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Abstract

Antibody-based immunotherapies require the tedious identification and development of antibod-

ies with specific properties. In particular, vaccine development for mutating pathogens is challenged

by their fast evolution, the complexity of immunodominance, and the heterogeneous immune his-

tory of individuals. Mathematical models are critical for predicting successful vaccine conditions

or designing potent antibodies. Existing models are limited by their abstract and poorly structural

representations of antigen epitopes. Here, we propose a structural lattice-based model for anti-

body–antigen affinity. An efficient algorithm is given that predicts the best binding structure of an

antibody’s amino acid sequence around an antigen with shortened computational time. It is suitable

for large simulations of affinity maturation. This structural representation contains key physiolog-

ical properties, such as affinity jumps and cross-reactivity, and successfully reflects the topology of

antigen epitopes, such as pockets and shielded residues. We perform in silico immunizations via ger-

minal center simulations and show that our model can explain complex phenomena like recognition

of the same epitope from unrelated clones. We show that the use of cocktails of similar epitopes pro-

motes the development of cross-reactive antibodies. This model opens a new avenue for optimizing

multivalent vaccines with combined cocktails or sequential immunizations, and to reveal reasons

for vaccine success or failure on a structural basis.
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Introduction

In view of the billions of possible antibody sequences and their therapeutic potential, engineering anti-

bodies with target specificity is a timely and complex challenge. Antibody discovery goes beyond screen-

ing existing antibody sequences by also adding carefully designed mutations, with the aim of achieving

the desired binding landscape and pharmaceutical biochemical properties, and no self-reactivity. Engi-

neering antibodies from antibodies raised in vivo is safer, as in vitro tests for self-reactivity, eventually

in non-human species, can hide unpredicted deadly cross-reactivity to human self-antigens [1].

Highly mutating pathogens like HIV, hepatitis C virus or influenza are poorly targeted by vaccines.

Consequently, antibodies elicited during infection or vaccination do not necessarily protect again the

next mutation of the strain. Strikingly, during such infections, a few individuals naturally develop

broadly neutralizing antibodies (bnAbs) that bind to a large range of strains [2–6]. Injecting these

bnAbs has been shown to protect against future infections in certain contexts [7, 8], showing their

therapeutic potential. Meeting the requirements for the induction of bnAbs in vivo, especially in humans

or primates, would support better vaccine design and enhance the discovery of new bnAbs that are

functional but not self-reactive as a basis for further engineering. For this purpose, computational

modeling is an attractive approach. To understand broad neutralization, one needs to look at the

cellular basis of antibody responses. These happen in anatomical structures called germinal centers

(GCs), where B-cells selectively mutate their B-cell receptors (BCRs) through somatic hypermutation,

which are later secreted as antibodies. High-affinity B-cells are selected for survival and proliferation

at the expense of low-affinity B cells. As a consequence, the affinity of the antibodies increases over

time, a process called affinity maturation (AM).

The GC’s response to single well-defined antigens has long been studied in vivo (reviewed in [9]).

Many predictive mathematical models have been developed that use abstract antigen–antibody affini-

ties in a probabilistic manner: a mutation is an improvement or decrease in affinity to the single target

antigen [10–16]. However, at the scale of multiple or complex antigens, new layers of complexity arise

that are not covered by these models. Firstly, mutating pathogens evolve multiple antigenic variants

that differ in their accessible epitopes, their frequency and the amino acid (AA) sequence of their ac-

cessible sites. Secondly, during a chronic HIV infection, the epitopes recognized inside the GCs evolve

over time and different B-cell clones expand successively towards different epitopes [17]. Therefore,

the immunogenicity of antigens (i.e., their capacity to mount an immune response) is very complex

and might evolve between epitopes of the same or different antigens over time. Thirdly, it has been

reported that antibodies produced by GC-derived plasma cells can diffuse back to the GCs themselves

and compete for epitope binding of the GC’s B-cells [18], potentially changing the immunodominance

landscape of the response [19].
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Several recent mathematical models have been developed to account for the quantitative properties

of AM towards multiple antigens, either fixed or evolving. The models compare the efficiency of differ-

ent vaccine approaches such as simultaneous cocktail immunizations or sequential vaccinations with

the same or different antigens [20]. The models need antibody–antigen affinity representations that

account for properties like cross-reactivity. In particular, an antibody with high affinity to an epitope

should still have a correlated affinity to a related epitope but a less correlated affinity to a more mutated

or unrelated epitope. Interestingly, each published model comes with its own abstract encoding for an-

tibody–antigen interactions (reviewed in [20]), including (i) an abstract N-dimensional shape-space

model [15]; (ii) the size of the longest substrings compared between proteins taken from a finite alpha-

bet [21]; (iii) binary proteins with a predefined accessibility profile for each clone [22]; and (iv) binary

proteins with location-dependent affinity in the facing residues, from predefined affinity distributions

[23]; (v) abstract arbitrary matching between epitopes and binary receptors [24] and (vi) a structural

representation of cubic folded lattice proteins [25].

We have previously reported [20] that these representations carry different levels of cross-reactivity.

Only some can incorporate key mutations or shielding, and it is not easy to translate a real antigen or

structure into any of them. A more structural encoding of antibody–antigen affinity would overcome

these limitations, and the physiological properties would naturally emerge without the need to be

manually added to abstract models.

Several prediction tools have been developed based on protein folding thermodynamics and the

knowledge of known antibody–antigen structures (reviewed in [26]). Sadly, only a few antibody crystal

structures have been generated. Therefore, these tools can only use very limited datasets or threading

on known substructures. Full prediction tools like Rosetta [27], on the other hand, have reached pow-

erful binding accuracy at the expense of few hundreds of computational hours for a single calculation.

At the scale of GC simulation, one GC typically contains 10,000 cells at its peak. Through mutations

and high turnover between proliferation and death, a GC will typically explore 105 to 106 mutations

during its lifespan [28]. Therefore, the current available prediction techniques for structural anti-

gen–antibody binding are unable to achieve a single GC simulation in feasible time, not mentioning the

hundreds of GCs produced during vaccination in humans.

Here, we develop a new hybrid model of antigen–antibody folding that simulates the best folding

of one antibody loop, the complementary determining region 3 (CDR3), around a predefined antigen

structure on a 3D lattice. Real AA sequences are used, up to 11 AAs for the CDR loop, and with

complex antigen structures up to 200 AAs for the antigen. The interaction between neighboring AAs is

based on experimentally measured potential [29]. Thanks to the rapid combinatorial enumeration of

only the foldings with a minimum number of contact points with the antigen, we show that a binding

energy can be derived in feasible computational time for GC simulations (a few minutes for 1000
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affinity calculations). We show that key properties naturally arise from this representation, such as

polyreactivity, cross-reactivity, accessibility and shielding effects, and mutations inducing affinity jumps.

As a proof of concept, we adapted and ran GC simulations from the in silico model developed in [10]

with our structural antigen representation. The model showed physiological GC dynamics and proper

AM. We show that the use of cocktails of very similar antigens generated favorable conditions for cross-

reactivity. Therefore, GC simulations combined with the 3D affinity model presented here, are suitable

for testing vaccine strategies and predicting therapeutic methods to modulate immunodominance in

realistic computational time.

Results

A fast computational model for lattice-based antigen–antibody binding. A major challenge of in

silico GC simulations is to access the affinity change gained from somatic hypermutations in a very

short computational time. Given a predefined antigen structure (the ‘ligand’), we aim to compute the

binding energy and derive an affinity for large numbers of mutated binding regions of the antibody

(the ‘receptor’), (Figure 1A).

