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Abstract

Cities are complex systems whose characteristics impact the health of people who live in
them. Nonetheless, urban determinants of health often vary within spatial scales smaller
than the resolution of epidemiological datasets. Thus, as cities expand and their
inequalities grow, the development of theoretical frameworks that explain health at the
neighborhood level is becoming increasingly critical. To this end, we developed a
methodology that uses census data to introduce urban geography as a leading-order
predictor in the spread of influenza-like pathogens. Here, we demonstrate our
framework using neighborhood-level census data for Guadalajara (GDL, Western
Mexico). Our simulations were calibrated using weekly hospitalization data from the
2009 A/HINT1 influenza pandemic and show that daily mobility patterns drive
neighborhood-level variations in the basic reproduction number Ry, which in turn give
rise to robust spatiotemporal patterns in the spread of disease. To generalize our results,
we ran simulations in hypothetical cities with the same population, area, schools and
businesses as GDL but different land use zoning. Our results demonstrate that the
agglomeration of daily activities can largely influence the growth rate, size and timing
of urban epidemics. Overall, these findings support the view that cities can be
redesigned to limit the geographic scope of influenza-like outbreaks and provide a
general mathematical framework to study the mechanisms by which local and remote
health consequences result from characteristics of the physical environment.

Author summary

Environmental, social and economic factors give rise to health inequalities among the
inhabitants of a city, prompting researchers to propose smart’ urban planning as a tool
for public health. Here, we present a mathematical framework that relates the spatial
distributions of schools and economic activities to the spatiotemporal spread of
influenza-like outbreaks. First, we calibrated our model using city-wide data for
Guadalajara (GDL, Western Mexico) and found that a person’s place of residence can
largely influence their role and vulnerability during an epidemic. In particular, the
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higher contact rates of people living near major activity hubs can give rise to
predictable patterns in the spread of disease. To test the universality of our findings, we
'redesigned’” GDL by redistributing houses, schools and businesses across the city and
ran simulations in the resulting geographies. Our results suggest that, through its
impact on the agglomeration of economic activities, urban planning may be optimized
to inhibit epidemic growth. By predicting health inequalities at the neighborhood-level,
our methodology may help design public health strategies that optimize resources and
target those who are most vulnerable. Moreover, it provides a mathematical framework
for the design and analysis of experiments in urban health research.

Introduction

Empirical studies have identified inter-city variations in the timing, intensity and
severity of influenza-like outbreaks [1H4]. Aiming to understand the mechanisms through
which city characteristics yield such health consequences, epidemiologists have resourced
to a variety of methods. Epidemiological data reveal compelling statistical correlations,
but do not resolve intra-city variations in health that are driven by lifestyle inequalities
at the neighborhood level [2,|4H6]. In contrast, agent-based computational models use
massive mobility datasets to recreate the behavior of individuals as they interact and
spread infections [7H9,[11H14]. While this approach allows for household-level analyses
and its elevated complexity makes it suitable for targeted experiments [15], it is not the
best tool for the development of general strategies in public health [16]. Furthermore,
the information necessary to calibrate agent-based simulations is not openly available
for most of the world’s cities. Thus, despite the fact that epidemics have the potential
to be seeded anywhere, these intricate models have been overwhelmingly applied to
populations in the developed world. Meanwhile, the fundamental mechanisms that drive
health inequalities within metropolitan areas remain elusive.

Urban design determines the densities and relative locations of housing, jobs and
services inside a city. Consequently, it influences the transportation choices of the
population [17H19] and thus helps shape interaction networks through which diseases
are spread. For example, the agglomeration of jobs and services drives large fractions of
a city’s population to gather in small fractions of its area, increasing contact rates
between the residents of distant neighborhoods [20}21]. In what follows, we quantify the
agglomeration of urban mobility using two Gini coefficients
(0 < Gorigins, Gdestinations < 1) that use neighborhood-level census data to measure
spatial inequalities in the area-density of housing and activities throughout a city. The
extreme values G = 0 represent homogeneous distributions of the population (trip
origins) or its activities (trip destinations); inversely, G = 1 indicates that all housing or
activities are concentrated within a single location. In epidemiological terms, G = 1
produces homogeneous mixing conditions, which allow individuals to interact
indiscriminately with all other members of the population. Under this scenario, disease
spreading may be modeled using simple ordinary differential equations where the total

population N = S+ I + R is split into susceptible S, infected I, and recovered R groups.

However, reality deviates from these conditions (G # 1) and successful models must
introduce heterogeneous contact networks to link the members of a population [22].

