1 Beyond the ecology of fear: non-lethal effects of predators are strong whereas

- 2 those of parasites are diverse
- 3

5	
4	D.R. Daversa ^{1,2} *, R.F. Hechinger ³ , E. Madin ⁴ , A. Fenton ¹ , A.I. Dell ^{5,6,7} E. Ritchie ⁸ , J. Rohr ⁹ ,
5	V.H.W. Rudolf ^{10**} .
6	¹ Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
7	² Institute of Zoology, Zoological Society of London, London, United Kingdom
8	³ Scripps Institution of Oceanography, University of California, San Diego, United States of America
9	⁴ Hawai'i Institute of Marine Biology, University of Hawai'i, Kane'ohe, HI 96744, United States of America
10	⁵ Department of Biology, Washington University of St. Louis, St. Louis, MO 63130
11	⁶ Dept of Biology, Saint Louis University, Saint Louis, MO 63130
12	⁷ National Great Rivers Research and Education Centre (NGRREC), East Alton, IL, 62024, USA
13	⁸ School of Life and Environmental Sciences, Centre for Integrative Ecology (Burwood campus), Deakin
14	University, Geelong, Victoria 3220, Australia
15	⁹ Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
16	¹⁰ BioSciences, Rice Univ., Houston, TX, USA
17	
18	Key Words: Natural enemies, Sub-lethal effects, Trait-mediated effects, Trophic
19	interactions, Animal behaviour, Community ecology, Food webs, Risk effects,
20	
21	Running Title: Non-lethal responses to predation and parasitism
22	
23	
24	*Corresponding author: David Daversa, Institute of Integrative Biology, University of
25	Liverpool, Liverpool, United Kingdom; <u>ddaversa@gmail.com</u>
26	
27	** note that there is an additional author that will be listed in a later version

28 Abstract

29	Individuals can alter their behaviour and other traits to reduce threats from predators
30	and parasites. However, predators and parasites likely elicit different responses,
31	which subsequently lead to different non-lethal effects. We created a sequentially
32	structured framework to examine trait responses to distinct predatory and parasitic
33	consumers. We predicted that parasites with strong negative effects on host fitness
34	should act like predators and elicit strong responses before attack. We also predicted
35	that less damaging parasites and micropredators should elicit diverse responses
36	across multiple interaction stages, because their hosts and prey remain alive while
37	being eaten. A meta-analysis indicated that predators do tend to elicit stronger
38	responses than parasites before attack, whereas parasites generally elicit responses
39	after attack, albeit weaker than pre-attack responses to predators. Organisms exposed
40	simultaneously to predator and parasite cues responded similarly when exposed to
41	predator cues alone, suggesting that individuals prioritize anti-predator responses
42	over responses to less harmful parasites. Extending these findings requires
43	addressing knowledge gaps concerning responses to different consumer types, costs of
44	immune responses, and cumulative effects of repeated responses. Expanding research
45	beyond the predator vs. parasite dichotomy toward a broader consumer-resource
46	perspective will facilitate understanding of non-lethal effects in complex, multi-
47	trophic food webs.

48

49 Introduction

50	"Whenever I swim in the ocean I feel increasingly panicky and I must leave
51	the water" is a typical response to the 1975 film Jaws (Cantor 2004). As with
52	moviegoers, many species respond to predators by changing behaviours, physiology,
53	or even appearance to avoid being eaten. These non-lethal effects of predators, known
54	as 'trait responses', are pervasive and take many forms, such as seeking shelter (Creel
55	et al. 2005) or maturing faster to reach less vulnerable life stages (Raffel et al. 2010).
56	Such trait responses influence how individuals interact with the broader community,
57	driving 'trait-mediated effects' that range from reduced individual fitness to trophic
58	cascades (Werner & Peacor 2003; Ritchie & Johnson 2009; Buck & Ripple 2017) that
59	can destabilize communities (Pringle et al. 2019). Wolves, for example, frighten elk
60	away from exposed foraging grounds into sheltered habitats with less nutritious
61	vegetation, which then reduces elk birth rates (Creel et al. 2007) and alters vegetation
62	structure (Fortin et al. 2005). Predators can therefore impact species and communities
63	without directly killing prey, just as Jaws kept many people from swimming in the
64	summer of 1975.
65	Perhaps less well recognised is that parasites also elicit trait responses in hosts

66 with associated non-lethal effects. To reduce infection risk, hosts may avoid infected

67 conspecifics (Milinski & Bakker 1990; Kavaliers *et al.* 2003a; Behringer *et al.* 2006),

68	defend against infectious propagule attack (Sears et al. 2013), or avoid risky areas,
69	such as faeces representing a hot spot of undetectable nematode eggs (Hart 1994;
70	Curtis 2014; Weinstein et al. 2018). Furthermore, in stark contrast to predation,
71	parasitism is not immediately lethal, so hosts can also respond after successful
72	parasite attack through various physiological and behavioural responses (Rigby et al.
73	2002; Raberg et al. 2009; Buck 2019). For instance, a caterpillar can initiate an
74	immune response to prevent being killed by a parasitoid wasp (Abram et al. 2019).
75	Basic emotions like "disgust" (Curtis & de Barra 2018; Tybur <i>et al.</i> 2018; Weinstein <i>et</i>
76	al. 2018) and the age-old cliché "avoid like the plague" suggest that parasite avoidance
77	is interwoven in our own history as much as is our fear of predators. The diverse trait
78	responses elicited by parasites has led some to hypothesize that parasites actually
79	impose stronger cumulative non-lethal effects than predators (Rohr et al. 2009; Buck
80	& Ripple 2017).
81	In this review, we compare trait responses to predation and parasitism,
82	considering how they may overlap and differ. Although predators and parasites
83	threaten most species in natural ecosystems, trait responses to predators and
84	parasites have been largely studied in isolation. As a result, how trait responses to
85	parasites compare with trait responses to predators is still unclear. We used a general
86	consumer-resource model to develop hypotheses and predictions for how key life
87	history differences among predators and parasites, such as the number of attacks they

88	make in a lifetime and whether they kill organisms while eating them, should influence
89	the likelihood and magnitude of trait responses at different interaction stages. We then
90	conducted a systematic review and meta-analysis to: (a) assess the literature that
91	compares trait responses to different forms of predation and parasitism, (b) compare
92	average response magnitudes between predation and parasitism, and (c) test how
93	factors related to resources, consumers, and study designs influence trait responses.
94	We conclude by pointing to several unresolved questions concerning how non-lethal
95	species interactions affect community and ecosystem dynamics.
96	
97	A general trait-response framework for examining non-lethal effects
98	Theoretical framework
98 99	<i>Theoretical framework</i> Predators and parasites employ various 'consumer strategies', that is, how
99	Predators and parasites employ various 'consumer strategies', that is, how
99 100	Predators and parasites employ various 'consumer strategies', that is, how individuals find, attack, and consume organisms (Lafferty & Kuris 2002; Lafferty <i>et al.</i>
99 100 101	Predators and parasites employ various 'consumer strategies', that is, how individuals find, attack, and consume organisms (Lafferty & Kuris 2002; Lafferty <i>et al.</i> 2015). For example, predators have short feeding times (i.e., seconds to days) and eat
99 100 101 102	Predators and parasites employ various 'consumer strategies', that is, how individuals find, attack, and consume organisms (Lafferty & Kuris 2002; Lafferty <i>et al.</i> 2015). For example, predators have short feeding times (i.e., seconds to days) and eat multiple organisms in a lifetime, whereas parasites feed on hosts for up to months or
99 100 101 102 103	Predators and parasites employ various 'consumer strategies', that is, how individuals find, attack, and consume organisms (Lafferty & Kuris 2002; Lafferty <i>et al.</i> 2015). For example, predators have short feeding times (i.e., seconds to days) and eat multiple organisms in a lifetime, whereas parasites feed on hosts for up to months or even years, but die or transform after a single feeding interaction. Predators kill prey
 99 100 101 102 103 104 	Predators and parasites employ various 'consumer strategies', that is, how individuals find, attack, and consume organisms (Lafferty & Kuris 2002; Lafferty <i>et al.</i> 2015). For example, predators have short feeding times (i.e., seconds to days) and eat multiple organisms in a lifetime, whereas parasites feed on hosts for up to months or even years, but die or transform after a single feeding interaction. Predators kill prey before or while consuming them, but mosquitoes and other micropredators do not.

