 0.037; see Figure 2). Thus, irrespective of 270	

how we defined temporal context (same, similar), PS in CA23DG was higher for items 271	

that were associated with the same cognitive context. This effect was qualified by a 272	

significant similar temporal by cognitive context interaction (X2(1) = 8.11, pperm1000 = 273	

0.008), such that the effect of cognitive context was larger for items that were in similar 274	

temporal contexts (same half) than for items that were in different temporal contexts 275	

(different half) particularly when these items shared the same cognitive context. 276	

 In CA1, PS levels did not vary by similar temporal context (X2(1) = 2.42, pperm1000 277	

= 0.122), cognitive context (X2(1) = 0.08, pperm1000 = 0.757), nor when we considered 278	

both temporal and cognitive context (X2(1) = 0.84, pperm1000 = 0.329). In subiculum, PS 279	

levels did not vary by similar temporal context (X2(1) = 0.11, pperm1000 = 0.751) or 280	

cognitive context (X2(1) = 0.27, pperm1000 = 0.622), however, we found that PS was 281	

marginally higher for items that were studied relative to the same question but studied in 282	

different list halves as compared to all other conditions (X2(1) = 2.91, pperm1000 = 0.082). 283	
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 284	
Figure 2. Pattern similarity values in CA23DG during memory retrieval carry information 285	
about temporal and cognitive encoding contexts. A. Mean pattern similarity scores, with 286	
scatter of individual subject observations for the combination of different encoding 287	
contexts. B. Differences between same/different list half (“similar” temporal context), 288	
same/different question (cognitive context), and the interaction of temporal and 289	
cognitive context ([same question, same list half – different question, same list half] – 290	
[same question, different list half – different question, different list half). C. Permuted 291	
chi-square values to determine significance of cognitive-by-temporal interaction. 292	
 293	
fMRI Results: Medial Temporal Lobe (MTL) Neocortical Areas 294	

Our next analyses investigated activity in MTL regions outside of the 295	

hippocampus. Previous work has suggested that regions in parahippocampal cortex 296	

(PHC) should process information about cognitive context (Diana, Yonelinas, & 297	

Ranganath, 2012, 2013; F. Wang & Diana, 2017). In anterior PHC (aPHC), we 298	

observed an interaction between cognitive context, same temporal context, and 299	

hemisphere (X2(3) = 8.91, pperm1000 = 0.037). Looking across hemispheres, PS levels 300	

only varied reliably in left aPHC on the basis of cognitive context (X2(1) = 7.89, pperm1000 301	
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= 0.007). We found no other significant effects involving same temporal context (all X2 < 302	

0.7, all ps > 0.4), nor the combination of same temporal and cognitive context (all X2 < 303	

1.2, all ps > 0.2) in either hemisphere. PS in posterior PHC (pPHC) was marginally 304	

greater for items in the different as compared to same temporal context (X2(1) = 3.75, 305	

pperm1000 = 0.055), but did not vary on the basis of cognitive context alone (X2(1) = 1.22, 306	

pperm1000 = 0.263). This marginal effect of same temporal context in pPHC was qualified 307	

by a significant same temporal context by cognitive context interaction (X2(1) = 8.18, 308	

pperm1000 = 0.002). PS levels in PRC did not vary by temporal encoding context (X2(1) = 309	

0.001, pperm1000 = 0.981), cognitive context (X2(1) = 0.51, pperm1000 = 0.497), nor the 310	

combination of temporal and cognitive context (X2(1) = 0.82, pperm1000 = 0.354).      311	

We next considered whether PS in MTL neocortical areas might depend on 312	

whether items shared a similar temporal context at encoding. In aPHC, we observed an 313	

interaction between cognitive context, similar temporal context, and hemisphere (X2(1) = 314	