To generate a realistic but fast model for antigen–antibody binding, we developed a lattice model of

protein folding, inspired by previous work [25], where residues can only occupy predefined positions

on a grid (Figure 1B). Real AA sequences are used, consecutive AAs should be on neighboring points

and only one AA per grid point is allowed (hard-core repulsion). Conveniently, a protein structure can

therefore be named as a list of moves, namely Straight, Up, Down, Left, Right, such as those a plane

pilot would follow in 3D (Figure 1B). To derive binding energies, all covalent bounds are considered

equal (bounds have the same length and only 90◦ or 180◦ angles) and are therefore neglected. Instead,

neighboring but non-covalently linked AAs are considered to interact. Their binding energy has been

previously estimated from structural databases for each pair of AAs [29]. For two interacting proteins,

the binding energy I can be estimated as the energetic sum of individual bonds between the two pro-

teins, whereas the total energy E of one protein will be the energetic sum of interacting and intrinsic

bonds, in order to include intrinsic binding as a stabilization factor of the protein structure (see Meth-

ods). We do not yet talk about affinity, because this will depend on other physiological parameters,

including temperature, pH, and the rest of the antibody. Affinity will be introduced below. We assume

that the antigen has a stable conformation and is not significantly impacted by the antibody binding;

instead, the CDR3 loop of the antibody folds onto it. Therefore, for each CDR3 sequence, a folding has

to be performed and the folding structure around the antigen with lowest total energy has to be found

(Figure 1B).

Because of the exponentially high number of possible foldings, it would be unrealistic to compute

all foldings for each CDR3 sequence at each time-step in a dynamic computer simulation of GCs. There-
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fore, we developed an optimized algorithm that pre-computes only the ‘interesting’ possible foldings

of receptors of realistic length L (typically between 7 and 14 AAs). More precisely (see Figure 1C),

starting from a predefined antigen structure, a recursive algorithm enumerates all possible foldings

the receptors could adopt, with the constraint of ‘touching’ the antigen at least n times (we used a

minimum of four interactions). This considerably reduces the amount of structures to be enumerated

and stored in the memory. The structures are stored independently of the CDR3 sequence, which is

not considered yet. For each CDR3 sequence to be evaluated, all the previously enumerated foldings

are taken one by one and filled with the AA sequence of the CDR3, and the binding and total energies

are calculated. As a result, the best binding energy is given by the foldings with optimal total energy,

and the statistical binding energy can also be derived by weighting each folding by a Boltzmann factor

(see Methods). The statistical and best binding energies are very similar (Figure S1) such that the best

folding is representative of the ensemble of foldings (frozen state).

As an example, we show three typical antigen structures (Figure 1D): one simple accessible and flat

antigen (L1), one antigen with an accessible tail and a hidden pocket (L2), and an antigen with both

an accessible hook and a pocket, and additional inaccessible shielded positions, marked X (L3). We

assume that positions below the epitope (and on the side of L2 and L3) are inaccessible to receptors,

to model the antigen scaffold (shown as filled planes). For a randomly chosen CDR3, the best binding

structures are shown in Figure 1E, together with the binding energy I and the total energy E (the lower

the better). As expected, the best receptor structure around L2 is located in the accessible pocket.

Similarly, the best receptor structure around L3 binds the accessible hook. For comparison, the best

structure that would bind the shielded pocket of L3 is shown in purple (Figure 1E) and has much worse

binding energy.

The computational load of this structural representation is shown in Figure 1F-H. For each of the

three antigens, the number of possible folding structures (Figure 1F) and computation times (Figure 1G)

are shown, depending on the length of the CDR3 considered (7–11 AAs). For larger CDR3 sequences,

millions of folding structures exist (up to 75 million), but the pre-computation time still does not exceed

a few hours and has to be performed and saved only once. Regarding calculation time, thousands of

CDR3 can be evaluated for binding energy to these antigens in less than one hour on a single CPU,

implying that it becomes possible to simulate a full GC within a few hours.

As the folding structures are selected to bind at least four points on the antigen, we also show that

higher thresholds can improve the speed further (Figure 1H). The number of structures as a function of

CDR3 length and the threshold number of contacts is shown separately for each ligand. For instance, for

ligand L3, receptors of length 11 lead to 75 million structures with four contacts, which can be brought

down to only 5.6 million by requiring nine contacts. In summary, we present a structural model for

antibody–antigen binding that can model complex antigens and is efficient enough for GC simulations.
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Figure 1: Fast computation of antibody–antigen structural binding on a 3D lattice. A. Formulation
of the problem: given an antigen, generate a binding landscape of thousands of mutated antibody
binding regions (focusing on the CDR3 loop). B. Proteins (antigen and antibody binding region) are
represented as a path in a 3D lattice, written as: S: go straight, L: turn left, R: turn right, D: move
down and U: move up. The sequence of AAs is shown as a black line. Interactions happen between
neighboring AAs that are non-covalently linked, either inside a protein (green) or between the two
(black). The binding energy is the sum of interacting bonds, and the total energy of the receptor
additionally includes its intrinsic bounds. C. Workflow for the efficient computation of ligand–receptor
binding energies. (1) A ligand is predefined with its structure and AAs in the lattice. (2) The set of
possible receptor folding structures of predefined length L, with a minimum number of contact points n
to the ligand is pre-computed and stored. (3) Every time a receptor sequence is given, only this subset of
structures will be used one by one with this receptor sequence, and tested for binding energy I and total
energy E to the ligand. Either the ‘best binding energy’ (average binding energy of the structure(s) with
minimum total energy) or the ‘statistical binding energy’ (weighted binding energies of all structures
according to a Boltzmann factor) is returned (see Methods). All equally optimal structures can also be
retrieved. D. Example of possible ligands: a simple one filled with alanine only (L1), a ligand with a
tail and pocket (L2), and a ligand with diverse AAs, a hook, and additional positions blocked to the
receptor (shielded residues, ‘X’) that cover the pocket, making it less accessible (L3). Alanine is shown
in white; other residues are colored. E. For a randomly chosen receptor sequence of length 9, the best
folding structure is shown in green; the best one reaching the pocket for L3 is shown in purple. The
best binding energy I and total energy E are shown for each ligand, in kT units. F. The number of
structures for each ligand, depending on the length of receptors L (in AAs), when at least four contacts
are required. G. Time and memory requirements for pre-computing the structures and then calculating
the best and statistical energies of 1000 receptor sequences. H. Total number of sequences as a function
of the minimum requested number of contacts n (threshold). Longer receptors can be considered for
larger thresholds.
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Structural properties of the model. We assessed the distribution of binding energy for large numbers

of receptor sequences and checked whether the properties of antigen binding are physiological.

Varying receptor binding energies. We first asked if the model could reproduce differing ranges of

binding energies for different receptor sequences. Thousands of random receptor sequences of length 7

to 11 AAs were sampled; their binding energy to each ligand (L1, L2 and L3), as previously introduced

in Figure 1E, is shown in (Figure 2A). The binding energy of the receptors varied according to a broad

Gaussian distribution in the range of 20, 40 and 50 kT units for L1, L2 and L3, respectively. It shows that

although millions of structures are tested for each receptor sequence, the model successfully generates

different binding landscapes for each sequence. In other words, a ‘bad receptor’ for this antigen does

not match any good folding pattern among millions of possible ones. Therefore, the calculated binding

energy contains structural information about the receptor sequences. The binding energy of receptors

increased linearly with their length (Figure 2A) because they have more options for binding and a

bigger folding ensemble. Therefore, we do not recommend comparing energies between receptors of

different lengths, unless a correction coefficient is added.