108	organisms respond to them (Buck 2019). To account for these differences when
109	predicting the non-lethal effects of predation and parasitism, we draw on consumer-
110	resource theory to develop a general trait-response framework that applies across
111	both host-parasite and predator-prey systems.
112	We use, as a scaffolding, the general model for consumer-resource population
113	dynamics developed by Lafferty et al. (2015), which collates the key elements of all
114	consumer-resource models into a single, temporally compartmentalized structure
115	(Fig. 1, Box 1). Briefly, predators and parasites are 'consumers', whereas their prey
116	and hosts are 'resources'. Interactions are broken into sequential transitions between
117	up to three discrete consumer states and up to four corresponding resource states
118	(circles in Box 1). State transitions — i.e., mortality, contact, attack failure and success,
119	and feeding (arrows in Box 1) — occur at various rates. Basic differences among
120	consumer – resource systems are incorporated with a set of binary parameters that
121	alter model structure (Box 1).
122	We derive three basic trait responses from the model: avoid contact, counter
123	attack, combat consumption (Fig. 1) ¹ . This temporal sequence implies that trait
124	responses to minimize consumption can be driven by multiple biological mechanisms.

¹ These classifications are similar to "avoidance", "escape attack", and "escape capture" defined by Lima & Dill (1990) for behavioural responses of prey to predator encounters, though we propose this alternative terminology as a more comprehensive categorization of the diversity of trait responses elicited by different predators and parasites.

125	In initial interactions with <i>questing</i> consumers, <i>susceptible</i> resources may avoid
126	contact in various ways. Avoidance serves to reduce the rate that <i>questing</i> consumers
127	transition to attacking, with the benefit that <i>susceptible</i> resources transition more
128	slowly to exposed states (Table 1). Avoidance responses may manifest as trait
129	adaptations [i.e. constitutive responses (Westra et al. 2015)], such as camouflaged
130	coloration shown by many species to reduce visibility to predators (e.g. Stevens &
131	Merilaita 2009), or as induced plastic traits, exemplified by herbivores moving away
132	from nematode-infected faeces (Hutchings et al. 2001; Weinstein et al. 2018) or wolf
133	scents (Creel et al. 2005). Resources that become exposed to attacking consumers may
134	counter attack to increase attack failure (Box 1). Countering attack includes "fight or
135	flight" responses, like hares sprinting to burrows when being chased by lynx, or
136	tadpoles jolting their bodies when being attacked by trematode cercariae (Sears et al.
137	2013). Finally, resources—particularly hosts of parasites—that become <i>ingested</i> may
138	combat consumption. Combating consumption shortens or slows consumer feeding
139	rates [i.e. 'resistance' in parasitology (Rigby et al. 2002)], or lessens the damage of
140	being eaten [i.e. 'tolerance' in parasitology (Raberg et al. 2009)]. Responses that
141	shorten or slow feeding include behaviours like social grooming by primates (Hart &
142	Hart 2018) and adaptive immune responses to parasitism (Hawley & Altizer 2011).
143	Increasing tissue repair and protecting high-risk areas of the body from feeding, as
144	tadpoles do for trematodes (Sears et al. 2013), are ways that resources combat

145	consumption by reducing damage without affecting consumer feeding rates. Whether,
146	and to what degree, resources combat, avoid, or counter, will depend on the different
147	pressures imposed by different consumers, which are modelled by altering rates of
148	contact, attack, and/or consumption. Distinguishing these three model-derived
149	resource trait responses makes it easier to compare, contrast, and make predictions
150	about the different ways that consumers exert non-lethal effects on resources.
151	
152	Constraints on trait responses
153	Despite the clear benefits that trait responses provide to resources, various
154	constraints can limit a resource's ability to avoid, counter, and combat its consumers.
155	Hence, predicting the timing and magnitude of trait responses also requires
156	accounting for constraints on resources. Constraints can arise from basic limitations
157	on detecting consumers and mounting responses, or from trade-offs. First, resources
158	can mount responses only if they can detect consumer threats. Resources use visual
159	and non-visual cues to detect predation and parasitism risk, making sensory
160	limitations - e.g., sight, hearing, and smell – a potential constraint on trait responses.
161	Second, resources must possess the morphology, physiology, and energy level to
162	mount specific responses to consumers. For instance, tadpoles cannot physically leave
163	ponds when predators are present as can adult amphibians, so they may instead
164	reduce activity levels to avoid consumer contact (Hossie et al. 2017). Third, because

165	trait responses can compete with essential activities like feeding, reproducing, or
166	maintenance (Dröge et al. 2017; Hart & Hart 2018), trade-offs can also constrain
167	resource responses. For example, moose can afford to avoid wolves more in summer
168	than in winter when food is scarce (Oates <i>et al.</i> 2019). These three constraints likely
169	interact to jointly influence response timing and magnitudes. For example, food
170	scarcity may interact with moose body size or background nutritional levels to
171	determine their ability to avoid contact with wolves. Considering these constraints,
172	along with the potential benefits of response, leads to several hypotheses and
173	associated predictions for how resources should respond to different consumer
174	threats.
175	
176	Hypotheses and predictions concerning trait responses against predators and parasites
177	Hypothesis 1: Severe fitness consequences of consumption will favour strong
178	trait responses—and strong non-lethal effects—at early interaction stages.
179	Severe fitness consequences of consumption make combat responses very risky,
180	placing a premium on mounting defensive responses at earlier interaction stages
181	when consumers are questing or attacking. This leads to the intuitive prediction that
182	predators should elicit strong avoidance and counter responses because successful
183	predation leads to death. Perhaps less intuitively, this hypothesis also leads to the
184	prediction that parasitoids, which regularly kill their hosts (Lafferty & Kuris 2002;

185	Abram et al. 2019), and parasitic castrators, which reproductively kill their hosts, will
186	be similar to predators in eliciting strong responses at the two early interaction stages.
187	Other types of parasites with strong negative fitness impacts, such as certain
188	pathogens, may place similar pressures on hosts by producing detrimental infections.
189	In contrast, micropredators and less harmful parasites should elicit the weakest
190	avoidance and counter responses of all consumer types.
191	
192	Hypothesis 2: Resources that remain alive while being eaten can implement and
193	concentrate responses—and incur non-lethal effects—during consumption.
194	In stark contrast to most prey of predators, hosts are alive while parasites feed, and
195	prey are alive when micropredators feed. Those resources can therefore mount
196	combat responses while being ingested. This leads to the prediction that, compared to
197	predators, many parasites and micropredators will evoke more types of responses
198	with a more even distribution among the three interaction stages. Because hosts of
199	castrators and many parasitoids remain alive while being eaten, these predictions
200	apply for these types of parasites as well. A less obvious prediction is that the ability
201	to combat consumption may lead to resources concentrating responses in the third
202	interaction stage for parasites – including parasitoid and parasitic castrators - and
203	micropredators, particularly in cases where constraints or trade-offs limit avoidance
204	and combat responses.