9.17, pperm1000 = 0.028). This reflects the fact that in left aPHC, voxel PS was greater for 315	

items studied relative to different cognitive contexts (X2(1) = 7.96, pperm1000 = 0.006), as 316	

well as for items from different temporal contexts (X2(1) = 5.75, pperm1000 = 0.015), but 317	

did not vary based on the combination of cognitive and temporal context (X2(1) = 0.88, 318	

pperm1000 = 0.349). In right aPHC, voxel PS did not carry information about an item’s 319	

cognitive context (X2(1) = 0.75, pperm1000 = 0.372) or temporal (X2(1) = 1.49, pperm1000 = 320	

0.226) context, nor their combination (X2(1) = 0.27, pperm1000 = 0.60). PS levels did not 321	

reliably vary for cognitive context (all X2 < 1.2, all ps > 0.25), similar temporal context (all 322	

X2 < 0.30, all ps > 0.60), nor the combination of cognitive and temporal context (all X2 < 323	

1.9, all ps > 0.25) in either pPHC or PRC. 324	
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Discussion. 325	

 The goal of the present study was to test the extent to which the hippocampus 326	

represents absolute temporal information and information about particular cognitive 327	

states during recollection of past events. Although cognitive states typically fluctuate 328	

over time in a continuous manner, the design of our experiment allowed us to examine 329	

the influence of these two aspects of context separately. We found that, during 330	

recollection of a study item, CA23DG activity patterns carried information about the 331	

cognitive context associated with that item during the study phase. Additionally, 332	

cognitive context information evident in CA23DG activity patterns varied over a coarse 333	

timescale, such that pattern similarity was highest for pairs of items that were 334	

associated with similar temporal and cognitive contexts. Collectively, these findings 335	

demonstrate that the hippocampus represents information about past events in a 336	

manner that is consistent with temporal context models (Howard & Kahana, 2002; 337	

Norman, Detre, & Polyn, 2008; Polyn et al., 2009; Sederberg, Howard, & Kahana, 338	

2008). 339	

 We have long understood that context is central for recall (Clewett & Davachi, 340	

2017; Davachi & DuBrow, 2015; Zacks & Swallow, 2007) and recollection-based 341	

recognition (Eichenbaum et al., 2007), but we do not yet understand how temporal 342	

context may be encoded in the brain. These representations of temporal and cognitive 343	

state contexts seem to rely on the hippocampus (Eichenbaum, 2017; Ranganath, 2019). 344	

In the hippocampus, one candidate mechanism is the coordinated firing of self-345	

organized cell assemblies, or time cells (Lisman & Jensen, 2013; Y. Wang, Romani, 346	

Lustig, Leonardo, & Pastalkova, 2015). These cells can track how long an animal has 347	
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been running on a treadmill where distance, speed, and duration of run time can be 348	

decorrelated (Kraus et al., 2015, 2013; Salz et al., 2016), code for meaningful gaps or 349	

pauses (MacDonald et al., 2011), and represent ordered sequences and experiences 350	

even during rest periods (Pastalkova, Itskov, Amarasingham, & Buzsáki, 2008). 351	

Hippocampal ensembles also drift in their representations of space when recorded 352	

across days, thus it seems that they can encode both fine and coarse temporal 353	

information (Mankin et al., 2015, 2012; Rubin, Geva, Sheintuch, & Ziv, 2015; Ziv et al., 354	

2013). These findings provide evidence for the idea that hippocampal neurons may 355	

encode information about temporal intervals or the passage of time. That said, available 356	

evidence indicates that hippocampal time cells are highly sensitive to changes in task 357	

context. In one such demonstration, immobilized rats learned to maintain information 358	

about specific odors across a delay period (MacDonald et al., 2013). Results showed 359	

that different cell assemblies encoded temporal intervals across the delay period 360	

depending on the odor that was to be maintained. In other words, changes in the task 361	

context led to substantial changes in the neural ensembles that encoded temporal 362	

information during the task. 363	

In the present study, we found evidence for the idea that information about 364	

cognitive states (i.e., specific task contexts) was carried in hippocampal activity patterns 365	

during recollection, and that these patterns also carried relatively coarse-grained 366	