Antigen structure shapes binding. The impact of the antigen structure onto the binding energies

is investigated in the model. We created a ‘bigger’ version of ligand L1 with a similar flat shape. It

induced a global increase in binding (Figure 2B), because it opened more positions, especially corners

with three AAs that are accessible from the same point. We therefore suggest comparing ligands of a

similar size. In the case of L3, we first created a more physiological variant called L6 where the hole

in the pocket was filled (green arrow), to avoid receptors going through it. We then monitored the

contribution of the shielded pocket by removing it in a new ligand L7 (Figure 2C). Interestingly, it did

not significantly change the distribution of the best binding energies because the receptor structures

accessing it were not favored. It shows that the model is a suitable tool for studying the effect of steric

hindrance of epitopes such as HIV GP120 protein [30].

Antigen AA complexity shapes binding. Changing the AA composition of L1 from alanine only to

diverse AAs (L5) (Figure 2B) led to a strong increase in best binding energy. Intuitively, if an antigen

contains only one type of AAs, receptors will not benefit from different folding structures.

Point Mutations. In the GC, somatic hypermutation generates point mutations that lead to in-

creased or decreased best binding energies. We tested all possible point mutations along eight selected

receptor sequences of length 9 with different binding energies to ligand L6 (Figure 2D). Interestingly,

mutations could always both increase and decrease the binding energy, even when starting from se-

quences with very high (green) or very low (purple) energy. All 2500 randomly sampled receptor

sequences for L6 displayed binding energies of −100 to −50 kT units (Figure2A). Point mutations

from the selected receptor sequences could increase or decrease by 15 kT units, showing that point

mutations can cause huge jumps in binding energy.
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GC simulations show affinity jumps and mutation bursts. In order to predict AM and ultimately

the efficiency of multivalent vaccines from the structural properties of the antigens, the next step was

to simulate full-scale GC reactions. We incorporated our structural binding model into an agent-based

model for GC dynamics in 3D where B-cells and T-cells are explicitly modelled to move, interact, be

selected, proliferate, die or exit [10, 31] (see Methods for details). In the GC, the affinity between the

BCR and the antigen determines the probability of capturing the antigen, which is needed later to sur-

vive T-cell selection. We used two parameters to transform the binding energy into a phenomenological

affinity (i.e., the probability of capturing the antigen in the simulation): (1) the lowest (i.e., the best)

binding energy is translated into a maximal probability of antigen capture (saturation limit). There-

fore, an affinity of 1.0 corresponds to a very low binding energy. Higher affinity values are possible but

will not increase antigen capture. (2) A scaling coefficient is added to include the contribution of the

remaining antibodies (see Methods for details).

We found suitable values for these two parameters that accounted for realistic GC dynamics and

AM. The dynamics of GC simulations when we used a single complex target antigen with diverse AAs

(L6) is shown in (Figure 3A). The number of B-cells over time in single GCs shows an initial expansion

as expected, followed by a burst and slow decay. Starting randomly from cells with at least 0.0001

affinity (see Methods), the average affinity of cells inside the GCs easily reached 0.3 to 1 after 21 days.

The average number of mutations of cells leaving GCs was around six mutations, as estimated in [32].

The best receptor sequences of five GCs are shown in Figure 3B, together with a consensus between

receptors of very high affinity (> 0.75). Each GC could mount different receptors with very high affinity,

showing that many different receptor sequences could reach high affinity, in contrast to most abstract

affinity models where the high affinity sequence is unique [20].

An important biological property of GCs is the possibility of one clone dominating a GC [31] and

the possibility of huge affinity jumps by single mutations. As these mutations are rare, it would be

impossible to detect them by chance among random receptors and mutations, and we decided to study

the mutation landscape in depth in five in silico GC simulations (Figure 3C-E). We analyzed all the

receptor sequences generated by mutations inside a single GC over the 21 days of the reaction, including

dead cells. Therefore, all mutations that occurred were retrieved from the simulation. Around 70,000

mutations happened; the forest of mutations is shown in (Figure 3C). Each tree (cluster) represents one

founder cell sequence and all its progeny. We distinguished the sequences with high affinity (> 0.5) in

red and observed that more than one founder cell achieved high affinity. It was observed in vivo that

GCs exist that are not dominated by a single clone, in which multiple founder clones can co-exist and

reach high affinity [31]. Here, we could observe the parallel AM of multiple clones in silico.

To further characterize the mutation profile of a successful journey from a founder cell to a high-

affinity cell, we selected the mutation cluster of a winning or losing founder cell in Figure 3D. The clone
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of the winning founder cell showed the explosive expansion of a sequence into many mutated daughter

sequences with high affinity. Interestingly, other bursts (hubs in the trees) could be observed in both the

winning and losing clones (Figure 3C). By focusing only on high-affinity sequences and their parents

up to the founder cell (Figure 3E) we could track the history of affinity changes during AM leading

to those sequences only. Interestingly, from a founder cell with an affinity of 0.009, both increases

and decreases of affinity happened, typically by 2− to 10−fold, until reaching the sequence with an

affinity of 0.77, showing high expansion. Furthermore, some high-affinity sequences were generated

from non-beneficial mutations of the bursting sequence. Therefore, in the simulations, not exclusively

advantageous sequences are selected, which reflects the stochastic nature of selection observed in [31].

In the tree representation, the same sequence can occur in different nodes with a different order of

mutations. We simplified the graph by merging identical sequences around the bursting cell (Figure 3F).

Strikingly, point mutations reaching a 74−fold increase in affinity could be observed. Specific mutations

that confer an affinity jump have been described in vivo, like the acquisition of L33 in antibodies against

ovalbumin [33], and these are positively selected in GCs. Thus, the possibility of key mutations is

captured by our model. However, this does not necessarily imply that we actually have reproducible key

mutations at a specific position because our receptor sequences can not easily be aligned. Indeed, the

consensus sequences in Figure 3B seem to have shifted or to mirror each other. This kind of ambiguity

is inherent in the sequence model presented here.

Finally, we show the history of high-affinity cells from different GC simulations in Figure 3G, similar

to those depicted in Figure 3E, but for different winning founder cells from two other GC simulations.

This illustrates how different mutation patterns can be. All of them show expansion bursts (hubs) to

different degrees. Few reports have studied single cell sequences inside a single GC. Interestingly, these

bursts have been observed in a subset of GCs [31] in response to protein antigens, and to a greater

extent in GCs dominated by a single clone. This indicates that our structural model reflects several

non-trivial physiological properties of GCs and is adequately designed for simulating AM in GCs.

11

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 12, 2019. ; https://doi.org/10.1101/766535doi: bioRxiv preprint 