206	Hypothesis 3: Detection ability determines trait response timing and magnitude.
207	Regardless of the fitness consequences of consumption, an inability to detect questing
208	predators and parasites will preclude mounting avoidance responses. Under this
209	hypothesis, the strength of responses should increase with the ease of detecting
210	consumers. For instance, to the extent that visual detection is important to elicit
211	defensive responses, we predict that resources avoid questing predators more than
212	questing micropredators and parasites, because the generally larger size of questing
213	predators relative to questing micropredators and parasites make them easier to see.
214	Exceptions will exist, however; some parasites have large searching stages (e.g., some
215	hymenopteran wasp parasitoids), which would permit easy detection and subsequent
216	avoidance by hosts. Further, certain predators, like some ambush predators and filter
217	feeders, are actually not detectable while questing, but only during attack, which
218	precludes avoiding contact but favours countering attack. Hence, this hypothesis does
219	not predict consistent differences among consumer strategies (e.g. predators,
220	parasites, micropredators, etc.), and could perhaps be most strongly tested using
221	predator and parasite species that span a range of detectability.
222	These three hypotheses are not mutually exclusive and can be integrated to
223	predict how trait responses vary among the different types of predation and
224	parasitism in realistic situations (Fig. 1b-d). For instance, foraging mice will avoid

225	questing owls by hiding in burrows (Fig. 1b). Burrow use may vary with flyover
226	frequency, which predicts mouse-owl contact rates. Burrow use is traded-off against
227	the cost of reducing mouse feeding, and consequently likely depends on mouse
228	nourishment. Mice may also detect infective nematode eggs in feeding fields and then
229	avoid contact by moving to other locations (Fig. 1c). Avoiding contact with nematodes
230	is likely constrained by mouse ability to detect eggs and should also depend on
231	movement costs and food availability in new locations. Unlike avoiding owls, the
232	strength with which mice avoid nematodes may also depend on their ability to combat
233	infection (consumption by the nematode), perhaps by mounting an immune response.
234	Effective immune function would favour mice avoiding substantial avoidance costs
235	(e.g., if mice avoid rich feeding areas with nematodes for poor feeding areas lacking
236	nematodes), which would concentrate non-lethal effects in consumption stages. All
237	three responses may also be expected from caterpillar hosts of wasp parasitoids, with
238	the difference that high risk of death via successful consumption may favour a shift to
239	earlier avoidance and counter responses (Fig. 1d). What remains unclear is whether
240	the broader range of responses, and potential concentration of combat responses, to
241	less virulent parasites like nematodes together might, when combined, rival the
242	magnitude of the avoidance and counter responses to consumers with severe fitness
243	consequences. To compare the overall magnitude of trait responses to parasites and

244	predators, we conducted a systematic review of and meta-analysis on available
245	literature.
246	
247	Systematic review and meta-analysis of trait responses to predation and
248	parasitism
249	We systematically reviewed studies that measured the magnitude of trait
250	responses elicited by predators and parasites. We then performed a meta-analysis on
251	the compiled data to test the predictions established above. Our broad goal with the
252	meta-analysis was to assess how the type and magnitude of trait responses vary by
253	consumer strategy as defined by Lafferty and Kuris (2002): solitary predators,
254	trophically transmitted parasites, typical parasites, and pathogens, parasitoids,
255	parasitic castrators, micropredators, or social predators. Many studies have measured
256	trait responses to predators and parasites alone, but we limited our review to studies
257	that measured comparable responses to both a predator and a parasite for the same

258 resource species. To focus on trait responses conferring defence, we did not consider

trait changes originating from general parasite pathology, or from parasite adaptive

260 manipulation of host traits (Poulin *et al.* 1994; Moore 2002; Lafferty & Shaw 2013),

though our framework can accommodate such effects.

Detailed information about data collection, extraction and analyses are
available in the Supplementary Material. Briefly, we compiled 129 entries from 15

264	studies, which included 44 predator-prey interactions, 44 host-parasite interactions,
265	and 41 simultaneous interactions with predators and parasites (Table S1). Although
266	studies measured several morphological, behavioural, and physiological responses,
267	behavioural traits were most common, with activity level being the most reported trait
268	(Fig. S1). No studies fitting our criteria measured physiological or immunological trait
269	responses. The studies spanned the following consumer strategies: solitary predators,
270	trophically transmitted parasites, typical parasites, and pathogens (Table S1). We
271	therefore could not consider responses to parasitoids, parasitic castrators,
272	micropredators, or social predators. Hereafter, we broadly distinguish between
273	predators (i.e. solitary predators) and parasites (i.e. trophically-transmitted, typical, or
274	pathogens). Predator-induced trait responses were only measured during the <i>questing</i>
275	predator state (Fig. S1), whereas measurements of parasite-induced responses
276	included questing (10), attacking (9), and consuming (25) states (Fig. S1). There were
277	77 entries for individual-level responses and 49 entries for group-level responses.
278	We calculated the standardized mean difference (Hedge's d) (Koricheva et al.
279	2013) from included studies as the measure of trait response magnitudes, whereby
280	positive effects denoted reductions in trait values (e.g., reduced activity level or mass),
281	except in measures of space use that measured time in a refuge or distance from a
282	consumer cue (e.g. positive effect would mean an increase in refuge use). We reversed
283	the sign of these values so that positive effect sizes would denote reductions in use of

284	risky habitats, indicative of defence (see Table S1 for further details). Because studies
285	often included a treatment containing both a predator and parasite cue, we also
286	estimated the magnitude of trait responses to the combined presence of predators and
287	parasites. We did not have predictions for how these responses would compare to
288	those made to predators or parasites by themselves. We also considered the following
289	factors related to consumers, resources, and experimental designs that may have
290	influenced response magnitudes: a) the type of trait measured to quantify responses
291	(trait type), b) whether studies used a trait value of individuals or proportions of
292	individuals in group that exhibited the focal trait (analysis scale); c) whether
293	responses were elicited under the physical presence of the consumer, or solely by
294	indirect cues such as used media or ingested conspecifics (consumer presence), d) the
295	genus and species of the consumer and resource, and e) whether the consumer was in
296	a questing, attacking or consuming state (Box 1) when the trait response was
297	measured. We also assessed consumer state and consumer strategy effects using only
298	the parasite data because data on responses to predators were limited to one
299	consumer state (questing) and strategy (solitary predator).
300	
301	Results
302	We found considerable variation in response magnitude and direction to

303 predators (Fig. 2a), parasites (Fig. 2b), and their combination (Fig. 2c). However,

304	although individual parasite-induced effects were sometimes just as strong as
305	predator-induced effects (Fig. 2), on average and across all stages, predator-based trait
306	responses were stronger than parasite-based trait responses (Table S2, Fig. 3a). These
307	patterns were also evident after controlling for consumer state (i.e., questing
308	predators vs. questing parasites) (Table S2, Fig. 3b). Nevertheless, distinguishing
309	between parasite states (questing, attacking, or consuming) revealed that parasites, on
310	average, did elicit responses, but only while they were consuming (i.e. infecting) their
311	hosts (Table S2. Fig. 3b). The simultaneous presence of predators and parasites also
312	elicited responses on average, and they were similar in magnitude to trait responses
313	elicited by predators alone (z = 0.10, p = 0.476; Fig. 3a). Predators and the
314	simultaneous presence of predators and parasites elicited reductions in activity but,
315	on average, did not influence space use or morphological/physiological traits (Table
316	S2, Fig. 3c). Whether traits were measured at the individual level or group level (e.g.
317	proportions) influenced response magnitudes, with group-level responses being
318	stronger (Table S2, Fig. d). Responses were not contingent on the consumers being
319	physically present; indirect cues of the consumers elicited similar responses (Table
320	S2). Across the host-parasite interactions studied, responses did not depend on the
321	specific strategy of parasites (pathogens, trophically transmitted parasites, or typical
322	parasites; Table S2), and there was insufficient replication to consider how consumer

323 or resource taxon influenced responses. For that reason, these results mostly pertain324 to amphibians as resources (Table S1).

