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Abstract

Cities are complex systems whose characteristics impact the health of people who live in
them. Nonetheless, urban determinants of health often vary within spatial scales smaller
than the resolution of epidemiological datasets. Thus, as cities expand and their
inequalities grow, the development of theoretical frameworks that explain health at the
neighborhood level is becoming increasingly critical. To this end, we developed a
methodology that uses census data to introduce urban geography as a leading-order
predictor in the spread of influenza-like pathogens. Here, we demonstrate our
framework using neighborhood-level census data for Guadalajara (GDL, Western
Mexico). Our simulations were calibrated using weekly hospitalization data from the
2009 A/H1N1 influenza pandemic and show that daily mobility patterns drive
neighborhood-level variations in the basic reproduction number R0, which in turn give
rise to robust spatiotemporal patterns in the spread of disease. To generalize our results,
we ran simulations in hypothetical cities with the same population, area, schools and
businesses as GDL but different land use zoning. Our results demonstrate that the
agglomeration of daily activities can largely influence the growth rate, size and timing
of urban epidemics. Overall, these findings support the view that cities can be
redesigned to limit the geographic scope of influenza-like outbreaks and provide a
general mathematical framework to study the mechanisms by which local and remote
health consequences result from characteristics of the physical environment.

Author summary

Environmental, social and economic factors give rise to health inequalities among the
inhabitants of a city, prompting researchers to propose ’smart’ urban planning as a tool
for public health. Here, we present a mathematical framework that relates the spatial
distributions of schools and economic activities to the spatiotemporal spread of
influenza-like outbreaks. First, we calibrated our model using city-wide data for
Guadalajara (GDL, Western Mexico) and found that a person’s place of residence can
largely influence their role and vulnerability during an epidemic. In particular, the
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higher contact rates of people living near major activity hubs can give rise to
predictable patterns in the spread of disease. To test the universality of our findings, we
’redesigned’ GDL by redistributing houses, schools and businesses across the city and
ran simulations in the resulting geographies. Our results suggest that, through its
impact on the agglomeration of economic activities, urban planning may be optimized
to inhibit epidemic growth. By predicting health inequalities at the neighborhood-level,
our methodology may help design public health strategies that optimize resources and
target those who are most vulnerable. Moreover, it provides a mathematical framework
for the design and analysis of experiments in urban health research.

Introduction 1

Empirical studies have identified inter-city variations in the timing, intensity and 2

severity of influenza-like outbreaks [1–4]. Aiming to understand the mechanisms through 3

which city characteristics yield such health consequences, epidemiologists have resourced 4

to a variety of methods. Epidemiological data reveal compelling statistical correlations, 5

but do not resolve intra-city variations in health that are driven by lifestyle inequalities 6

at the neighborhood level [2, 4–6]. In contrast, agent-based computational models use 7

massive mobility datasets to recreate the behavior of individuals as they interact and 8

spread infections [7–9,11–14]. While this approach allows for household-level analyses 9

and its elevated complexity makes it suitable for targeted experiments [15], it is not the 10

best tool for the development of general strategies in public health [16]. Furthermore, 11

the information necessary to calibrate agent-based simulations is not openly available 12

for most of the world’s cities. Thus, despite the fact that epidemics have the potential 13

to be seeded anywhere, these intricate models have been overwhelmingly applied to 14

populations in the developed world. Meanwhile, the fundamental mechanisms that drive 15

health inequalities within metropolitan areas remain elusive. 16

Urban design determines the densities and relative locations of housing, jobs and 17

services inside a city. Consequently, it influences the transportation choices of the 18

population [17–19] and thus helps shape interaction networks through which diseases 19

are spread. For example, the agglomeration of jobs and services drives large fractions of 20

a city’s population to gather in small fractions of its area, increasing contact rates 21

between the residents of distant neighborhoods [20,21]. In what follows, we quantify the 22

agglomeration of urban mobility using two Gini coefficients 23

(0 ≤ Gorigins, Gdestinations ≤ 1) that use neighborhood-level census data to measure 24

spatial inequalities in the area-density of housing and activities throughout a city. The 25

extreme values G = 0 represent homogeneous distributions of the population (trip 26

origins) or its activities (trip destinations); inversely, G = 1 indicates that all housing or 27

activities are concentrated within a single location. In epidemiological terms, G = 1 28

produces homogeneous mixing conditions, which allow individuals to interact 29

indiscriminately with all other members of the population. Under this scenario, disease 30

spreading may be modeled using simple ordinary differential equations where the total 31

population N = S + I +R is split into susceptible S, infected I, and recovered R groups. 32

However, reality deviates from these conditions (G 6= 1) and successful models must 33

introduce heterogeneous contact networks to link the members of a population [22]. 34