https://doi.org/10.1101/766535
http://creativecommons.org/licenses/by-nc/4.0/


GC4
71600 cells
alive+dead

F2: 211/11800 F4: 0/6500 F5: 112/5800 F6: 61/3600

F7: 0/2400 F8: 0/1400 F9: 2/1370 F10: 6/1100 F11: 0/1060

14035

65659

2176

32500

6381

44208

21577

49

69788

6305

20023

30065

52182

41518

14916

11053

49062

42753

58469

55300

60339

49033

10358

28352

20724

53969

15585

30301

39948

66813

70567

68771

64176

69630

66792

65949

59273

62183

66959

65116

63241

63416

25081

66894

66917

70720

64008

68704

70679

7014569531 67641

56897

63979
70658

67399

67125

54996

61506

68895

6546270737

55506
70346

69305

69163

69060

67691

70066

69948

66341

59877

66154

68994

67962

69921

59529

54560

35107

36692

540

242

5

59440

1410

23331

28776

30672

59016

64616

64695

65641

64176

59473

63586

46572

61238
48108

15743
60508

6330340564

10523
59155

62162

71391

12385

53081

59038

41878

53977

60665

28766

55225

46081

22070

3731

49430

53698

48943

45069
26938

55621

22199

33071

49932
65411

56453

55168

41566

52569

55959

49086

51852

42736

61685

60998

37822

65632

63850
58013

60888

58324

48551

62043

59420

69274
66945

59421

33727

62671

58566

63994

14135

31787

57879

58293
54714

59686

17440

50353

34127

57303

63478

40657

39947

43665

63470

37625

61753

51959

71019

66047

30288

50890

57166

60406

52001

56047
50560

17927

48323

58192

70671

28262

22900

66250

34330

56555

54173

29189

12282

7
0
2
4
7

5
6
6
6
8

5
9
5
4
0

6
3
0
5
2

7
1
3
0
5

6
2
2
5
0

5
9
5
8
7

7
0
0
2
6

7
0
7
5
3

6
8
9
8
7

6
9
4
0
4

6
1
5
3
6

5
4
2
2
4

6
6
7
3
6

4
8
2
0
0

1
5
3
6
4

5
4
9
4
4

6
2
6
8
2

4
3
4
5
4

7
0
9
6
0

5
8
5

2
0
4
7

2
5
1

5
0
5
9

2
0

1
2
9
6

7
0
1
1
8

6
6
7
7
8

7
1
1
9
7

5
0
2
8
4

6
9
7
4
8

1
4
7
1
9

9
1
4
7

5
8
3
7
9

5
7
5
3
6

6
0
4
7
7

6
5
6
2
5

5
6
7
4
2

7
0
9
1
7

5
6
8
8
0

5
8
2
7
0

5
0
8
0
8

6
5
1
4
3

67324

67873

64778

67909

52089

64694

66893

66214

39940

69348

68135

65092
66846

63341

56427

67431

67936

65657
66434

56248

59106

66204

39767

64850

67861

67551

6443467725

56542

70090

70673

58951

58191

61538

64640

67248

63977

69966

69225

56881

70172

69807

12605

64451

59495

54545

63253

30293

21991

47396

33913

30605

21393

2677

13672

24429

37217

18166

31422

29907

47333

69040

31197

48734

6740570170

59199

47266

48958

59168

62707

59720

60921

52747

66261

39690

18169

65901

13864

62510

6816

23000

14431

11769

23320

19030
51617

28575

53253
68687

14945

63063

63257
46363

42204

57839

70729

58742

10749

64709

32364

50941

56599

11770

53629

25054

46738

50012

39553

49420

64285

41021

59714

24394

68805

60810

61724

65825

56517

47463 42330

45417
65299

45416

40674

58319

47374

61332

60795

53646

57102

47977

64042

429

69843

28806 1504

63513

66287

65

1037

54751

61110

42714

15746

38124

29653

58626

50419

54750

55360

61014

23155

65663

64461

70620

70068

64848

68723

57833

67557

60028
68944

68740

54598

68099

60238

60239

69758

7037164517

68671

63387

58385

32305

67371
66972

6589370705 62624

69460

69053

63497

70288

61567

70004

57060

64274

70430
68791

6637263799

70579

67375

69590

68963

65019

58058

67094

63551

68988

65442

63038

69849

60663

67545

58201

61411
51612

68883

68749

HYYTLLLLV

0.00182324

GC4, F1 GC4, F2 GC3, F2

GC3, F4

Sequence graph

        GC5
one successful
     founder

GC5, futile
founders

High affinity lineages

69663

70729

64121

68212

70035

69385

70074

69250

70310

68176

70614

69898

62842

62509

57465

61304

58997

66446

65191

67378

67706

70207

67459

70930

69249

67215

70552

67282

70555

69645

69191

56990

58728

69550

70255

69879

70436

70428

68264

60270

70700

69296

70649

66538

70517

55881 62231

6757370009

58184

62861

53790

61594

65438

70087

69435

68437

69169

64696

68316

69892

50617

67677

69421

66929

65513

64737

67580

66923

70576

68866

68317

65040

66569

62933

66066

68087

61718

69553

68679
67465

70202

68487

70722

6587569697

70291

70261

69789

68590

54147

69382

65136

65173

68169

65705

63640

67169

70787

69968

70840

70716
70688

63004

70542

63824

65130

68592

68120

63698

67915

64253
70827

67779

33225

70124

70370

65852

60190

69658
69372

69755

66758

70153

70427

69416

65937

69979

68512

69733

66534

67731

66122

70567

67484

68872

67142

64374

70013

60678

64672

67929

54281

55453

66135

67846

64477

66477

59615

67103
69807

70145
69940

67462

52707

10868

4776

5317

117

67902

69869

69537

6356

68090

70046

68948

62812

65959

67116

68623

60764

66768

64267

67842

68619

67090

67437

66185

59180

67365

62876

70313

70377

67448

14094

70654

24374

68613

65470

68818

VFCLFIIFL

VFCLFIIFF VFCLFIVFL

MFCLFIIFL

VFCLFFIFL

MFCLFIFWL

CFCLFFILLYFCLFLIFL

VFCLIIIFL

VFCLIIIFL

VFCLWFIFL

VFCLLIIFL

VFCLFIIFF

NACLMVIFV

VFCLFWLFL

VFCLFIIFL

0.767754

0.5314520.677541

0.807118

0.525788

0.85764 0.924436

0.505533

0.546855

0.546855

0.699673

0.677541

0.767754
0.615258

Founder
aff: 0.009

x2

x5.7
x2

1/4

=

x8.6

x1.6
VFCLFIIFL
aff: 0.77

aff: 1.04

VFCLFIAFL

VFCLFISFL

CFCLFIIFL

MFCLFIIFL

VFCLFIIFF

FFCLFIIFL

RFCLFIIFL

VFCLFIFFL

PFCLFIFFL

VFCLLIIFL

VFCLFIFFL

VFCLFIIIL

VFCLHIIFL

VFCLFIFIL

VFCLVIIFL

TFCLFIFFL

RACLMIIFL

CFWLFIIFL

RACLFIIFL

NACLMIIFV

NACLMIIFP

RACLMIIFP

NFCLFIIFL

VFCLFWLFLVDCLFIIFL

VFCLFIIFV

VFCLLIIFL

VFCLWIIFL

VFCFIIIFL

VFCLFWIFL

VFCLWFIFL

VFCLFAIFL

MFCLFIFWL

VFCLFLIFI

VECLFIIFL

VFCLFIIWL

VFCLFIFWL

PFCLFIIFL

WFCLFIIFL

WFCLFWIFL

YFCLFLGFL

PFCLFFIFL

YFCLFLIFL

VFCLFIILL

VFCLIIILL

VHCLFIIFL

CFCLFFILL

SFCLFIIFL

VFCLFIVFL

FFCLFIIFL

TFCLFIIFL

YFCLFIIFL

VFCLFIMFL

VFILFIIFLaff: 0.53

aff: 0.86

aff: 0.53

aff: 0.61

aff: 0.92

VFCLFFILL

aff x76

aff x21

E

F

t=478h

t=128h

t=83h

VFCLFLIFL
aff: 0.99
t=371h

VFCLFFIFL
aff: 1.04
t=386h

aff: 0.77
VFCLFIIFL

t=206h

aff: 1.04

NACLMVIFV

Founder
aff: 0.009

Founder Founder

Founder

Founder

G

A

aff. Top 3 best seq.