325

326 **Discussion**

327 We used a general consumer-resource model to construct a framework that can 328 be broadly applied across many predator-prey and host-parasite systems to predict 329 trait responses and non-lethal effects. The framework identified plausible 330 mechanisms driving the timing and magnitude of trait responses, including the fitness 331 consequences associated with being eaten, whether individuals are alive while being 332 eaten, and the ease of detecting consumers. From these hypothesized mechanisms, we 333 generated testable predictions regarding how trait responses should differ between 334 predator-prey and host-parasite interactions. We generally predict severe fitness 335 consequences of predator consumption to drive strong avoidance and counter 336 responses in prey before any contact is made. We also predict that, in general, host 337 responses to parasites are weaker than those of prey, but also more diverse; a range of 338 behavioural, morphological, and physiological responses can be made throughout all 339 interaction stages (Rigby et al. 2002; Raberg et al. 2009), and potentially concentrated 340 to combat consumption. These general predictions were supported by our meta-341 analysis on the existing literature to directly compare trait responses to predatory 342 versus parasitic consumers. However, the meta-analysis data predominantly related

to a rather narrow taxonomic range of predators and parasites, and several limitations 343 344 of the included studies (Box 2) suggest ways forward to corroborate and expand the 345 results. 346 Several overlooked distinctions in how organisms respond to parasites likely led 347 to underestimation of overall response magnitudes to parasitism in our meta-analysis. 348 None of the included studies measured individual responses in more than one 349 interaction stage, even though parasites commonly evoke responses in all interaction 350 stages. Longitudinal data on individual responses to multiple consumer states will 351 more comprehensively quantify trait response magnitudes, and may even reveal 352 interactive effects between trait responses (Boxes 2,3). Given that immunological 353 responses may be the most common type of host response to parasitism, non-lethal 354 effects arising from host combat responses, in particular, are likely to be much 355 stronger than our meta-analysis suggests. Additionally, non-lethal effects of parasitism 356 can also arise from host phenotypic changes caused by parasite manipulation (Poulin et al. 1994; Lafferty & Shaw 2013), and even directly from parasite feeding 357 358 independent of defensive responses. For instance, general energy drain (Munger & 359 Karasov 1989; Delahay et al. 1995) or direct tissue damage caused by parasite 360 infection can substantially impact host performance (Palstra et al. 2007). Such 361 pathological effects are not driven by a host response, but nevertheless represent non-362 lethal effects. These distinct types of non-lethal effects of parasitism could collectively

363	rival in magnitude the stronger predator avoidance that we observed. To test this
364	hypothesis would require longitudinal data on predator responses as well, which our
365	review indicates is also lacking in the literature. Although we expect combat
366	responses to predation to be rare, there are exceptional cases of prey defending
367	themselves while being ingested, particularly for some slow predators that do not kill
368	their prey before consuming them (e.g., sea stars eating mussels). In such cases,
369	predators could also evoke combat responses.
370	Considering distinct predator and parasite consumer strategies led to more
371	comprehensive trait response predictions that did not completely align with the
372	predator versus parasite dichotomy. However, our systematic review revealed a
373	paucity of literature to develop this more holistic approach at understanding trait
374	responses, suggesting a fruitful area of future research on non-lethal effects. For
375	example, we predict parasitoids and parasitic castrators should act like predators to
376	elicit strong pre-contact responses, but share with other parasites the ability to elicit
377	combat responses during consumption. Micropredators, by not killing their prey when
378	feeding, should act like parasites to elicit responses across all interaction stages.
379	Studies that focus solely on micropredators (Kavaliers et al. 2003b, 2005) and
380	parasitoids (Abram et al. 2019), do find that resources avoid, counter, and combat
381	these consumers, though we still lack direct comparisons of the magnitudes of these
382	responses with similar responses to predators and typical parasites. Furthermore

383	there remains much to be known regarding the extent to which detectability
384	constrains or enables responses. Testing these more specific, yet meaningful, trait
385	response predictions requires distinguishing not just between predators and
386	parasites, but also different types of predators and parasites. A synthesis of trait
387	responses from multiple single-consumer studies may permit tests of these
388	predictions, but will come with the potential expense of error from inconsistent study
389	designs. To minimize such error, we encourage experiments that directly compare
390	trait responses to a broader range of consumer strategies and resource species.
391	Regardless of how individual resources respond to predators and parasites
392	alone, risks of predation and parasitism in the wild rarely occur in isolation. The non-
393	additive predator and parasite effects that we observed in the meta-analysis may be
394	indicative of priority effects, whereby the first type of exposure elicits the stronger
395	response, though we could not test for this. Additionally, predators may frequently
396	interfere with parasite responses by imposing stronger immediate threats to survival.
397	Trade-offs between defences against predation and parasitism, such as adjustments in
398	activity by tadpoles (Koprivnikar & Urichuk 2017) and shoaling behaviour by guppies
399	(Stephenson et al. 2015), could also explain why it might be difficult to respond
400	effectively to different simultaneous threats. However, although trade-offs between
401	predator and parasite defences have been considered previously (Orlofske et al. 2012;
402	Stephenson et al. 2015; Koprivnikar & Urichuk 2017), our meta-analysis highlights

403	that anti-predator and anti-parasite responses may also be complementary in that
404	predators and parasites can elicit similar responses, and most of the significant
405	predator and parasite responses reported by studies were in the same direction (i.e. a
406	reduction in the trait expression). A well-demonstrated example comes from tadpoles
407	(Box 3), which reduce activity levels (Marino <i>et al.</i> 2014; Preston <i>et al.</i> 2014; Gallagher
408	et al. 2019), increase refuge use (Han et al. 2011) and reduce time in foraging habitats
409	(Koprivnikar & Penalva 2015) when either exposed to predators or infected with
410	parasites. When responses deter both predators and parasites, avoiding predation
411	may also inadvertently aid in the avoidance of parasites.
412	
413	Conclusion
414	Whether through fear or through infection, consumers elicit costly trait
415	responses in their resources that give rise to non-lethal effects at the level of
416	individuals, communities, and ecosystems. A general consumer-resource model
417	helped to develop a framework to predict trait responses to various consumer types.
418	Owing to differences in consumer strategies that influence when and how strongly
419	they impact resources, we expect different trait responses to different types of
420	predators and parasites, and therefore, different non-lethal effects. However, many
421	
421	consumer strategies have not yet been tested in a comparative fashion. Expanding

- 423 a broader consumer-resource perspective sets the foundation for exploring how non-
- 424 lethal effects manifest in the complex, multi-trophic food webs found in real
- 425 ecosystems.