information about the temporal context in which the recollected item was initially 367	

encountered (see also (DuBrow, Rouhani, Niv, & Norman, 2017) for evidence that 368	

contexts can drift slowly). This is consistent with the scale of temporal information 369	

participants had access to behaviorally; they were poor at retrieving the exact list an 370	
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item had been in but had access to information about in which half of the study lists it 371	

had occurred. These findings are generally in line with what would be predicted by 372	

cognitive models of the representation of temporal context in episodic memory. Initial 373	

theories operationalized temporal context as random fluctuations in cognitive states 374	

over time (Estes, 1955), and subsequent theories have incorporated the assumption 375	

that temporal context also reflects a time-weighted average of recently processed items 376	

and experiences (Howard & Kahana, 2002; Norman et al., 2008; Sederberg et al., 377	

2008). These models would predict that activity patterns during memory retrieval should 378	

reflect information about the temporal context associated with each study item (e.g., 379	

Manning et al., 2011; Deuker et al., 2016; Nielson et al., 2015). The Context 380	

Maintenance and Retrieval (CMR) model goes farther by incorporating information 381	

about the current task or cognitive state into the temporal context representation. CMR 382	

predicts that if there are abrupt changes in one’s cognitive state (e.g., a change in the 383	

task that one is performing), items that are temporally proximal can actually have 384	

distinct contextual associations (Polyn et al., 2009). Thus, the CMR model predicts that, 385	

during memory retrieval, reinstatement of temporal context should reflect a conjunction 386	

of task-related information and information that reflects elapsed time, similar to what 387	

was observed in CA23DG. Though CMR most explicitly incorporates semantic 388	

relationships into the temporal context model, we suggest that contextual associations 389	

associated with task or cognitive states likely tap into a similar mechanism. Moreover, 390	

the model suggests that changing tasks during encoding would break up the temporal 391	

context representation during encoding of each list. This prediction is consistent with the 392	

fact that we did not see evidence of high pattern similarity across items within the same 393	
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list, and instead only saw representation of temporal information across coarser 394	

timescales. 395	

At a broader level, our findings converge with results from a number of recent 396	

studies showing that hippocampal activity patterns carry information that generalizes 397	

across events that share common elements (Horner, Bisby, Bush, Lin, & Burgess, 2015; 398	

Schlichting & Preston, 2015). Here, we found that activity patterns in the CA23DG 399	

subregion generalize across items that shared both temporal and task context. Other 400	

findings, however, suggest that hippocampal representations can amplify differences 401	

between overlapping experiences (Chanales, Oza, Favila, & Kuhl, 2017; Libby, Reagh, 402	

Bouffard, Ragland, & Ranganath, 2018; Ritvo, Turk-Browne, & Norman, 2019; Yassa & 403	

Stark, 2011). In one recent study, for instance, we found that CA23DG activity patterns 404	

during memory retrieval were more different for across pairs of items that were 405	

associated with the same episodic context (i.e., objects seen within the same movie) 406	

than across pairs of items that were associated with different contexts. The findings of 407	

Dimsdale-Zucker et al. (2018), considered alongside the present results, raise an 408	

important question: When does CA23DG assign similar or distinct representations to 409	

overlapping events? 410	

To answer this question, it may be informative to consider the conflicting role of 411	

shared context in facilitating inter-item relationships (Sederberg, Miller, Howard, & 412	

Kahana, 2010) while diminishing item distinctiveness (El-Kalliny et al., 2019). During 413	

recognition memory tests, people are generally more likely to recollect events that were 414	

distinctive than events that were overwhelmingly similar to one another (Hunt, 1995). If 415	

CA23DG represents information about one’s cognitive state during an event, then we 416	
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would expect that this area would be most likely to support successful recollection when 417	

those representations are distinctive. In the present study, changes in the encoding task 418	

encouraged participants to shift cognitive states abruptly across items within a list. By 419	

attending to the task context, a participant could form distinctive memories for the 420	

different items that were in the same list. In our previous study (Dimsdale-Zucker et al., 421	