C
H
M
I
A
V

F
W
L

C
F LF LF FL FLIV LF FLGC1

1.29  VFCLLFFLF
1.20  CFCLLFFFF
1.20  CFCLLFLFF

n=21

L
V
F
Y
W
M
I
C

F
L
W

C
L
F
L
F FL FL LIFVCWFYLI LFMIWCGC5

1.10  LFFFFFFWI
1.04  VFCLFFILL
1.03  VFCLFFIFL

n=19

F
I
L
M
F
W

I
L
C
F

F
L

F
L
I
W
M
V

F
L
C
V
L
F
W
MF FCLYMWGC2

1.10  IFFFILCFF
1.04  FFIFLFIFV
1.02  FFIFFFCFM

n=36

L
I

L
F F LF FI L LFCWYFCWFGC3

0.95  LFFLFLFYF
0.79  LLFFFLLWC
0.77  IFFFILCFW

n=5

A
M
H
C
FW
L
I

F
L
W

C
I
L LF LFVWI LF LFCLF FLICGC4

1.42  MFCLFFLFF
1.20  CFCLLLLFF
1.16  CLCLLLLFF

n=24

B
M

ea
n
 c

ap
tu

re
 p

ro
b
ab

ili
ty

 o
f 

B
 c

el
ls

nb. high aff/total
F1: 76/12400 F3: 0/8600

C

D

of this clone

N
u
m

b
er

 o
f 

ce
lls

Figure 3:

12

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 12, 2019. ; https://doi.org/10.1101/766535doi: bioRxiv preprint 

https://doi.org/10.1101/766535
http://creativecommons.org/licenses/by-nc/4.0/


Figure 3: Full scale in silico GC simulations and mutation histories of high-affinity cells with
structural affinities. A. Dynamics of 25 GC simulations against antigen L6, with receptors of size
9, starting from random BCR sequences with affinity 0.0001 at least. Volume (number of B-cells) of
GCs over time (left), the mean affinity of B-cells in the GC over time (middle) and the distribution
of mutations in cells that left the GC during the first 21 days (right). B. The best three sequences
and consensus of BCR sequences with very high affinity (> 0.75) for five GC simulations C. Network
(forest) representing all the mutation histories of the cells (alive or dead) that existed during a single
GC simulation. Nodes are sequences and the edges connect a mutated sequence in daughter cells to
the mother sequence. The same sequence can arise from different cells and can be found in multiple
nodes. One cluster (tree) represents all the progeny sequences of one founder sequence (i.e., one
clone). The clusters are displayed starting from the founders with the most progeny. High-affinity cells
(affinity > 0.5) are shown in dark red and are quantified beneath each founder dynasty. D. Details
of one founder progeny where a big burst (hub) could be observed. As a comparison, the progeny of
futile founders that did not reach high affinity is shown. E. Lineage history of high-affinity sequences
(> 0.5). This is a sub-network of D by keeping only high affinity cells and their parents up to the
founder sequence. The successive affinity increases with each mutation are shown from the founder
sequence to the burst. F. To understand the history of mutations in Panel E, the graph of sequences is
shown for high-affinity cells and ancestors, except they are merged if they share the same sequence.
Affinity jumps can be observed up to 74−fold and the paths did not always increase in affinity. G.
Progeny of high-affinity cells back to the founder cell for different clones in different GC simulations,
illustrating different shapes of the mutation graph, all showing hubs with different degrees. In all
network representations, node size and color represent the affinity: light blue for affinities less than
0.3, then color gradients follow, with red at affinity 0.6, purple at affinity 0.9 and black for the 1.0 and
higher. The position of nodes is determined automatically by a visualization algorithm, Prefuse Force
Directed Layout, that segregates components of the network in 2D, allowing to see the hubs.
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Antigen cocktails with high similarity promote cross-reactivity. Next, we simulated GCs with two

epitope variants with more or less similarity (Figure 4A). Using related epitopes that differed by two

point mutations (similar epitopes) promoted higher affinity and diversity while slightly increasing the

GC dynamics. An opposite effect was observed with less similar epitopes (four point mutations), with

less affinity and diversity over time, and smaller GCs. For similar epitopes, the affinity of individual

cells to both epitopes on Day 11 exhibited four different characteristics (Figure 4B). In some cases

(GC4), highly cross-reactive cells emerged, although GC2 matured only to one antigen. In most cases,

cross-reactive cells were enriched compared with the cells recognizing only one epitope.

We compared the dynamics of GC simulations and the affinity of individual cells in the case of a

cocktail of four similar epitopes (Figure 4C, D). There was no significant difference between two and

four unrelated epitopes, and cells could emerge with high cross-reactivity to two antigens but not all. In

order to quantify this effect, we calculated the average affinity to each epitope from the best recognized

to the least, for individual GCs, in the case of two or four similar epitopes (Figure 4E). Again, using two

or four epitopes showed similar results, with a recognized driving epitope and the others showing less

recognition and B-cell cross-reactivity. Therefore, the combination of similar epitopes is favorable for

cross-reactivity and adding bigger cocktails of similar epitopes is not harmful in this regard. At the scale

of many GCs, each GC had a different driving antigen and an immunization cocktail therefore induces

different combinations of cross-reactivity in each GC, promoting the notion of stochastic diversity of

GC reactions [31].

The model shows that using very similar epitopes supports the emergence of more cross-reactive

antibodies. We believe this will support the design of better vaccines towards poly-reactivity, conserved

recognition or broad neutralization.
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Figure 4: The degree of similarity between epitopes impacts GC cross-reactivity. A. Dynamics of
GC and affinity maturation for two epitopes variants of the antigen structure L6 that differ by two or
four point mutations. B. Affinity of single cells in four different GC simulations to two similar epitopes,
which differ by two point mutations, on day 11. C. GC dynamics with two or four similar antigens (also
differing by two mutations). D. Detail of single affinities in a single GC between each combination of
epitopes (that all differ by two mutations) on day 11. E. Average affinity to each epitope of single GCs
with two or four similar epitopes. Each line represents one GC. The epitopes are shown from the one
with maximal average affinity in each GC (Epi 1), to the one with least average affinity (Epi 2 or 4).
The order of epitopes differs between the GCs, implying that the GCs did not always recognize the same
epitope best.
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Discussion

We provide a realistic representation of antibody–antigen binding that can be simulated efficiently on

regular computers while retaining important physiological features. The fields of vaccination and an-

tibody design critically need such computational tools. The available tools either resolve the structural

folding of antibodies or the dynamics of AM. Here, for the first time, we combine the two facets: an

affinity that directly comes from a structural folding but also successfully simulating AM at full GC

scale. Therefore, the mutation history and AM can be linked directly to the structural properties of the

antibodies–antigen binding in silico. This representation can not only encompass the complex topology

of real antigens but it can also simulate vaccination with either one antigen with complex epitopes or

many related antigens as cocktails. Therefore, according to the antigen’s structure, this technique en-

ables the prediction of the structural component of epitope immunodominance and to predict the best

combinations of antigens or epitopes for vaccine design based on their structural properties.

Several assumptions were made to achieve efficient computational time. First, the antigens and

receptors were discretized on a 3D grid lattice. We do not pretend to simulate the exact affinity of anti-

gen–antibody interactions, for example, because we simulate the folding of only one CDR loop around

a pre-folded antigen. However, we believe the features and behavior of antibody–antigen recognition

are well captured in our system for the following reasons:

The binding energy of each individual AA pair is taken from an experimentally derived energy po-

tential [29]. We showed that many non-trivial properties of antibody–antigen binding are successfully

reproduced. Hidden pockets are harder to recognize (Figure 1E), showing that the antigen’s structure

impacts the affinity. Cross-reactivity became evident by many unrelated antibody sequences that bound

an antigen with high affinity (Figure 3B). In addition, we needed to show that correct AM behavior can

be simulated at the scale of a complex 3D GC reaction. To this end, an agent-based model for cellular

interactions in the GC, originally developed from an abstract mutation landscape (shape space), was

reprogrammed to use structural affinities. We showed realistic dynamics of individual GC cell numbers

and affinity (Figure 3A). As in the real world, the ‘best’ possible antibody sequence against an antigen

was unknown to both us and the GC simulations. Interestingly, one GC could systematically produce

sequences on its own with affinities much higher than those randomly selected.