- 427 Acknowledgements
- 428 We thank Gordon Research Conferences and Andy Sih, chair of the 2016 meeting
- 429 "Predator-Prey Interactions", for providing the forum that inspired this work; the
- 430 EGLIDE group (Amy Pedersen, Amy Sweeny, Saudamini Venkatesan, Dishon Muloi,
- 431 Alexandra Morris, Shaun Keegan and Kayleigh Gallagher), the EEGID group at
- 432 University of Liverpool (Mike Begon, Greg Hurst, David Montagnes, Mark Viney, Steve
- 433 Parratt), the Garner lab at the Zoological Society of London (Trent Garner, Chris Owen,
- 434 Stephen Price, Goncalo Rosa, Bryony Allan), and Chris Carbone for their comments on
- 435 earlier versions of the review; and Daniel Noble, Raj Whitlock, and Wolfgang
- 436 Viechtbauer for advice on the meta-analysis. We also thank an unlisted author for
- 437 their contributions to the idea formation and manuscript writing. This author will be
- 438 named in future versions of the manuscript. Any use of trade, product, or firm names
- 439 in this publication is for descriptive purposes only and does not imply endorsement by
- 440 the U.S. Government. This manuscript benefited from NSF Ecology of Infectious
- 441 Diseases grant (OCE-1115965) and a grant from the Natural Environment Research
- 442 Council UK (NE/N009800/1).

References

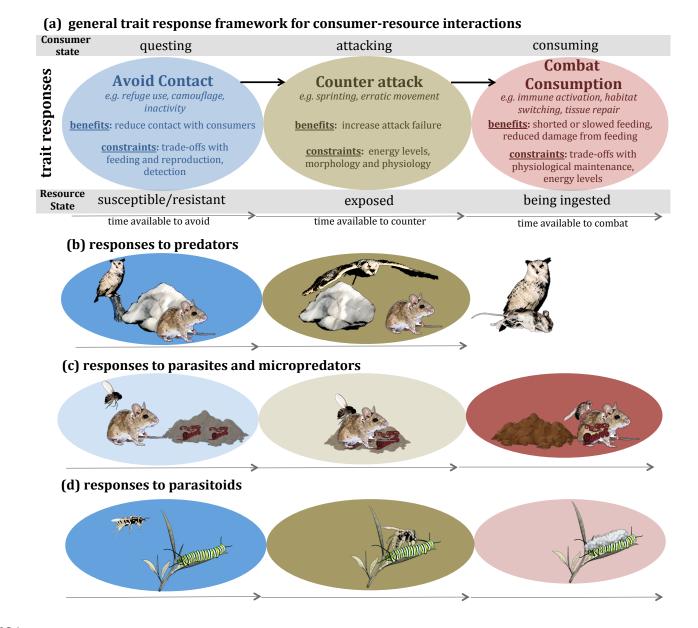
444	Abram, P.K., Brodeur, J., Urbaneja, A. & Tena, A. (2019). Nonreproductive effects of
445	insect parasitoids on their hosts. Annu. Rev. Entomol., 64, 259–276.
446	Behringer, D.C., Butler, M.J. & Shields, J.D. (2006). Avoidance of disease by social
447	lobsters. <i>Nature</i> , 441, 421–421.
448	Buck, J.C. (2019). Indirect effects explain the role of parasites in ecosystems. <i>Trends in</i>
449	Parasitology.
450	Buck, J.C. & Ripple, W.J. (2017). Infectious agents trigger trophic cascades. Trends in
451	Ecology & Evolution, 32, 681–694.
452	Cantor, J. (2004). "I'll Never Have a Clown in My House" Why movie horror lives on.
453	<i>Poetics Today</i> , 25, 283–304.
454	Creel, S., Christianson, D., Liley, S. & Winnie, J.A. (2007). Predation risk affects
455	reproductive physiology and demography of Elk. <i>Science</i> , 315, 960–960.
456	Creel, S., Winnie, J., Maxwell, B., Hamlin, K. & Creel, M. (2005). Elk alter habitat
457	selectioin as an antipredator response to wolves. <i>Ecology</i> , 86, 3387–3397.
458	Curtis, V. & de Barra, M. (2018). The structure and function of pathogen disgust.
459	Philosophical Transactions of the Royal Society B: Biological Sciences, 373,
460	20170208.
461	Curtis, V.A. (2014). Infection-avoidance behaviour in humans and other animals.

Trends in Immunology, 35, 457–464.

	463	Daversa, D.R.	, Manica, A.	Bosch, J.,	Jolles, J.V	V. & Garner,	T.W.J.	(2018)). Routine habitat
--	-----	---------------	--------------	------------	-------------	--------------	--------	--------	--------------------

- 464 switching alters the likelihood and persistence of infection with a pathogenic
- 465 parasite. *Functional Ecology*, 32, 1262–1270.
- 466 Delahay, R.J., Speakman, J.R. & Moss, R. (1995). The energetic consequences of
- 467 parasitism: effects of a developing infection of *Trichostrongylus tenuis*
- 468 (Nematoda) on red grouse (*Lagopus lagopus scoticus*) energy balance, body
- 469 weight and condition. *Parasitology*, 110, 473.
- 470 Dröge, E., Creel, S., Becker, M.S. & M'soka, J. (2017). Risky times and risky places
- 471 interact to affect prey behaviour. *Nature Ecology & Evolution*, 1, 1123–1128.
- 472 Fortin, D., Beyer, H.L., Boyce, M.S., Smith, D.W., Duchesne, T. & Mao, J.S. (2005). Wolves
- 473 influence elk movements: behavior shapes a trophic cascade in Yellowstone
- 474 National Park. *Ecology*, 86, 1320–1330.
- 475 Gallagher, S.J., Tornabene, B.J., DeBlieux, T.S., Pochini, K.M., Chislock, M.F., Compton,
- 476 Z.A., *et al.* (2019). Healthy but smaller herds: Predators reduce pathogen
- 477 transmission in an amphibian assemblage. *J Anim Ecol*, 1365-2656.13042.
- 478 Han, B.A., Searle, C.L. & Blaustein, A.R. (2011). Effects of an infectious fungus,
- 479 *Batrachochytrium dendrobatidis*, on amphibian predator-prey interactions.
- 480 *PLoS ONE*, 6, e16675.
- 481 Hart, B.L. (1994). Behavioural defense against parasites: interaction with parasite
- 482 invasiveness. *Parasitology*, 109, S139–S151.

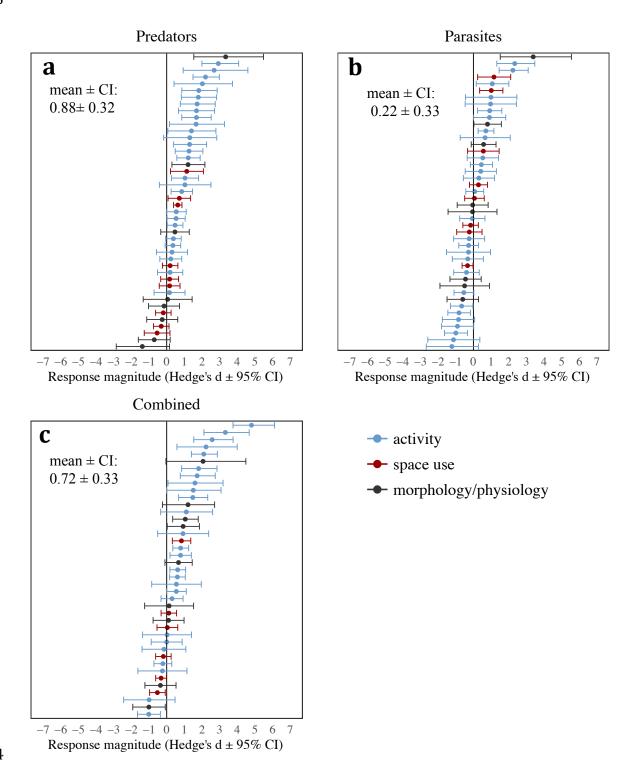
483	Hart, B.L. & Hart, L.A. (2018). How mammals stay healthy in nature: the evolution of
484	behaviours to avoid parasites and pathogens. Philosophical Transactions of the
485	Royal Society B: Biological Sciences, 373, 20170205.
486	Hawley, D.M. & Altizer, S.M. (2011). Disease ecology meets ecological immunology:
487	understanding the links between organismal immunity and infection dynamics
488	in natural populations: Disease ecology meets ecological immunology.
489	Functional Ecology, 25, 48–60.
490	Hossie, T., Landolt, K. & Murray, D.L. (2017). Determinants and co-expression of anti-
491	predator responses in amphibian tadpoles: a meta-analysis. Oikos, 126.
492	Hutchings, M.R., Gordon, I.J., Kyriazakis, I. & Jackson, F. (2001). Sheep avoidance of
493	faeces-contaminated patches leads to a trade-off between intake rate of forage
494	and parasitism in subsequent foraging decisions. Animal Behaviour, 62, 955–
495	964.
496	Kavaliers, M., Colwell, D.D., Braun, W.J. & Choleris, E. (2003a). Brief exposure to the
497	odour of a parasitized male alters the subsequent mate odour responses of
498	female mice. Animal Behaviour, 65, 59–68.
499	Kavaliers, M., Colwell, D.D. & Choleris, E. (2003b). Learning to fear and cope with a
500	natural stressor: individually and socially acquired corticosterone and
501	avoidance responses to biting flies. <i>Hormones and Behavior</i> , 43, 99–107.