Attempting to understand the heterogeneous mixing patterns across subsets of the 35

population, observational studies have tracked people’s interactions in day-to-day 36

settings. It has since become clear that contact rates and the resulting risk of infection 37

can vary widely with age, sex, employment status and other characteristics [23–26]. 38

However, the complex demographics and social settings that exist in urban 39

environments make it difficult to reliably sample and characterize the interaction 40
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patterns between all identifiable subgroups. Therefore, unexplained variations within 41

sampled groups can cause statistical uncertainty intervals to be ≥50% the magnitude of 42

reported mean contact rates [24–26]. Among the numerous likely sources of contact rate 43

variaibility, crowding driven by urbanization and mobility patterns has been suggested 44

to increase the growth-rate and size of infectious outbreaks by observational and 45

modeling studies alike [4, 14]. 46

In this article, we develop a mathematical framework that introduces urban 47

geography as the leading-order component of a susceptible-infected-recovered (SIR) 48

epidemiological model. Our methodology uses spatially-resolved census data to infer 49

transportation patterns in cities and is meant to bypass the need for large mobility 50

datasets in urban health simulations. In our model, individuals are grouped by age and 51

place of residence, and are subsequently represented through probability density 52

functions that describe their likely travel habits. This approach sacrifices the 53

hyperrealism of agent-based simulations to instead resolve the spatial patterns that arise 54

when a heterogeneous set of metapopulations interact. Our goal is not to make an 55

operational forecasting tool, but instead to formulate a scheme that helps understand 56

the health consequences of the complex, spatially-dependent demographics of large 57

cities. 58

As a first step, we characterize the role of urban design in this process and use the 59

Guadalajara Metropolitan Area (GDL) as an example. City-wide hospitalization data 60

from the 2009 Influenza A/H1N1 pandemic were used to calibrate disease parameters 61

(S1 Fig) but cannot inform the validity of neighborhood-level patterns in our results. 62

Lastly, we ran simulations in hypothetical cities with the same area, population density, 63

number of schools and businesses as GDL. This allowed us to demonstrate that changes 64

in the spatial distributions of housing, education and economic activities yield large 65

variations in the size and early growth rate of epidemics across cities that would be 66

deemed identical from a large-scale perspective. 67

Modeling framework 68

Inferred mobility patterns 69

High-resolution maps of residential density provide the background distribution of a 70

city’s population, introducing a first layer of spatial dependence to the SIR transmission 71

framework. Likewise, the locations and prominence of activity hubs determine common 72

trip destinations were human interactions occur and diseases are spread. In our gravity 73

model, trips originate at home and the probability density P (x,y′) that a person 74

residing at x will visit y′ on a given day is the joint result of two factors: The distance 75

∆rxy′ between both sites and the overall popularity of y′ as a destination. The effect of 76

distance ∆rxy′ on the likelihood of displacements between two points has been studied 77

empirically [27], yielding the general form 78

P (∆rxy′) = (∆rxy′ + ∆r0)−b exp(−∆rxy′/κ). (1)

Simplifying daily mobility as radial displacements out of a place of residence x, 79

P (∆rxy′) yields a first estimate of the spatial distribution of individuals as they go 80

through their daily routines. Moreover, the model parameters ∆r0, b, κ can be used to 81

capture the effects of transportation infrastructure, as the quality of these services 82

largely determines the willingness of individuals to travel long distances [28]. 83

TAS(y′) = 3.0 Re + 2.4 Se + 1.9 In + 1.3 (Pr + St) (2)
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Trip Attraction Strength (TAS, Eq. 2) further refines our approximation of human 84

mobility patterns in cities. TAS is an estimate of the daily number of visitors driven 85

into a location y′ by education and economic activities [29]. Its value may be calculated 86

using school enrollment data and the number of workers employed at y′ by different 87

economic sectors, allowing different types of establishments to be weighed by the traffic 88

they each induce. Our model incorporates TAS through Equation (2), where parameters 89

Re, Se, In and Pr denote the number of jobs registered at y′ by retail, service, industrial 90

and primary activity organizations respectively [29]. Similarly, St is the number of 91

students enrolled at educational institutions inside the same area. 92

PS(x,y′) = c(x)P (∆rxy′)TAS(y′) (3)

Equation (3) thus defines a probabilistic gravity model that represents mobility as 93

the weighted influence areas of individuals who try to minimize their displacements but 94

will travel farther given an economic incentive (higher TAS). Here, the normalization 95

factor c(x) allows to adjust for the average number of daily trips made by residents of 96

different neighborhoods. In what follows, we use the empirical values κ = 80 km, b = 97