A substantial variation could be observed between GCs. Each GC produced a different antibody

sequence with high affinity, and some GCs performed better than others. In addition, during one GC

simulation, around 70,000 mutations were tested (including cells that died during the complete GC

reaction) and the forest of mutations revealed some very interesting features (Figure 3C-G). First, the

path to high-affinity cells was not always achieved by increasing affinity: sometimes, a combination of

a mutation decreasing and then increasing their affinity led to higher affinity. Second, very different
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affinity jumps could be observed. Along the path to becoming a high-affinity cell, typical jumps of 2x

to 10x could be observed, and sometimes a mutation would create or disrupt affinity by up to 74-fold,

which is associated with key-mutations in real GCs.

Therefore, we think that our structural affinities model, thanks to the complex structure-related

affinity landscape, is a suitable tool for studying and comparing the structures of mutation trees within

patients, and to possibly compare driving selection forces under pathological conditions.

Implications for vaccine design. The challenges for vaccine development come in different types.

First, immunizing a subject with an antigen does not guarantee the desired epitope recognition. Some

epitopes will become immunodominant, meaning the immune response successfully targets them and

specific antibodies are raised against them, whereas other ones are weak and are not targeted. This

gives a hierarchy of immunodominance among the different epitopes of the same antigen. Immun-

odominance can arise from different levels of accessibility: some epitopes are accessible and easily

targetable, but other ones are hidden in pockets. Our model is designed with the aim of being able to

represent the antigen’s topology in a fair way on the lattice to mimic the core properties of the antigen.

We have also shown that hidden or shielded pockets can easily be mimicked.

Immunodominance can also evolve over time, as observed during HIV vaccination, where easily

accessible epitopes produce an early response and then other epitopes become targeted [34]. One po-

tential reason for this time shift could be via antibody feedback, where previously produced antibodies

come back and hide the earlier epitopes [19, 34]. Our model can easily be extended to account for

antibody feedback in the following way: the B-cell antibody sequence and an earlier antibody compete

to bind to the full antigen. If they occupy distinct positions in space (no overlap), their binding energy

is not impacted. However, if they do, the mass action chemical kinetics at equilibrium can correct for

the probability of binding of the B-cell antibody or BCR.

When the pathogen evolves at a high number of mutations and develops Tier 2 strains, like the

hepatitis C virus, Dengue fever, influenza or HIV, successful vaccines need to produce antibodies against

many strains at the same time, ultimately towards the golden grail of broad neutralization. Different

cases have to be separated and this will impact the vaccine strategy, which is also related to the antigen’s

structure. For instance, highly mutating viruses sometimes harbor highly variable regions that are very

accessible at their surface, while a conserved, more functional part is inside a core pocket and is harder

to target. Therefore, the accessible immunodominant region tricks the immune system into recognizing

regions that can escape easily. The first case of broad neutralization comes when an antibody recognizes

the conserved region, thus binding most strains (conserved recognition). In this case the immune

system succeeds in targeting the hidden epitope and the antibody does not need to be cross-reactive.

Other cases of broad neutralization arise when the same antibody recognizes regions that are slightly
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mutated in many strains, in which case, the antibody is cross-reactive to many related epitopes with a

similar structure and only few mutations (promiscuous cross-reactivity) (for example, see [35] for the

structural properties of bnAbs against HIV). It has also been reported that antibodies that recognize

completely unrelated epitopes could have some advantages in the fight against HIV (poly-reactivity)

[36]. It is obvious that the vaccination regimen for all three broad neutralization scenarii might be

substantially different and will strongly depend on the antigen’s structure. Earlier works have simulated

cross-recognition with abstract affinities, where recognizing a shielding pocket is associated with a

penalty on affinity [23]. Here, we have shown that GC simulations can be performed with multiple

antigens whose structure and mutations can be decided and controlled, thus allowing the prediction of

vaccine efficiency with cocktails of antibodies with any structural or mutation relationship. This paves

the ground to assess which combinations of antigens are successful for achieving broad neutralization in

many cases, providing an advance in the field of in silico design of antibody-related immunotherapies.

Methods

3D-lattice representation of proteins. Proteins structures are represented on a 3D Euclidean grid,

where successive AAs should occupy neighboring positions in the grid (Figure 1A). Hard-core repulsion

is assumed, meaning that two AAs cannot occupy the same position. Starting from a point in space,

a protein structure is represented as a sequence of moves in the lattice, namely straight (S), up (U),

down (D), left (L) or right (R). The first move can also be backwards (B). From predefined observer

coordinates, each move is made relative to the previous observer coordinates and turns the observer

in a new direction (except for a straight move). The rules for changing the observer coordinates are

shown in Figure 5A together with an example (Figure 5B).

Therefore, one structure can be stored as (1) a starting position and (2) a string built on the alphabet

[SUDLRB], where B can only be the first letter (named ‘Absolute Representation’ here). This unambigu-

ously describes any correct protein structure (respecting hard-core repulsion) in a very compact form.

Furthermore, the group of structures that are similar by translation or symmetry can be represented by

forcing the first move to be ‘S’ and the first turn to be ‘U’, (thereby removing the ’B’). This is called the

‘Relative Representation’ of a structure (Figure 5C). Relative structures follow the regular expression:

’S* | S[S]*U[SUDLR]*’ and does not need a starting position in space.

The use of relative structures has several advantages. It allows to enumerate and manipulate the

possible structures by generating random strings according to the regular expression. Their represen-

tation is compact (an alphabet of five letters) and obvious collisions (two AAs at the same position)

among three successive AAs are directly avoided by forbidding ‘Backwards’ inside a structure. Rota-

tions can be performed around one covalent bond just by changing one letter and propagating a turn
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in the observer coordinates, without computing the spatial positions of the AAs. It is also easy to fuse

two proteins into a longer one. All possible structures resulting from the fusion, according to different

rotations, can be done by fusing the sequences and propagating turns in the observer coordinates. It

has to be noted that the same protein structure can be described from both ends, and the sequence of

a relative structure can be easily reversed to describe it by starting from the other end.

Binding and total energies between two proteins. For two proteins (as in Figure 1), an interaction

is defined by a pair of two non-consecutive AAs occupying neigbouring positions. Interactions can

be within a protein (folding) or between two proteins (binding). To separate the notion of ’empty’

structure and protein (that is a structure with AAs), we introduce the operator P(R, S) that represents

the protein of structure S and AA sequence R (both sharing the same length). The binding energy Ebind

between a receptor protein P(R, S) of length L and an antigen P(G, K) of length LG, is the strength of

the interaction between the two proteins and is calculated as the sum of all interactions between them

(Equation 1).

Ebind

�

P(R, S), P(G, K)
�

=
LG
∑

k=1

L
∑

j=1

Touch(S j, Kk)A(R j, Gk) (1)

The successive positions in space of a structure S are denoted by Si for the ith residue (independently

of the type of AA at this position). The operator ′Touch(R1, R2)′ returns 1 if the residues R1 and R2 are

non-covalent neighbors, and A(R1, R2) is the interaction potential between the residues types of R1 and

R2, given by [29]. The folding energy Efold of a protein P(R, S) of length L, is the sum of (intrinsic)

interactions between its own interacting AAs (Equation 2).

Efold

�

P(R, S)
�

=
L
∑

j=1

L
∑

k=1

Touch(S j, Sk)A(R j, Rk) (2)

As we assume the antigen (ligand) has a static conformation, we can also define the ‘total energy’ Etot

of S around the antigen P(G, K) as the sum of its binding and total energies (Equation 3).