- 502 Kavaliers, M., Colwell, D.D. & Choleris, E. (2005). Kinship, familiarity and social status
- 503 modulate social learning about ?micropredators? (biting flies) in deer mice.
- 504 *Behavioral Ecology and Sociobiology*, 58, 60–71.
- 505 Koprivnikar, J. & Penalva, L. (2015). Lesser of two evils? foraging choices in response
- to threats of predation and parasitism. *PLOS ONE*, 10, e0116569.
- 507 Koprivnikar, J. & Urichuk, T.M.Y. (2017). Time-lagged effect of predators on tadpole
- 508 behaviour and parasite infection. *Biology Letters*, 13, 20170440.
- 509 Koricheva, J., Gurevitch, J. & Mengersen, K. (2013). Handbook of Meta-analysis in
- 510 *Ecology and Evolution*. Princeton University Press.
- 511 Lafferty, K.D., DeLeo, G., Briggs, C.J., Dobson, A.P., Gross, T. & Kuris, A.M. (2015). A
- 512 general consumer-resource population model. *Science*, 349, 854–857.
- 513 Lafferty, K.D. & Kuris, A.M. (2002). Trophic strategies, animal diversity and body size.
- 514 *Trends in Ecology & Evolution*, 17, 507–513.
- 515 Lafferty, K.D. & Shaw, J.C. (2013). Comparing mechanisms of host manipulation across
- 516 host and parasite taxa. *Journal of Experimental Biology*, 216, 56–66.
- 517 Lima, S.L. & Dill, L.M. (1990). Behavioral decisions made under the risk of predation: a
- 518 review and prospectus. *Canadian Journal of Zoology*, 68, 619–640.
- 519 Marino, J.A., Holland, M.P. & Middlemis Maher, J. (2014). Predators and trematode
- 520 parasites jointly affect larval anuran functional traits and corticosterone levels.
- 521 *Oikos*, 123, 451–460.

- 522 Milinski, M. & Bakker, T.C.M. (1990). Female sticklebacks use male coloration in mate
- 523 choice and hence avoid parasitized males. *Nature*, 344, 330.
- 524 Moore, J. (2002). *Parasites and the Behavior of Animals*. Oxford University Press.
- 525 Munger, J.C. & Karasov, W.H. (1989). Sublethal parasites and host energy budgets:
- 526 tapeworm infection in white-footed mice. *Ecology*, 70, 904–921.
- 527 Oates, B.A., Merkle, J.A., Kauffman, M.J., Dewey, S.R., Jimenez, M.D., Vartanian, J.M., et al.
- 528 (2019). Antipredator response diminishes during periods of resource deficit for
- a large herbivore. *Ecology*, 100, e02618.
- 530 Orlofske, S.A., Jadin, R.C., Preston, D.L. & Johnson, P.T. (2012). Parasite transmission in
- 531 complex communities: predators and alternative hosts alter pathogenic
- infections in amphibians. *Ecology*, 93, 1247–1253.
- 533 Palstra, A.P., Heppener, D.F.M., van Ginneken, V.J.T., Székely, C. & van den Thillart,
- 534 G.E.E.J.M. (2007). Swimming performance of silver eels is severely impaired by
- the swim-bladder parasite Anguillicola crassus. *Journal of Experimental Marine*
- 536 *Biology and Ecology*, 352, 244–256.
- 537 Poulin, R., Brodeur, J. & Moore, J. (1994). Parasite manipulation of host behaviour:
- 538 Should hosts always lose? *Oikos*, 479–484.
- 539 Preston, D.L., Boland, C.E., Hoverman, J.T. & Johnson, P.T.J. (2014). Natural enemy
- 540 ecology: comparing the effects of predation risk, infection risk and disease on
- 541 host behaviour. *Functional Ecology*, 28, 1472–1481.

542	Pringle, R.M., Kartzinel, T.R., Palmer, T.M., Thurman, T.J., Fox-Dobbs, K., Xu, C.C.Y., <i>et al.</i>
543	(2019). Predator-induced collapse of niche structure and species coexistence.
544	<i>Nature</i> , 570, 58–64.
545	Raberg, L., Graham, A.L. & Read, A.F. (2009). Decomposing health: tolerance and
546	resistance to parasites in animals. Philosophical Transactions of the Royal
547	Society B: Biological Sciences, 364, 37–49.
548	Raffel, T.R., Hoverman, J.T., Halstead, N.T., Michel, P.J. & Rohr, J.R. (2010). Parasitism in
549	a community context: trait-mediated interactions with competition and
550	predation. <i>Ecology</i> , 91, 1900–1907.
551	Relyea, R.A. & Werner, E.E. (1999). Quantifying the relation between predator-induced
552	behavior and growth performance in larval anurans. <i>Ecology</i> , 80, 2117.
553	Rigby, M.C., Hechinger, R.F. & Stevens, L. (2002). Why should parasite resistance be
554	costly? Trends in parasitology, 18, 116–120.
555	Ritchie, E.G. & Johnson, C.N. (2009). Predator interactions, mesopredator release and
556	biodiversity conservation. <i>Ecology Letters</i> , 12, 982–998.
557	Rohr, J.R., Swan, A., Raffel, T.R. & Hudson, P.J. (2009). Parasites, info-disruption, and
558	the ecology of fear. <i>Oecologia</i> , 159, 447–454.
559	Sears, B.F., Snyder, P.W. & Rohr, J.R. (2013). Infection deflection: hosts control parasite
560	location with behaviour to improve tolerance. Proceedings of the Royal Society

561 *B: Biological Sciences*, 280, 20130759–20130759.