1.75 found by González and collaborators [27] but prescribe ∆r0 = 5. This is a 98

conservative choice, as it facilitates longer trips and thus homogenizes the 99

transportation habits of the city’s inhabitants. 100

Before integrating these concepts into an epidemiological transmission model, we 101

must distinguish between the behavior of susceptible and infected groups. We define the 102

mobility of symptomatic groups via Equation (4), where 0 < α(x) < 1 is an isolation 103

parameter whose spatial dependence allows the representation of neighborhood-targeted 104

intervention strategies as well as social and economic factors that influence the adaptive 105

behavior of sick individuals. The term H(x,y′) accounts for the added probability of 106

visits to the nearest healthcare facility, as sick individuals will likely seek diagnosis and 107

treatment. 108

PI(x,y′) = α(x) · PS(x,y′) +H(x,y′) (4)

In summary, we use the gravity model in Equation 3 to infer mobility patterns in 109

cities. TAS represents the number of people who visit a location on a given day and is 110

calculated using employer and educational databases alike (Eq. 2, see Materials and 111

Methods). Although the prominence of different destinations varies throughout the 112

week and within a single day (for example restaurants and schools have strongly marked 113

daily cycles), our simulations consider TAS to be fixed in time. Lastly, we incorporate 114

all state-run healthcare facilities (henceforth hospitals) by assigning infective individuals 115

to the nearest hospital and adding an 8% probability that they will visit it once during 116

their infective period. An overview of all spatial components of our framework, as 117

estimated for GDL (see Materials and Methods), is shown in Figure 1. 118
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Fig 1. Layers of model input: population density and TAS were calculated for adults
and children within a triangular grid representing GDL (Eq. 2, see Materials and
Methods). While children are attracted to early-stage schools, the destinations of adult
mobility are determined by the locations of retail stores, factories, office buildings, high
schools and universities. Satellite image: Google, Landsat/Copernicus, Maxar
Technologies.

Metapopulation model 119

Let us define three identical domains Ω̃ = Ω′ = Ω ∈ R2 to represent the urban region 120

under study. Members of the population N are then segregated under an SIR 121

transmission scheme and distributed following population density functions 122

S(x, t) + I(x, t) +R(x, t) = ρ(x) such that
∫

Ω
ρ(x)dΩ = N . This approach links people 123

to their place of residence (henceforth x ∈ Ω for susceptibles and x̃ ∈ Ω̃ for infectives), 124

allowing to formulate a Distributed Contacts SIR model (DC-SIR, Eqs. 5-7 adapted 125

from [30,31]). Here, β(y′) is the probability of contagion given a susceptible-infective 126

interaction that happens at y′ and γ is the recovery rate. The interaction kernel 127

k(x,y′, t) yields the expected number of interactions between a member of S(x, t) and 128

all infected individuals present at a trip destination y′ ∈ Ω′ and time t [30, 31]. Thus, 129

k(x,y′, t) introduces the heterogeneous contact networks through which diseases are 130

spread. 131

∂S(x, t)

∂t
= −S(x, t)

∫
Ω′
β(y′) k(x,y′, t) dΩ′ (5)

∂I(x, t)

∂t
= −

(
∂S(x, t)

∂t
+
∂R(x, t)

∂t

)
(6)

∂R(x, t)

∂t
= γI(x, t) (7)
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To define the interaction kernel k(x,y′, t), we use origin-destination density 132

functions PS(x,y′, t), PI(x,y′, t) for members of S(x, t) and I(x, t) respectively. Next, 133

we compute the total number of infected individuals expected to visit y′ at a given time, 134

which is the integral from all trip origins
∫

Ω̃
PI(x̃,y′, t) · I(x̃, t) dΩ̃. Taking the product 135

with PS(x,y′, t) thus gives an expression for the expected number of SI contacts 136

occurring at y′ for an individual who resides at x 137

k(x,y′, t) = PS(x,y′, t)

∫
Ω̃

PI(x̃,y′, t)I(x̃, t) dΩ̃. (8)

A similar procedure yields the reproductive number Rt(x̃, t), defined as the number 138

of secondary cases caused by a single infected individual who lives at x̃ and contracted 139

the disease at time t. Instead of calculating the number of SI interactions for a 140

susceptible in transit, we now use the spatial distribution of susceptibles at a given time. 141

This is given by the integration of susceptible mobility over all trip origins 142∫
Ω
PS(x,y′, t)S(x, t) dΩ. Multiplying this by the origin-destination density for infected 143

mobility PI(x̃,y′, t) then yields the expected number of SI interactions occurring at y′ 144

for a member of I(x̃, t) 145

q(x̃,y′, t) = PI(x̃,y′, t)

∫
Ω

PS(x,y′, t)S(x, t) dΩ. (9)

Assuming that all variables are slowly-varying over the first generation of disease 146

transmission, we can approximate the basic reproduction number R0(x̃) as 147

R0(x̃) ∼ 1/γ

∫
Ω′
β(y′) q(x̃,y′, t = 0) dΩ′. (10)