Attempting to understand the heterogeneous mixing patterns across subsets of the
population, observational studies have tracked people’s interactions in day-to-day
settings. It has since become clear that contact rates and the resulting risk of infection
can vary widely with age, sex, employment status and other characteristics [23}26].
However, the complex demographics and social settings that exist in urban
environments make it difficult to reliably sample and characterize the interaction
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patterns between all identifiable subgroups. Therefore, unexplained variations within
sampled groups can cause statistical uncertainty intervals to be >50% the magnitude of
reported mean contact rates [24H26]. Among the numerous likely sources of contact rate
variaibility, crowding driven by urbanization and mobility patterns has been suggested
to increase the growth-rate and size of infectious outbreaks by observational and
modeling studies alike [4l[14].

In this article, we develop a mathematical framework that introduces urban
geography as the leading-order component of a susceptible-infected-recovered (SIR)
epidemiological model. Our methodology uses spatially-resolved census data to infer
transportation patterns in cities and is meant to bypass the need for large mobility
datasets in urban health simulations. In our model, individuals are grouped by age and
place of residence, and are subsequently represented through probability density
functions that describe their likely travel habits. This approach sacrifices the
hyperrealism of agent-based simulations to instead resolve the spatial patterns that arise
when a heterogeneous set of metapopulations interact. Our goal is not to make an
operational forecasting tool, but instead to formulate a scheme that helps understand
the health consequences of the complex, spatially-dependent demographics of large
cities.

As a first step, we characterize the role of urban design in this process and use the
Guadalajara Metropolitan Area (GDL) as an example. City-wide hospitalization data
from the 2009 Influenza A/HIN1 pandemic were used to calibrate disease parameters
but cannot inform the validity of neighborhood-level patterns in our results.
Lastly, we ran simulations in hypothetical cities with the same area, population density,
number of schools and businesses as GDL. This allowed us to demonstrate that changes
in the spatial distributions of housing, education and economic activities yield large
variations in the size and early growth rate of epidemics across cities that would be
deemed identical from a large-scale perspective.

Modeling framework

Inferred mobility patterns

High-resolution maps of residential density provide the background distribution of a
city’s population, introducing a first layer of spatial dependence to the SIR transmission
framework. Likewise, the locations and prominence of activity hubs determine common
trip destinations were human interactions occur and diseases are spread. In our gravity
model, trips originate at home and the probability density P(x,y’) that a person
residing at x will visit y’ on a given day is the joint result of two factors: The distance
Arg, between both sites and the overall popularity of y’ as a destination. The effect of
distance Arg,. on the likelihood of displacements between two points has been studied
empirically [27], yielding the general form

P(Aryy) = (Argy + Arg) P exp(—Aryy /K). (1)

Simplifying daily mobility as radial displacements out of a place of residence x,
P(Arg,) yields a first estimate of the spatial distribution of individuals as they go
through their daily routines. Moreover, the model parameters Arg, b, x can be used to
capture the effects of transportation infrastructure, as the quality of these services
largely determines the willingness of individuals to travel long distances [28].

TAS(y') =3.0Re+2.4Se+1.9In+ 1.3 (Pr + St) (2)
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Trip Attraction Strength (TAS, Eq. [2)) further refines our approximation of human
mobility patterns in cities. TAS is an estimate of the daily number of visitors driven
into a location y’ by education and economic activities [29]. Its value may be calculated
using school enrollment data and the number of workers employed at y’ by different
economic sectors, allowing different types of establishments to be weighed by the traffic
they each induce. Our model incorporates TAS through Equation , where parameters
Re, Se, In and Pr denote the number of jobs registered at y’ by retail, service, industrial
and primary activity organizations respectively [29]. Similarly, St is the number of
students enrolled at educational institutions inside the same area.

Ps(x,y") = ¢(x)P(Aryy ) TAS(y') (3)

Equation thus defines a probabilistic gravity model that represents mobility as
the weighted influence areas of individuals who try to minimize their displacements but
will travel farther given an economic incentive (higher TAS). Here, the normalization
factor ¢(x) allows to adjust for the average number of daily trips made by residents of
different neighborhoods. In what follows, we use the empirical values k = 80 km, b =
1.75 found by Gonzalez and collaborators [27] but prescribe Arg = 5. This is a
conservative choice, as it facilitates longer trips and thus homogenizes the
transportation habits of the city’s inhabitants.

Before integrating these concepts into an epidemiological transmission model, we
must distinguish between the behavior of susceptible and infected groups. We define the
mobility of symptomatic groups via Equation , where 0 < a(x) < 1 is an isolation
parameter whose spatial dependence allows the representation of neighborhood-targeted
intervention strategies as well as social and economic factors that influence the adaptive
behavior of sick individuals. The term H(x,y’) accounts for the added probability of
visits to the nearest healthcare facility, as sick individuals will likely seek diagnosis and
treatment.