562	Stephenson, J.F., Van Oosterhout, C., Mohammed, R.S. & Cable, J. (2015). Parasites of
563	Trinidadian guppies: evidence for sex-and age-specific trait-mediated indirect
564	effects of predators. <i>Ecology</i> , 96, 489–498.
565	Stevens, M. & Merilaita, S. (2009). Animal camouflage: current issues and new
566	perspectives. Philosophical Transactions of the Royal Society B: Biological
567	Sciences, 364, 423–427.
568	Tybur, J.M., Çınar, Ç., Karinen, A.K. & Perone, P. (2018). Why do people vary in disgust?
569	Philosophical Transactions of the Royal Society B: Biological Sciences, 373,
570	20170204.
571	Van Buskirk, J. (2001). Specific induced responses to different predator species in
572	anuran larvae. Journal of Evolutionary Biology, 14, 482–489.
573	Weinstein, S.B., Buck, J.C. & Young, H.S. (2018). A landscape of disgust. <i>Science</i> , 359,
574	1213–1214.
575	Werner, E.E. & Peacor, S.D. (2003). A review of trait-mediated indirect interactions in
576	ecological communities. <i>Ecology</i> , 84, 1083–1100.
577	Westra, E.R., van Houte, S., Oyesiku-Blakemore, S., Makin, B., Broniewski, J.M., Best, A.,
578	et al. (2015). Parasite Exposure Drives Selective Evolution of Constitutive
579	versus Inducible Defense. <i>Current Biology</i> , 25, 1043–1049.
580	

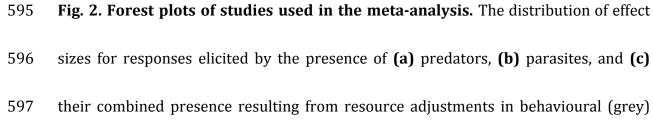


Fig. 1. A general trait response framework and predictions (a) Resources can respond to consumers to reduce contact rates, attack rates, and feeding rates, but might be constrained by physical and sensory limitations, as well as trade-offs against other fitness-related activities (e.g. feeding and reproducing). The general framework can be tailored to specific types of consumer-resource interactions, such as interactions between field mice and **(b)** owl predators, **(c)** biting flies and infective

- nematodes (red worms in faeces), or **(d)** between caterpillars and parasitoid wasps.
- 589 The opacity of the circles denotes the predicted strength of responses. The lack of a
- 590 combat stage in **(b)** illustrates that resources rarely repond during consumption by
- 591 predators.

593

and morphological/physiological traits (blue). Error bars denote the 95% confidence

599 intervals.

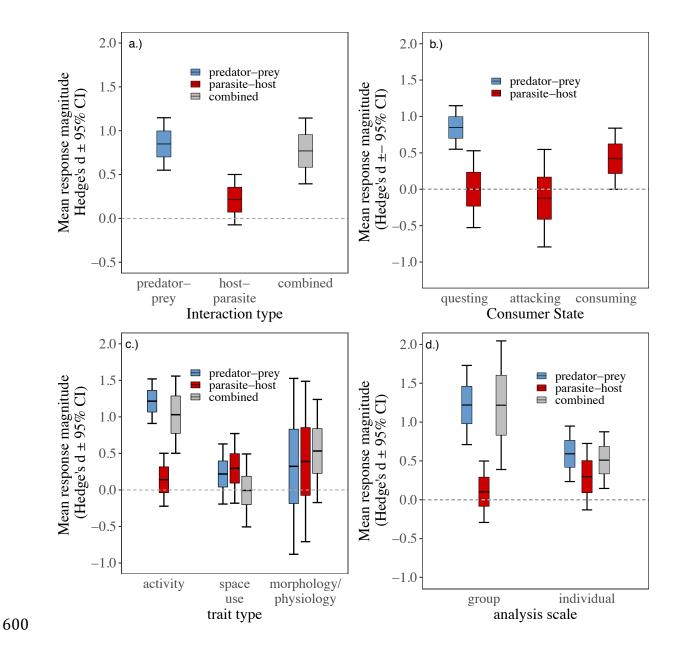


Fig. 3. Relative magnitude of responses to predation vs. parasitism. (a) The estimated mean magnitude of trait responses to predation cues (blue), parasitism cues (red), and both cues (grey). (b) Mean trait responses to predators (blue) and parasites (red) during each consumer state comprising the interaction. Only pre-attack responses to questing predators were found in our literature review, likely owing the low probability of surviving attack or consumption by predators. Responses to the combined presence of predators and parasites are not shown because only one study

608	with this treatment had predators and parasites in the same state. (c, d) Estimated
609	mean trait response magnitudes to predation cues (blue), parasitism cues (red), and
610	both cues (grey), broken down by (c) the type of trait measured and (d) the scale at
611	which trait responses measured. Lines denote the mean response magnitudes, boxes
612	denote the standard error of the mean, and error bars denote the 95% confidence
613	intervals.

Resource Response	Resource transition	Consumer transition	processes affected	Examples	Consumer Tvne	Potential costs to resource	Costs to consumer
	∱ S-R	A-Q ↓	Contact	burrow use when predators are present; vaccination from parasitic infection	All	reduced food intake and reproduction	Hunger
Avoid Contact	♦S-E	↓ Q-A	Contact	camoflaged morphology of prey, leaving habitats with cues of parasite infestation	All	reduced food intake and reproduction	energy loss, hunger
	↑ E-S	↓ A-Q	Attack failure Resource Recovery S	Fleeing from approaching predators	Predator, micropredator	energy loss or allocation trade-offs	energy loss, hunger
	↑ E-S	↑ A death	Consumer death Resource recovery to S	Deflecting parasitic propagules or micropredators; venemous biting of predators	All	energy loss or allocation trade-offs	Death
Counter attack	↑ E-R	↑ A-Q	Attack failure Resource recovery to S	fleeing approaching predators via dispersal to areas outside of consumer distribution	Predator	energy loss or allocation trade-offs	Energy loss, hunger
	↑ E-R	↑ A death	Consumer death Resource recovery to S	Developing antibodies after deflecting parasitic propagules	All	energy loss or allocation trade-offs	Death, hunger
	↓ I-S	↓ C-Q	Consumption ended Resource recovery to S	swatting, jolted body movement, posionous flesh	Micropredator	energy loss or allocation trade-offs	Failure,
	↓ I-S	↑ C death	Consumer Death Resource recovery to S	Grooming, immune activation, habitat switching	Micropredator, parasite	energy loss or allocation trade-offs, reduced food intake and reproduction	Death
Collicat consumption	↑ I-R	↑ C-Q	Consumption ended Resource recovery to S	dispersal to areas outside of consumer distribution	Micropredator	energy loss or allocation trade-offs	Failure, hunger
	↑ I-R	↑ C death	consumer death Resource recovery to S	Sterile immunity	Pathogens	energy loss or allocation trade-offs	Death, hunger

Table 1. Trait responses and their consequences for consumer-resource

616	dynamics. The three types of trait responses that predators and parasites may elicit
617	(Column 1) have distinct effects on interaction dynamics (columns 2-3), in part
618	because each response affects specific biological processes (Column 3). For columns 2
619	and 3: S = susceptible, E = exposed, I = ingested, R = resistant, Q = questing, A =
620	attacking, C = consuming, as per Lafferty et al. 2015. Arrows denote when responses
621	increase transition rates and down arrows denote when trait responses decrease
622	transition rates.
623	
624	
625	
626	
627	
628	
629	