Notice that k(x,y′, t) and q(x̃,y′, t) represent the vulnerability and disease 148

spreading capacity of individuals during an infectious outbreak. Moreover, their spatial 149

dependence implies that a person’s role during an epidemic is a function of their place 150

of residence but determined by characteristics of the locations they visit. With this 151

mathematical foundation, one could consider developing parameterizations of 152

environmental conditions such as relative humidity (function of y′) and demographic 153

factors that influence contact patterns (functions of x, x̃). 154

Our DC-SIR simulations of GDL classify two subsets of the population by place of 155

residence and age group. Thus, we defined SIR subgroups Sj , Ij , Rj and mobility 156

functions PSj , PIj to represent the people in each age group j = 1, 2 (adults and 157

children). Consequently, the integrand over trip destinations Ω′ in Equation (5) was 158

modified to account for interactions between a particular susceptible subgroup and 159

infectives Ij of all ages, each of them with an age-specific transmission potential βj . 160

Because our current focus is to explain the observed epidemiological impacts of urban 161

geography and crowding [2, 4, 14], contact rates in our model are a linear function of 162

visitor density. Although this assumption can fail to quantify face-to-face contacts 163

within dense gatherings [32,33], the contact rate variations that emerge in our 164

simulations of GDL are comparable to the statistical uncertainty of observational 165

estimates [23,25,26] that have not offered a systematic explanation of this variability. 166

Results 167

Our modeling framework was tested using data for GDL, where census and economic 168

data [34–36] were processed to derive the daily mobility patterns of children (age ≤ 15) 169

and adults (age > 15, see Materials and Methods). Lorenz curves in Figure 2 represent 170
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the different degrees of agglomeration driven by housing (Gorigins = 0.32) and daily 171

activities (Gdestinations = 0.56). As is true for large cities [20,21], inferred trips were 172

largely directed towards a few, hyper-affluent areas. In our model, these areas receive 173

25% of all daily trips but occupy less than 5% of the metropolis; meanwhile, housing 174

places 25% of the population throughout 13.5% of the city’s most densely populated 175

regions. The condition Gdestinations > Gorigins requires that some neighborhoods have 176

a net loss of occupants during workdays, as their inhabitants leave and agglomerate 177

around major activity hubs. This is true for 60% of all neighborhoods in GDL, which 178

then act as net sources of mobility whose role is to supply more affluent destinations 179

with visitors. 180

Fig 2. Lorenz curves (a) show the cumulative distributions of housing (trip origins,
blue) and daily activities (trip destinations, red) throughout portions of the city area.
The dashed line (G = 0) here represents urban design with spatially-homogeneous
distributions of housing and daily activities. Probability density functions of visitor
density (note the logarithmic axes) show that daily activities (red diamonds) drive
greater crowding than housing (blue line) for both adults (b) and children (c).

Values of β(y′) were calibrated using city-wide hospitalization data from the 2009 181

A/H1N1 influenza pandemic (S1 Fig). In our model, this parameter yields a linear 182

relationship for the probability of falling ill given the mean area density of infectives 183

that one encounters throughout the day. We assumed a homogeneous transmission rate 184

β = β(y′) and obtained that the daily risk of contagion increased by 1.1± 0.1% for 185

every 1000 infective adults per km2 added to one’s surroundings. Similarly, the addition 186

of 1000 infective children per km2 raised the probability of falling ill on a given day by 187

3.2± 0.3%. With β fixed everywhere, spatial patterns in the evolution of epidemics 188

result entirely from the number and age of people who visit each one of the city’s 189

neighborhoods (Eqs. 8, 9). Hence, spatial variations in our simulation results and in the 190

basic reproductive number R0(x̃) are a direct consequence of the city’s transportation 191

network (Eq. 10), which is by definition a product of urban design and land-use 192

patterns (Eqs. 1 - 3). 193

Spatial variations in the basic reproductive number R0(x̃) (Fig. 3) had a profound 194

impact on the spatiotemporal evolution of outbreaks in our model. Firstly, the age and 195

place of residence of patient zero (initial conditions) significantly influenced the early 196

rate of epidemic growth. In fact, the R0 of patient zero can delay the peak of an 197

epidemic by as much as 9 days (Fig. 4.a,b). Secondly, people with the highest R0(x̃) 198

also had the highest probability of falling ill. In particular, the increased contact rates 199
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of downtown residents allowed them to spread pathogens 50% more efficiently than 200

their suburban counterparts (Fig. 3), but also put them at a higher risk of contagion. 201

Regardless of initial conditions, this particular situation gave rise to a spatial pattern in 202

which influenza spread as waves of disease that emanate out of the city center (Fig. 4.c, 203

S2 Fig, S1 Video). Similar patterns have been observed in agent-based simulations 204

before [10] and may thus be a general characteristic of flu-like epidemics in urban 205

populations. 206

Fig 3. The basic reproductive number R0 (Eq. 10) varies at the neighborhood scale,
showing that adults (left) and children (left) living near the city center play a
disproportionate role in disease spreading. Population-averaged values of R0 were 1.27
for adults and 1.57 for children, and scale linearly with contact rates in our simulations
(Eq. 10), meaning that the absolute range of contact rates for both age groups was
roughly 50% of the mean value.