Pr(x,y') = a(x) - Ps(x,y") + H(x,y') (4)

In summary, we use the gravity model in Equation [3] to infer mobility patterns in
cities. T'AS represents the number of people who visit a location on a given day and is
calculated using employer and educational databases alike (Eq. [2] see Materials and
Methods). Although the prominence of different destinations varies throughout the
week and within a single day (for example restaurants and schools have strongly marked
daily cycles), our simulations consider T'AS to be fixed in time. Lastly, we incorporate
all state-run healthcare facilities (henceforth hospitals) by assigning infective individuals
to the nearest hospital and adding an 8% probability that they will visit it once during
their infective period. An overview of all spatial components of our framework, as
estimated for GDL (see Materials and Methods), is shown in Figure
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2.9M adults
1.1M children
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3.4M daily trips
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0.9M daily trips

Hospitals

Fig 1. Layers of model input: population density and TAS were calculated for adults
and children within a triangular grid representing GDL (Eq. [2| see Materials and
Methods). While children are attracted to early-stage schools, the destinations of adult
mobility are determined by the locations of retail stores, factories, office buildings, high
schools and universities. Satellite image: Google, Landsat/Copernicus, Maxar
Technologies.

Metapopulation model

Let us define three identical domains Q = Q' = Q € R? to represent the urban region
under study. Members of the population N are then segregated under an SIR
transmission scheme and distributed following population density functions

S(x,t) + I(x,t) + R(x,t) = p(x) such that [, p(x)dQ = N. This approach links people
to their place of residence (henceforth x € Q for susceptibles and % € Q for infectives),
allowing to formulate a Distributed Contacts SIR model (DC-SIR, Egs. adapted
from [30,31]). Here, B(y’) is the probability of contagion given a susceptible-infective
interaction that happens at y’ and ~ is the recovery rate. The interaction kernel
k(x,y’,t) yields the expected number of interactions between a member of S(x,¢) and
all infected individuals present at a trip destination y’ € Q' and time ¢ . Thus,
k(x,y’,t) introduces the heterogeneous contact networks through which diseases are
spread.

Bt = stxt) [ 50 ke ) dey o)
0I(x,t) 0S(x,t)  OR(x,t)

ot ( ot T o ) (©)
RO — 1,1 @
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To define the interaction kernel k(x,y’, ), we use origin-destination density
functions Ps(x,y’,t), Pr(x,y’,t) for members of S(x,t) and I(x,t) respectively. Next,
we compute the total number of infected individuals expected to visit y’ at a given time,
which is the integral from all trip origins fﬁ Pr(%,y',t) - I(X,t) dQ. Taking the product
with Ps(x,y’,t) thus gives an expression for the expected number of SI contacts
occurring at y’ for an individual who resides at x

k(x,y',t) = Ps(x, y',t)/ﬁpj(i, vy, HI(X,t) dsQ. (8)

A similar procedure yields the reproductive number R(X,t), defined as the number
of secondary cases caused by a single infected individual who lives at X and contracted
the disease at time t. Instead of calculating the number of SI interactions for a

susceptible in transit, we now use the spatial distribution of susceptibles at a given time.

This is given by the integration of susceptible mobility over all trip origins

Jo Ps(x,y',t)S(x,t) dQ. Multiplying this by the origin-destination density for infected
mobility P;(X,y’,t) then yields the expected number of SI interactions occurring at y’
for a member of I(X,t)

(&Y, 0) = Pr(&,y', 1) / P(x.y',1) S(x, 1) dS. (9)

Assuming that all variables are slowly-varying over the first generation of disease
transmission, we can approximate the basic reproduction number Ry (X) as

Ro(i) ~ 1/’7 o ﬁ(yl) Q(i’ y/’ = 0) sy’ (10)

Notice that k(x,y’,t) and ¢(X,y’,t) represent the vulnerability and disease
spreading capacity of individuals during an infectious outbreak. Moreover, their spatial
dependence implies that a person’s role during an epidemic is a function of their place
of residence but determined by characteristics of the locations they visit. With this
mathematical foundation, one could consider developing parameterizations of
environmental conditions such as relative humidity (function of y’) and demographic
factors that influence contact patterns (functions of x, X).