631 **Box 1. Overview of the general consumer resource model.**

632	The Lafferty et al. (2015) model helps identify and compare different consumer-
633	resource interactions using a singular and formalized mathematical logic. During
634	interactions the consumer can be in one of three states: "questing", "attacking", or
635	"consuming". The resource, here being a prey or host, moves through a corresponding
636	four states; they are "exposed" when under attack, being "ingested" while consumers
637	are consuming them, and can either be "susceptible" or "resistant" to new attack. State
638	transitions are driven by multiple biological processes, which can be represented by
639	simple per capita rates or complex functions. Consumers and resources transition
640	from questing and susceptible states, respectively, according to detection rates of each
641	organism and attack rates of the consumer, while they transition to consuming and
642	ingested states, respectively, according to attack success rates of the consumer (Fig.
643	1a). Handling rates determine transitions back to questing and susceptible states or
644	alternatively, death rates of consumers and resources following consumption. All
645	states have death rates that allow for specific costs to be specified. The expanded
646	model shown here can be formally simplified (through setting some rates to zero to
647	subsume states) to represent nearly all classic consumer-resource models.
648	The expanded model does not represent a specific consumer-resource interaction.
649	Instead, a set of binary parameters (switches) makes it easy to specify distinct
650	consumer strategies. For instance, the "fatal attack" parameter (f) defines whether

651	resources are dead (f = 1) or alive (f = 0) after consumption, which distinguishes
652	predators and parasitoids from other parasites and micropredators. The "joint death"
653	parameter defines whether the consumer dies if its resource dies ($j = 1$) or remains
654	living ($j = 0$), which distinguishes all parasites (which have an intimate relationship
655	with their host) from predators and micropredators. Finally, the "multiple attacks"
656	parameter defines whether the consumer attacks once in a lifetime (m = 0), as
657	parasites and parasitoids do, or more than once in a lifetime (m = 1), as
658	micropredators and predators do.
659	
660	
661	
662	

664 Box 2. Future directions for research on non-lethal effects

665	There remain several limitations in the comparative data on trait responses to, and
666	non-lethal effects of, predators and parasites. Addressing the following limitations will
667	lead to more comprehensive estimates of non-lethal effects in diverse, real
668	ecosystems:
669	1. Comparative experiments of trait responses that cover a broader range of
670	consumer-resource systems can determine how generalizable patterns are across
671	systems, and opens avenues to consider factors, like phylogenetics of consumer and
672	resource, on response magnitudes. Most comparative trait response studies identified
673	by our systematic review used larval amphibians and their aquatic consumers. The
674	experimental designs of those studies provide examples of how comparisons of trait
675	responses to different types of consumers can be performed with other species to test
676	the generality of our meta-analysis results.

2. Comparative studies that include responses to parasitic castrators, 677 678 parasitoids and micropredators are needed to provide novel tests of the 679 mechanisms, such as detection and fitness consequences, underlying trait responses to 680 consumer threats (see Discussion). Comparisons of trait responses to different 681 consumer types are currently limited to typical and trophically-transmitted parasites, 682 pathogens, and solitary predators – only three of the 10 consumer life histories found in natural ecosystems (Lafferty & Kuris 2002; Lafferty et al. 2015). 683 3. Considering the full array of parasite non-lethal effects on hosts will be 684 685 important to truly compare predators and parasites. For instance, though immune responses are one of the most common forms of anti-parasite defence, we were not 686 687 able to include immune responses into comparisons of trait responses to predators 688 and parasites. Because immune responses can be costly to initiate and maintain, such 689 host responses certainly cause non-lethal effects. Further, parasites may alter host 690 traits in ways that do not involve defensive responses, including by pathological 691 energy drain or tissue damage, or via adaptive host manipulation of host phenotypes. 692 All these effects occur during the consumption phase and will be uniquely pronounced 693 for parasites compared to predators.

4. Longitudinal data on prey and host responses are needed to consider how
multiple responses elicited by single consumers collectively shape the magnitude of
non-lethal effects. Longitudinal data may even reveal interactive effects between trait

697	responses, such that mounting one type of response affects the strength of other
698	responses. For example, parasites whose infections are not highly costly (e.g., many
699	gastrointestinal helminths) may cause hosts to prioritize combat responses to
700	minimize trade-offs of avoiding contact against fitness-related activities, like feeding
701	and reproducing (Moore 2002; Hart & Hart 2018). This occurrence may explain why
702	newts, for example, do not avoid infective questing parasites in breeding ponds, but
703	infections from those parasites drive the same individuals to leave those ponds
704	(Daversa et al. 2018). Prioritization of combat responses to parasitism provides one
705	explanation for our finding that average responses to parasites were strongest after
706	parasites commenced feeding.

707

708 5. Linking trait-response magnitudes to trait-mediated effects can provide 709 estimates of how the non-lethal impacts of consumers on individual traits correspond 710 with the their broader impacts on individual fitness, and community and ecosystem 711 dynamics. Future work can extend the length of prey and host monitoring to link trait 712 responses to individual fitness. Mesocosm and field experiments mirroring the 713 experimental designs of the studies in our meta-analysis can introduce primary 714 producers and other species in food webs into the picture, allowing associations 715 between response magnitudes to predators and parasites and trophic flows and cascades to be quantified. 716

717 Box 3. Larval anurans as a case study for interactive non-lethal effects of

718 predation and parasitism.

719	The literature on trait responses to consumers is mostly about frogs. Larval anurans
720	(i.e. tadpoles) were the most studied resource species in our meta-analysis (Table S1),
721	and how tadpole behaviour responds to predation risk (Relyea & Werner 1999; Van
722	Buskirk 2001; Hossie <i>et al.</i> 2017) and parasitism (Han <i>et al.</i> 2011; Preston <i>et al.</i> 2014;
723	Gallagher et al. 2019) is well-documented for several species. Questing dragonfly
724	larvae cause tadpoles to reduce activity levels in order to avoid contact, a trait
725	response that can reduce rates at which tadpoles are eaten. Similarly, parasitic
726	trematodes can affect tadpole activity, but tadpole responses seem more variable and
727	depend on the parasite state; <i>questing</i> trematode cercariae either elicit no change in
728	activity (Preston et al. 2014) or increase activity (Rohr et al. 2009; Raffel et al. 2010),
729	whereas attacking cercariae cause strong activity spikes in tadpoles that increase
730	attack failure rates (Sears et al. 2013). However, consuming trematode states (larval
731	metacercarial stages in tissues) cause tadpoles to reduce activity (Preston et al. 2014).
732	The rich literature using this exemplar system offers guidelines for how studies
733	could be designed to quantify non-lethal effects of predators and parasites in other
734	systems. In general, simultaneous interactions with both predators and parasites elicit
735	reductions in activity similar to encounters with predators alone (Fig. 1a). Although
736	this finding suggests that tadpoles prioritize predator avoidance over parasite

737	avoidance, trait responses elicited during these multi-trophic interactions may be
738	more complex. For example, because trematode-induced changes in tadpole activity
739	vary by parasite state, trait responses and their non-lethal effects may vary depending
740	on the order of encounters, otherwise known as priority effects. Being exposed to
741	attacking trematode cercariae during or after encounters with predatory insects poses
742	a clear trade-off between increasing activity to counter cercariae attack and
743	decreasing activity to avoid contact with the predator. Under the hypothesis that
744	severe fitness consequences of consumption will favour strong trait responses
745	(Hypothesis 1 in main text), the tadpoles should sustain reduced activity levels, giving
746	rise to non-lethal effects in the form of increased infection rates and reduced feeding
747	rates (Fig S4a). By contrast, being exposed to attacking cercariae before encounters
748	with predatory insects should first elicit activity increases, followed by reduced
749	activity in individuals that become infected. If a questing predator is then encountered,
750	infections should facilitate contact avoidance of the predator (Fig. S4b). Nevertheless,
751	the possibility exists that encounters with questing predators while being eaten by
752	parasites elicits additive reductions in tadpole activity that give rise to strong non-
753	lethal effects from reduced feeding. These studies underscore how different consumer
754	states can have different non-lethal effects, and highlight how non-lethal effects of
755	predation and parasitism can interact.