To better appreciate the structure of wave-like patterns and inequalities in the 207

spread of disease, we define the relative incidence Υ(x̃, t) (Eq. 11) and use simulation 208

results to inspect its statistical dependence on the distance ∆rx̃x∗ between 209

neighborhoods x̃ and the city’s largest retail hub x∗, where TAS peaks.. Boxplots in 210

Figure 4.c show that our analyses predict the incidence of influenza to be highest in 211

downtown GDL and decreasing towards the suburbs. Time dependence represented in 212

S2 Fig suggests a relationship of the form Υ(x̃, t) = ∆r
−d(t)
x̃x∗ . Here, d(t) is a 213

non-negative function that decreases with time, as Υ(x̃, t) approaches unity everywhere 214

towards the end of outbreaks. 215

Υ(x̃, t) =
I(x̃, t)

ρ(x̃)

(
I(x∗, t)

ρ(x∗)

)−1

(11)

It is clear from Figures 3 and 4 that mobility hotspots play an important role in 216

setting the growth rate and evolution of epidemics in our model. To gain more insight, 217

we relocated businesses, schools and housing across the GDL numerical grid and ran 218

simulations in the resulting geographies. This allowed us to compare outbreaks across 219

cities with unique transportation networks but the same demographics, area, number of 220

schools, businesses and daily trips as GDL. In one set of experiments we modified the 221

Gini coefficients of mobility by relocating businesses, schools and housing across areas 222

with low and high TAS or population density. As a result, we modulated the 223

agglomeration of urban mobility but preserved the spatial structure of GDL. In another 224
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Fig 4. Over 3160 simulations with different initial conditions, panel a shows the time
of peak incidence (when

∫
Ω̃
I(x̃, t)dΩ reaches a maximum) plotted against the R0 of

patient zero. A histogram in panel b shows the probability that an outbreak peaks on a
given day and the separate contributions of children (green) and adults (blue) to this
variability. Boxplots in c show radial decrease in expected (1, 25, 50, 75 and 99th
percentiles) relative incidence Υ(x̃, t) at a location x̃ given its distance ∆rx̃x∗ to the
city’s largest retail hub x∗.

experiment, we redistributed housing, schools and businesses at random to evaluate 225

whether the effects of agglomeration can be generalized to all cities despite their spatial 226

structure. All simulations used the same values of β (previously calibrated for GDL) 227

and an infective period 1/γ of 4 days. Results are summarized in Figure 5. 228

Our simulations suggest that, for all cities, the basic reproduction number R0 varies 229

as a function of Gdestinations and is virtually independent of Gorigins (Fig. 5.a,b). This 230

relationship is nonlinear for adults and linear for children, mainly because Gdestinations 231

is set by commercial and economic superclusters that primarily attract adults. 232

Furthermore, our results suggest that housing and activities in metropolitan areas with 233

Gdestinations < 0.58 can be redistributed so that the mean basic reproduction number of 234

adults remains under the threshold value R0 = 1. Namely, in this illustrative case where 235

β is fixed everywhere and transmission dynamics are solely driven by urban design, 236

cities can be redesigned to render their populations incapable of sustaining epidemics. 237

At the end of an outbreak, the attack rate z measures the fraction of the population 238

that contracted the disease. Under homogeneous mixing conditions 239

(Gdestinations = Gorigins = 1), R0 and z are linked by Equation (12) [37]. At all values 240

of R0, this relationship predicts higher attack rates z than observed in our simulations 241

(Fig. 5.c). Disagreements are largest for low values of R0, when fractions of the urban 242

population have R0 < 1 and thus do not contribute to exponential growth. This 243

highlights the importance of understanding population heterogeneity: because R0 and 244
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incidence may covary in space (Figs. 3, 4.c), population-averaged parameters may differ 245

from the characteristic values obtained from public health reports, whose samples are 246

biased towards subgroups with a higher incidence. Differences between the GDL and 247

Random experiments in Figure 5 suggest that, at equal R0, realistic urban layouts 248

(where activity areas are clustered near each other) may act to decrease the size of 249

epidemics when compared to cases where housing and activities are distributed 250

randomly. However, notice that a greater Gdestinations is required for 251

randomly-designed cities to have the same values of R0 as GDL (Fig. 5.a). 252

1− z = e−R0z (12)

Average R0

A
tta

ck
 r
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e

R
0
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c
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Fig 5. The population-averaged basic reproduction number R0 is plotted as thick lines
for adults (a) and children (b). Color shading shows the range of values R0(x̃)
calculated with equation (10) in cities with the spatial structure of GDL (blue) and
those with randomized urban design (pink). The relationship between
population-averaged R0 and attack rate z is shown in panel c for cities with realistic
(blue) and random (pink) spatial structures. The theoretical relation for the attack rate
under homogeneous mixing conditions (Eq. 12) is shown in orange. Disagreements
between these curves show the impacts of urban design on the growth rate and size of
influenza-like outbreaks for cities with the same area, population and economic
activities.