Etot

�

P(R, S), P(G, K)
�

= Efold

�

P(R, S)
�

+ Ebind

�

P(R, S), P(G, K)
�

(3)

Energies are negative and calculated in kT units; therefore, the most favorable energies are the lowest.
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Figure 5: Representation of proteins and enumeration of receptor foldings. A. A protein structure is
described as a list of ’moves’ (see Figure 1B), that are relative to the observer coordinates (Ox , O y, Oz).
For each move, the new coordinates are given (Ox ′, O y ′) and Oz′ = Ox ′ ∧ O y ′. B. Detailed example
of the sequence ’SURLDUULURS’ and its structure. C. Proteins can be represented as ‘Absolute’, with a
starting position in space, or as ‘Relative’ after translation and rotation to start with S and be followed
by U, thereby representing all structures identical by rotation/translation in the same format. D. To
enumerate all possible receptors binding a ligand, we define a ‘first position of contact’ to the ligand.
By this definition, one of the receptor tails does not interact with the ligand. E. Recursive rules for
enumerating all possible receptors with a certain ‘first contact position’. All the possible structures for
the two tails are enumerated separately, and each combination of structures from both tails is tried as
a fusion to get a full, non self-colliding, receptor. The function Generate Tail (GT) of length l from a
position P without contacts (red ’x’) calls itself from the neighboring positions with length l−1; similarly,
the function GT of length L− l with at least k contacts calls itself from neighboring positions with length
L− l −1 and k or fewer minimum contacts, depending on the number of contacts gained. F. Graphical
illustration of the enumeration of all receptors described in E. For each possible first contact position,
for each possible length of each tail with correct sum L, the possible interacting and non-interacting
tails are enumerated from this position, concatenated (fused) and kept if they didn’t collide.
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Combinatorial enumeration of all possible foldings. From a predefined ligand, we explicitly enu-

merate all the possible 3D structures of the receptor of length L that harbors at least n(≥ 1) interactions

with the ligand.

Starting from the first residue of a receptor structure, we identify its first point of contact or inter-

action with the ligand (Figure 5D). By definition, the receptor residues before this point do not interact

with the ligand, although residues on the other tail may do.

For a particular empty grid contact point X in the vicinity of a ligand residue, it is possible to recur-

sively enumerate all receptor structures whose first contact point to the ligand is X . This will involve

enumerating all non-interacting structures finishing at position X as the first step, and all structures

that may also interact with the ligand, starting from position X . Next, each pair of starting and finish-

ing structures should be checked for collisions with each other and should have the right total length

L (Figure 5E).

The recursive algorithm ‘GenerateTails’ (Algorithm 1) shows how to get a starting or finishing struc-

ture, and the algorithm ‘GenerateReceptors’ (Algorithm 2) shows how to enumerate all possible receptor

structures around a ligand, with a minimum number of interactions between receptor and ligand. In or-

der to improve efficiency, the GenerateTails function will be called multiple times from the same point,

and the result of each call is stored in the memory, avoiding excessive recomputing and explaining why

the memory usage reaches a few GB of memory (Figure 1G).

Note that each starting point X describes a set of mutually exclusive structures if we consider that a

receptor structure is oriented (first to last residue). Indeed, every structure (if they are not considered

to be oriented) will be enumerated twice, once from each end, because the last contact point from one

end is the first contact point from the other end. Algorithm 2 is still valid in the particular case where

n= 1, because the structures will be enumerated twice in lines 18-23.

Finally, in order to minimize the computational time, a list of structures can be compressed further

into a list of binding pairs of positions on the receptor and AAs on the ligand. Some structures produce

the same list of binding pairs. By keeping track of which structures have which binding pairs in a

dictionary, only the binding pairs need to be stored and evaluated for further exploration of the binding

energies of receptor sequences. This step leads to a three- to fourfold increase in computational speed.

Algorithm 1 Function that generates the list of all possible structures of length l that start from a specific point and
direction, and interact at least minInteract times with the protein or that do not touch the ligand.

1: procedure GENERATETAILS(l, firstPos, firstDirection, canInteract?, minNbInteract)
2: if l==0 then
3: return [] . empty vector
4: end if
5: if l==1 then
6: return [Struct3D(firstPos, firstDirection)] . single vector
7: end if
8: possibleTails← []
9: secondPos← position(firstPos, firstDirection)
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10: for each neighbor Ni of secondPos do
11: if (Ni /∈ ligand and !(touch(Ni) and !canInteract))) then
12: nbNewContacts← nbTouchPoints(Ni , ligand)
13: nextTails← generateTails(l-1, minNbInteract - nbNewContacts, canInteract, ligand)
14: for each structure S in nextTails do,
15: if ! collide(precursorPos, S) then
16: head← Struct3D(firstPos, firstDirection)
17: possibleTails← add(fuse(head, S))
18: end if
19: end for
20: end if
21: end for
22: return possibleTails
23: end procedure

Algorithm 2 Main function to enumerate all receptors structures of length L that interact at least minInteract times with
the ligand.

1: procedure GENERATERECEPTORS(L, minNbInteract, ligand)
2: possibleReceptors← []
3: set<int> Envelope← neighbors(ligand) . Enumerates all positions touching of the ligand
4: for each position X i in Envelope do
5: . 1st case: the receptor starts here, can further interact.
6: for each neighbor Ni of X i do
7: if Xi /∈ ligand) then
8: vector<struct3D> uniTails← generateTail(L, X i , Ni , minInteract-1, canInteract=true)
9: possibleReceptors← add(uniTails)

10: end if
11: end for
12: . 2nd case: prepares a list of couples of directions.
13: CoupleDirections← []
14: for each direction d1 ∈ [B, S, U , L, D, R] do
15: for each direction d2> d1 do . (to avoid repeating a couple)
16: N1← neighbor(pos, direction d1)
17: N2← neighbor(pos, direction d2)
18: if !touch(N1, ligand) then
19: CoupleDirections← add (d1, d2) . d1 tail should not touch
20: end if
21: if !touch(N2, ligand) then
22: CoupleDirections← add (d2, d1) . d2 tail should not touch
23: end if
24: end for
25: end for
26:
27: for each (d1, d2) in CoupleDirections do
28: for subL from 1 to L do
29: tailsRight← generateTails(L - subL, X i , d2, minNbInteract-1, canInteract=true)
30: if tailsRight 6= ; then
31: tailsLeft← generateTails(subL, X i , 0, canInteract=false)
32: for each s1 in tailsRight do
33: for each s2 in structLeft do
34: struct3D combined← struct3D(X i , fuse(revert(s1), s2))
35: if properlyFolded(combined) then
36: possibleReceptors← add(combined)
37: end if
38: end for
39: end for
40: end if
41: end for
42: end for
43: end for
44: return possibleReceptors
45: end procedure

22

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 12, 2019. ; https://doi.org/10.1101/766535doi: bioRxiv preprint 

https://doi.org/10.1101/766535
http://creativecommons.org/licenses/by-nc/4.0/


The best binding energy of a receptor sequence to the ligand. In order to get the best binding

energy between two AA sequences, (the ligand sequence with known structure, and the receptor se-

quence with unknown structure), the list of possible 3D receptor structures is pre-computed for the

pre-defined ligand structure, according to the minimum number of interactions n. The binding energy

and total energy between the two AA sequences is then calculated for each structure, using the receptor

AA sequence in this structure. Two binding energies can be derived. The ‘best binding energy’ Ebest is

the average binding energy of all optimal structures in terms of ‘total energy’ Etot (Equation 4). Self-

folding can contribute to stabilizing a structure and therefore the best structure is not necessarily the

one binding with the highest strength, but with the lowest total energy.