2018), however, participants studied lists of items presented in virtual reality videos that 422	

depicted navigation through two homes. Thus, the environmental context was 423	

overwhelmingly similar across items in the same list, and the cognitive context was not 424	

explicitly controlled (i.e., cognitive context likely tracked with environments and the 425	

passage of time). To successfully encode items from the study phase, participants 426	

needed to form representations that highlighted the distinctive aspects of each item in 427	

the list in order to overcome contextual interference at the time of retrieval (Park, Arndt, 428	

& Reder, 2006). We therefore propose that, by binding information about items with 429	

information about cognitive contexts, CA23DG can support successful retrieval of 430	

overlapping memories that would otherwise be difficult to disambiguate (Yassa & 431	

Reagh, 2013). 432	

Our findings also highlight the relative paucity of direct access to memory for 433	

temporal context at retrieval. Behavioral measures of memory for temporal context 434	

show clustered recall; that is, items studied nearer in time to one another are more likely 435	

to be recalled close together (Kahana, 1996). These findings suggest that, during 436	

episodic memory retrieval, people may be mentally transported back to a past cognitive 437	

state (Manning, Polyn, Baltuch, Litt, & Kahana, 2011; Tulving, 1983). Yet, when people 438	

are explicitly asked about temporal order information, they often cannot produce reliable 439	
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estimates (Jenkins & Ranganath, 2010). In the present study, we also found that 440	

participants had little explicit access to an item’s temporal encoding context. When 441	

asked to choose in which of eight lists an item had been studied, participants were 442	

essentially at chance. This is not surprising because temporal context models only 443	

suggest that memories for temporally proximal events should be associated with similar 444	

context representations, but retrieval of context information would not automatically 445	

enable a person to determine the exact time at which a previous item was encountered. 446	

There is considerable evidence to suggest that people rely on heuristics strategies in 447	

order to roughly reconstruct the time at which an event took place (Friedman, 1993). In 448	

our study, this might have been more challenging because, as we have stated above, 449	

changes in cognitive context within a list most likely disrupted the continuity of temporal 450	

context representations (for a related finding, see (Polyn et al., 2009)).  451	

In addition to the hippocampus, medial temporal lobe cortical regions have also 452	

been implicated in representing context. A substantial body of work has suggested a 453	

particular role for parahippocampal cortex in supporting representations of context 454	

(Davachi, 2006; Diana et al., 2007, 2013; Hsieh et al., 2014; Tubridy & Davachi, 2011; 455	

F. Wang & Diana, 2017). In line with these findings, we also saw that parahippocampal 456	

cortex carried information about cognitive and temporal contexts. Recent work has also 457	

suggested a role for lateral entorhinal cortex in absolute representations of time 458	

(Bellmund et al., 2019; Montchal et al., 2019; Sugar & Moser, 2019). Unfortunately, we 459	

could not assess whether lateral entorhinal cortex represented elapsed time because 460	

our scanning protocol was not optimized for entorhinal cortex coverage, and the 461	

temporal signal-to-noise ratio was therefore insufficient. Thus, it is possible that in this 462	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2019. ; https://doi.org/10.1101/766311doi: bioRxiv preprint 

https://doi.org/10.1101/766311
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 22	

task where participants had access to both a sense of ongoing time and fluctuating 463	

cognitive states, hippocampus and entorhinal cortex could play complementary roles. 464	

Taken together, we have shown that that activity patterns in the CA23DG region 465	

of the human hippocampus reflected an integrated representation of cognitive and 466	

coarse temporal contexts. This finding can help explain how we represent continuously 467	

unfolding episodes in a changing world. Outside of the laboratory, we are constantly 468	

multitasking between competing goals and responsibilities. The hippocampus, and, 469	

specifically CA23DG, may allow us to differentiate between experiences that are 470	

associated with different tasks while preserving the temporal flow between experiences.  471	

 472	
  473	
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