Discussion 253

Our parameterization of contact heterogeneity in metropolitan areas produces smaller 254

epidemics than homogeneous mixing models (Fig. 5) and predicts that, depending on 255

where they live, people play unequal roles in disease spreading (Fig. 3). These 256

inequalities relate the identity of patient zero to the timing of influenza-like outbreaks 257

(Fig. 4.a,b) and can give rise to spatiotemporal patterns in the spread of disease (Fig. 258

4.c, S2 Fig, S1 Video). In fact, these processes mirror those of large scale transportation 259
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networks, whose heterogeneity leads to spatial inequalities in the size, timing and 260

growth rate of epidemics [1, 38,39]. As similar insight is used for the development of 261

optimal intervention strategies in global-scale infectious outbreaks [40], results like those 262

presented in Figure 3 may offer valuable information for public health officials who seek 263

to optimize resources during infectious outbreaks. For example, health inequalities 264

inferred here suggest that the efficiency of vaccination campaigns is likely to vary 265

whether they target the inhabitants of the city center, its visitors, or people living in 266

suburban areas (Figs. 3, 4). Similarly, the need for treatment and diagnosis is expected 267

to differ across neighborhoods (Fig. 4.c). 268

Although our figures present the health impacts of urban geography as a function of 269

place of residence, inequalities result primarily from the remote influence of people in 270

other neighborhoods and the characteristics of places where interactions occur (Eqs. 271

5-10). The inclusion of non-residental processes is essential to the accurate 272

representation of environmental health impacts [41,42] and is achieved here through 273

interaction kernels k(x,y′, t) and q(x̃,y′, t). While we used a constant disease 274

parameter, the representation of local and remote environmental conditions can be 275

further refined by assigning full spatial dependence to transmission parameters so that 276

β = β(x,y′, x̃, t). Generally speaking, our analytical framework is designed to map 277

geographic information onto social space, establishing connections that are weighed by a 278

risk of contagion β. This assigns realistic network characteristics to a spatially-explicit 279

disease transmission model, which simplifies the interpretation of simulation results and 280

may enable additional theoretical and statistical analyses [43,44]. 281

Our results highlight the extent to which the assumption of homogeneous mixing in 282

metropolitan areas can bias model results. Most notably, epidemic size in simulations 283

that use the same transmission parameter β throughout hypothetical, seemingly 284

identical cities, covers the entire range 0 < z ≤ 1 (Fig. 5.c). This suggests that 285

macroscopic quantities such as population size and density hold little to no dynamical 286

significance in the evolution of infectious outbreaks. Instead, the spatial organization of 287

human mobility (quantified here using the Gini coefficient Gdestinations, Fig. 2) seems 288

to control epidemic growth (Figs. 5.a,b) and is statistically correlated with population 289

size [4,14]. Dalziel and collaborators explored this notion [14] by comparing agent-based 290

model results across 48 Canadian cities, but were not able to isolate the effects of 291

spatial heterogeneity from all other information embedded in massive mobility datasets 292

that were used as model input. 293

Empirical relationships between Gdestinations, R0 and the attack rate z shown in 294

Figure 5 suggest that, through its influence on transportation networks, urban design 295

may be optimized to modify epidemic growth rates and thus reduce the probability of 296

seeding large outbreaks. The existence of invasion thresholds under which populations 297

cannot sustain epidemic growth is a general characteristic of metapopulation 298

models [45]. While many authors have conjectured about the possibility of designing 299

cities to minimize disease prevalence [4, 14,46,47], we present the first dynamical 300

argument to link these ideas and the invasion threshold proposition of Colizza and 301

Vespignani [45]. More specifically, our results suggest that, by evenly distributing 302

activity hubs throughout a city (instead of clustering them in the city center), city 303

planners can segregate subsets of the population and potentially inhibit the rapid 304

transmission of pathogens across distant neighborhoods (Fig. 5). Consistent with 305

known statistical relations between the transmission potential of influenza and the 306

spatial organization of human behavior [4, 14], our framework explains a plausible 307

mechanism behind health inequality across the neighborhoods of the worlds’ cities. 308

The mechanism through which urban design impacts epidemic growth is illustrated 309

in Figure 6: when daily activities are centralized in a handful of hyper-affluent areas 310
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Fig 6. Schematic comparison of urban design scenarios. When activities are centralized
in a single hub (left), people from all parts of the city gather in this place and can
potentially interact [21]. Meanwhile, more even distributions of daily activities (right)
segregate subsets of the population and can lower the growth rate of infectious
outbreaks (Fig. 5).