Ebest

�

R, P(G, K)
�

= Average
Structures S





Ebind

�

P(R, S), P(G, K)
�

, such that

Etot

�

P(R, S), P(G, K)
�

=
nS

min
i=1

�

Etot

�

P(R, Si), P(G, K)
�

�



 (4)

In the formula, R is the receptor sequence, G the antigen sequence and K the antigen structure, S

are the possible enumerated receptor structures, and nS is the number of such structures. If a receptor

sequence folds on itself with better energy than the total energy around the ligand, then we assume no

binding at all and the energy is NAN (Not A Number).

Alternatively, a ‘statistical affinity’ can be computed by applying a Boltzmann weight to each protein

structure P(R, Si) according to its total energy (Equation 5). Many conformations could co-exist with

adequate total energy, and this may not be described well by the set of optimal structures alone. kT

is the Boltzmann coefficient and si is the ith structure. Z is the sum of weights among all possible

structures, and is used as normalization coefficient.

Estat

�

R, P(G, K)
�

=
1
Z

nS
∑

i=1

Ebind

�

P(R, si), P(G, K)
�

exp

�

−
Etot

�

P(R, si), P(G, K)
�

kT

�

Z =
nS
∑

i=1

exp

�

−
Etot

�

P(R, si), P(G, K)
�

kT

�

(5)

In theory, the Boltzmann distribution should be distributed according to all possible receptor struc-

tures, rather than only with respect to a particular minimum number of interactions n, even including

those that do not interact with the ligand (self-foldings). Calculating the Z factor with lower n < 4

had no effect on Z (not shown) because structures with few contacts always had an infinitesimal small

weight. We also computed all the possible self-foldings for different receptor sizes L, and found that the

contribution of n to Z was negligible (not shown) because and only a few possible self-folding struc-

tures appeared compared with the high number of foldings around the ligand. Altogether, this shows

that the choice to discard self-foldings and choose n= 4 is a valid assumption. Higher values of n may

be used to increase speed, as shown in Figure 1F, provided that they still do not impact Z .
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Transforming energy into affinity and binding probability. The binding energy between two folded

structures only represents one sliced window of a CDR loop; therefore, the real antibody–antigen affin-

ity needs to include the contribution of the full antibody, with two binding regions and the scaffold.

Further, inside a GC, the affinity of a BCR to the antigen translates into capture and internalization of

the antigen, a process that depends on many complex factors. Therefore, no direct affinity can easily

be drawn. We define an empirical ‘re-scaled affinity’ a of a receptor AA sequence R (Equation 6), to

represent the probability of binding to the antigen, based on the previously defined binding energy Ebest

(Equation 4) and where an affinity of 1 represents a chosen very high binding energy Emax associated

with saturation of the antigen capture probability. We needed to re-scale the energy with a coefficient C

because the best structures were dominant in the affinity and GC simulations could not succeed because

of low antigen binding.

a
�

R, P(G, K)
�

= exp

�

−
Emax − Ebest

�

R, P(G, K)
�

C

�

(6)

In Figures 3 and 4 the affinity of L2, L5, and L6 and receptors with L = 9 were calculated with:

Emax = −100 and C = 2.8. Emax and C might need to be adapted when changing the receptor length L.

GC simulations. GC simulations were performed on an agent-based model programmed in C++ in

the lab, for which the algorithm was described in [10, 37]. The model explicitly simulates the movement

and encounters of B- and T-cells, capture of antigen by B-cells, T-cell help, proliferation, recirculation,

death and exit from the GC. The model settings with constant inflow of founder cells and only one

B-cell - T-cell interaction for T-cell selection were used (as in [38] and with reference parameter values

detailed in [37]).

The present structural affinity model was incorporated into this framework, where a mutation is a

random change in the AA located at a randomly picked position of the BCR. The mutation landscape

was changed as compared with the previous shape space affinity model, and the selection parameters

needed to be adapted accordingly. First, the uptake of antigen is defined in the model by a ’refractory

time’ between two antigen capture events. We needed to take a smaller value (0.001 hours, or 3.6

seconds) compared to [37]. It means, for a maximal affinity, corresponding to a capture probability

of 1, an antigen can be captured every 3.6 seconds. The time-step of simulations, previously bigger,

needed to be lowered to 0.001 hours to fit the shorter refractory time.

In the model, the individual number of B-cell divisions upon T-cell selection is derived from a Hill-

function depending on the amount of captured antigen. We observed that the appearance of high

affinity B-cells happened slower with the structural space compared to the shape space. We needed to

lower the slope of the Hill function from a Hill-coefficient of 2.0 in [37] to 1.4, and kept the threshold
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parameter K equal to 9 antigen uptake events. With a higher slope, cells with intermediate affinity did

not manage to expand and the simulated GC population shrinked fast (not shown).

Each founder B-cell entering the GC carries a randomly picked BCR of length L = 9 AAs and with

a minimum affinity of 0.0001, potentially allowing for an increase in affinity by a factor of 10,000 in

a GC reaction. If we lower this ‘entry’ threshold further, the simulated GCs collapse and the mutations

do not reach reasonable affinities in due time (data not shown).

In the model, Follicular Dendritic Cells (FDC) occupy a set of positions in space, and display a certain

amount of epitopes at each of position to the B-cells. The spatial distribution of epitopes in the GC was

adapted to be compatible with multiple epitopes. When using multiple epitopes, each FDC position

was initially filled with an equal amount of each epitope, such that the total amount of antigen is kept

the same as for single epitope simulations. B cells with random BCRs enter the GC reaction provided

their affinity is higher than 0.0001 for at least one epitope. At each position, B-cells can access all of

the epitopes simultaneously. The antigen capture probability was determined by the highest affinity

to all epitopes at this position, and this highest affinity epitope is removed by one antigen unit at this

position. Other epitopes are not captured.

Graph analysis. Each founder sequence was assigned a unique ID. For every mutation, a new unique

ID is assigned to the mutated sequence, even if this sequence already exists in another cell. The mutation

history network of one GC is created with sequence IDs as nodes and mutations as edges. It is actually

a forest, where each founder dynasty is a tree. The network was analyzed with Cytoscape (Figure 3).

To represent the network, the default Prefuse Force directed layout was used, which showed a cluster

for each founder in a convenient way. For Figures 3C and G, a cluster was manually selected, the nodes

with an affinity of more than 0.5 were selected and their parents were included up to the founder

sequence. Again, the Prefuse Force directed layout was used to represent the graph. For Figure 3F, the

tree in Figure 3E was selected, the nodes with identical sequences were merged and the network was

shown again. The sequence logos (consensus) of Figure 3B were generated using Skylign (skylign.org).
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Figure S1: The best binding energy is a fair approximation of the statistical binding energy. A-
B. Description of the energies of the ensemble of structures around ligand L1, for particular receptor
sequences. A. Left: Distribution of total energies and statistical weight for possible structures of one
receptor sequence. Most structures have higher (non-favorable) total energy, but only the ones with
lowest energy have a significant statistical weight. Middle and right: Distribution of the total energy
of the possible structures for selected receptor sequences with different best total energies, as fraction
of the total statistical weight Z in logarithmic scale (middle) or as fraction of the total number of
structures in linear scale (right). B. Same analysis with binding energies instead of total energies. C.
Correlation between the best and statistical binding energy for randomly selected receptor sequences of
size 9 against ligands L1, L2 and L3. D. Effect of temperature on the distribution of statistical binding
energies of randomly picked receptors sequences of size 9 against each ligand. Temperature values
around kT = 1 have no effect on the distributions, meaning frozen state is reached, where optimal
structures dominate.
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