(Fig. 6.a), mixing patterns become more homogeneous [21] and thus favor interactions 311

between residents of distant neighborhoods (Fig. 6.c). However, when activity hubs are 312

distributed throughout the city (Fig. 6.b), economic opportunities become locally 313

available to greater fractions of the population. Ultimately, this reduces the probability 314

of interactions between residents of distant neighborhoods (Fig. 6.d) and can thus 315

inhibit the spatial spread of influenza-like pathogens. This mechanism is evidenced by 316

results in Figure 5. Positive relationships in Figure 5 demonstrate that the size and R0 317

of urban epidemics increase with the centralization of daily activities. Moreover, the 318

results of simulations made using randomnized activity layouts (pink lines) show that 319

when trip-attraction clusters are broken apart and their places of interest distributed 320

randomly, R0 becomes significantly smaller even if Gdestinations remains constant (Fig. 321

5.a). 322

Notice that children’s R0 was not affected by the breakup of activity hubs in Figure 323

5.b. This lack of effect may be due to the fact that children’s TAS is already scattered 324

through GDL in a seemingly-random manner, while the TAS of adults is highly 325

organized (Fig. 1). While the centralization of labor markets is thought to favor 326

economic efficiency [19, 48], our theoretical analyses suggest that this may have negative 327

epidemiological consequences. In contrast, the decentralization of economic activities 328

may help slow the propagation of influenza-like outbreaks (Figs. 5, 6), reduce pollution 329

and improve overall welfare [49]. 330

Agent-based models are the standard method to run realistic simulations of disease 331

spreading in cities [7–10,12–14]. These intricate models have allowed for the evaluation 332

of intervention strategies [12] and health inequalities [8, 15], but require input from 333
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massive mobility datasets that are not openly available for most of the world’s cities. 334

Consequently, US [50] and European cities are over-represented by agent-based methods, 335

which remain inaccessible for many research groups and public health organizations. 336

Likewise, large-scale epidemiological models often assume homogeneous mixing 337

conditions in cities and neglect all processes that occur at the neighborhood 338

level [1, 4, 11, 51]. When compared to agent-based model output, this simplification can 339

lead to overestimate the size of epidemics and miscalculate their timing, and can thus 340

introduce considerable bias [11]. Although far simpler, our parameterization of 341

small-scale heterogeneity leads to the same conclusions (Figs. 4, 5). Thus, we believe 342

that the mathematical framework presented here is an adequate alternative to introduce 343

neighborhood-level processes in large scale epidemiological simulations. 344

Because it uses standard census and economic data to infer daily mobility patterns 345

(see Materials and Methods), our method enables researchers to investigate transmission 346

dynamics in virtually any city. Unfortunately, mobility parameters used here (Eqs. 1-3) 347

were not calibrated with real origin-destination data (which exist for GDL during the 348

2009 A/H1N1 pandemic [13] but are not openly available) and may thus be inaccurate. 349

Nonetheless, our analyses rely on the patterns that arise from fundamental processes 350

driven by the agglomeration of economic activities and highlight small-scale inequalities 351

that are not resolved by most epidemiological datasets. Agent-based simulations of 352

influenza outbreaks in the city of Buffalo [10] show spatiotemporal patterns (their 353

Figure 9) that are very similar to those presented here (S1 Video, Fig. 3) and thus 354

suggest that urban design may play a leading-order role in setting the dynamics of 355

influenza-like outbreaks in cities throughout the world. 356

In reality, spatial inequalities in health result from the complex interactions of social, 357

environmental and biological processes among which urban design is only one. Even 358

though this article focuses on the underlying effects of urban design on mixing 359

heterogeneity and epidemic growth, our mathematical framework can incorporate 360

additional layers of complexity that exist in reality. Among other factors, realistic 361

representations of asymptomatic periods, reactive behavior and the use of time-varying 362

mobility matrices could enrich future analyses. Nonetheless, the development of 363

theoretical frameworks that seek to understand these complex interactions is crucial to 364

help design new policies and research that aim to improve health in cities [46,47,52]. 365

Ultimately, this study shows that systematic spatial variations in the mobility of 366

infective individuals can drive robust patterns in the spread of disease and thus give rise 367

to health inequalities at the neighborhood level (Figs. 3, 4, S1 Video). 368

Materials and methods 369

Inclusion of census data 370

We solved equations (5)-(7) in finite differences by mapping all their variables onto a 371

1580-element triangular mesh representing GDL ( [53], Fig. 1). Neighborhood-level data 372

from the 2010 census [35] were used to calculate the total adult (age > 15) and infantile 373

(age ≤ 15) populations at each grid element. TAS(y′) was estimated for adults and 374

children from two publicly available datasets: The 2015 National Statistical Directory of 375

Economical Units (DENUE) lists all registered employers in Mexico along with their 376

sector, number of workers and location [34]. Similarly, the National System for School 377

Information (SNIE) locates all of the country’s schools and universities and lists their 378

enrollment at each educational stage [36]. DENUE employment data were combined 379

with SNIE enrollment at the high school and university levels to calculate TAS for the 380

adult population via equation 2. On the other hand, TAS for infantile mobility was 381
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inferred using SNIE enrollment data for educational stages up to the middle school level, 382

roughly corresponding with the age threshold between our age groups. Next, 383

time-constant origin-destination matrices were obtained for all grid elements using 384

equations (3) and (4). Resulting maps of population density and TAS for adults and 385

children are shown in Figure 1. 386

Mobility parameters were established a priori as ∆r0 = 5 km, b = 1.75, κ = 80 km in 387

equation 1. Sensibility analyses showed that variations in these values primarily impact 388

Gdestinations, whose consequences are shown in Figure 5, but do not change the 389

fundamental phenomena described in this study. Similarly, c(x) in equation 3 was 390

chosen to yield an average of 1.18 and 0.85 daily trips per person for adults and children 391

respectively. The mobility of infected individuals was computed via equation 4 with 392

α = 0.8 and an 8% probability of visiting the hospital once in an infective period. 393

Numerical solutions 394

Time-varying solutions to equations (5)-(7) were obtained using a forward 395

finite-difference scheme that considered piece-wise constant functions defined over the 396

triangular mesh shown in Figures 1 and 3. Continuous input variables were transformed 397

to be constant at all grid elements, which are henceforth noted as Ωj ⊂ Ω, and whose 398

area is Aj =
∫

Ωj
dΩ. For instance, the number of susceptibles in Ωj at time tk, was 399

calculated as Sj(tk) =
∫

Ωj
S(x, t) dΩ. Origin-destination matrices were defined using the 400

corresponding origin-destination density functions (Eq. 3) as 401

PS:jm =
1

Aj

∫
Ωj

∫
Ω′m

PS(x,y′) dΩ′ dΩ. (13)

Similarly, β(y′) can be mapped onto the grid as 402

βm =
1

A2
m

∫
Ω′m

β(y′)dΩ′. (14)

With all variables defined within the numerical grid, integrals over Ω̃ and Ω′ in 403

equation (5) were replaced by sums over infective origins Ω̃h and trip destinations Ω′m. 404

Thus, the temporal evolution in the number of susceptibles at Ωj over one timestep ∆t 405

was computed as 406

Sj(tk+1) = Sj(tk)

[
1−∆t

∑
m

βmPS:jm

∑
h

PI:hmIh(tk)

]
. (15)

Data and code availability 407

MATLAB software and data used to perform the simulations described in this article are 408

available at https://github.com/inciente/Urban-Epidemiology/tree/master/RUDDS/. A 409

Python Jupyter Notebook that describes our methods is also included. 410

Supporting information 411

S1 Fig. Comparison of data and model output. The city-wide number of 412

weekly hospitalizations in GDL during the 2009 AH1N1 influenza pandemic (blue) is 413

compared to simulation results under various initial conditions (gray). Because our 414

model does not feature interventions nor a time-dependent behavioral response to 415

outbreak intensity, values of β were calibrated using only 9 weeks of data at the onset of 416

the third and largest wave in the AH1N1 epidemic (pink shading). 417
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S2 Fig. Radial dependence of relative incidence. Expected evolution of 418

relative incidence at different times since the onset of 1580 outbreak simulations, each 419

run under a different initial condition. Color shading shows probability density 420

functions for different values of x∗. At any time, the proportion of people who are sick 421

is maximum near the city center where TAS (Eq. 2) peaks, and decreases radially 422

towards the suburbs. As epidemics die out and the pool of susceptibles available to 423

spread infection is depleted, relative incidence approaches unity everywhere, weakening 424

the health contrasts that exist between residents of the downtown and suburban areas. 425

S1 Video. Spatiotemporal evolution of an outbreak. Model output shows the 426

time-dependent fraction of people who are sick at each location in our numerical grid. 427

The outbreak shown in this video was seeded by adding 15 infective adults to a grid 428

element in the suburbs. 429
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36. Secretaŕıa de Educación Pública. Sistema Nacional de Información de Escuelas;
2017.

37. Diekmann O, Heesterbeek H, Britton T. Mathematical tools for understanding
infectious disease dynamics. vol. 7. Princeton University Press; 2012.
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