Our DC-SIR simulations of GDL classify two subsets of the population by place of
residence and age group. Thus, we defined SIR subgroups S;, I;, R; and mobility
functions Ps;, Pr; to represent the people in each age group j = 1,2 (adults and
children). Consequently, the integrand over trip destinations 2’ in Equation (5)) was
modified to account for interactions between a particular susceptible subgroup and
infectives I; of all ages, each of them with an age-specific transmission potential 3;.
Because our current focus is to explain the observed epidemiological impacts of urban
geography and crowding [2}{4[14], contact rates in our model are a linear function of
visitor density. Although this assumption can fail to quantify face-to-face contacts
within dense gatherings [32,33], the contact rate variations that emerge in our
simulations of GDL are comparable to the statistical uncertainty of observational
estimates [23}25,/26] that have not offered a systematic explanation of this variability.

Results

Our modeling framework was tested using data for GDL, where census and economic
data [34H36] were processed to derive the daily mobility patterns of children (age < 15)
and adults (age > 15, see Materials and Methods). Lorenz curves in Figure [2| represent
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the different degrees of agglomeration driven by housing (Gorigins = 0.32) and daily
activities (G gestinations = 0.56). As is true for large cities [20L21], inferred trips were
largely directed towards a few, hyper-affluent areas. In our model, these areas receive
25% of all daily trips but occupy less than 5% of the metropolis; meanwhile, housing
places 25% of the population throughout 13.5% of the city’s most densely populated
regions. The condition Ggestinations > Gorigins Tequires that some neighborhoods have
a net loss of occupants during workdays, as their inhabitants leave and agglomerate
around major activity hubs. This is true for 60% of all neighborhoods in GDL, which
then act as net sources of mobility whose role is to supply more affluent destinations

with visitors.

—Origins ,
—Destinations 4
0.8+
= 2
= B
S 06t <
g 8
ks =
5 3
o
5040 S
8 8
[ a a
0.2
7
’
02 04 06 08 1 10° 10° 10°
Fraction of city area Visitor density
[people/km?/day]

Fig 2. Lorenz curves (a) show the cumulative distributions of housing (trip origins,
blue) and daily activities (trip destinations, red) throughout portions of the city area.

The dashed line (G = 0) here represents urban design with spatially-homogeneous

distributions of housing and daily activities. Probability density functions of visitor
density (note the logarithmic axes) show that daily activities (red diamonds) drive

greater crowding than housing (blue line) for both adults (b) and children (c).

Values of B(y’) were calibrated using city-wide hospitalization data from the 2009
A/HIN1 influenza pandemic (S1 Fig). In our model, this parameter yields a linear
relationship for the probability of falling ill given the mean area density of infectives

that one encounters throughout the day. We assumed a homogeneous transmission

rate

B = B(y’) and obtained that the daily risk of contagion increased by 1.1 +0.1% for
every 1000 infective adults per km? added to one’s surroundings. Similarly, the addition
of 1000 infective children per km? raised the probability of falling ill on a given day by
3.2+ 0.3%. With 3 fixed everywhere, spatial patterns in the evolution of epidemics

result entirely from the number and age of people who visit each one of the city’s

neighborhoods (Egs. E[) Hence, spatial variations in our simulation results and in the
basic reproductive number Ry(X) are a direct consequence of the city’s transportation

network (Eq. [10]), which is by definition a product of urban design and land-use
patterns (Egs. [1] - [3).

Spatial variations in the basic reproductive number Ry (X) (Fig. |3) had a profound
impact on the spatiotemporal evolution of outbreaks in our model. Firstly, the age and
place of residence of patient zero (initial conditions) significantly influenced the early

rate of epidemic growth. In fact, the Ry of patient zero can delay the peak of an

epidemic by as much as 9 days (Fig. [lla,b). Secondly, people with the highest Ry(X)
also had the highest probability of falling ill. In particular, the increased contact rates
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of downtown residents allowed them to spread pathogens 50% more efficiently than
their suburban counterparts (Fig. , but also put them at a higher risk of contagion.
Regardless of initial conditions, this particular situation gave rise to a spatial pattern in
which influenza spread as waves of disease that emanate out of the city center (Fig. c,
[S2 Tig] [ST Video)). Similar patterns have been observed in agent-based simulations
before and may thus be a general characteristic of flu-like epidemics in urban
populations.
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Fig 3. The basic reproductive number Ry (Eq. varies at the neighborhood scale,
showing that adults (left) and children (left) living near the city center play a
disproportionate role in disease spreading. Population-averaged values of Ry were 1.27
for adults and 1.57 for children, and scale linearly with contact rates in our simulations
(Eq. , meaning that the absolute range of contact rates for both age groups was
roughly 50% of the mean value.

To better appreciate the structure of wave-like patterns and inequalities in the
spread of disease, we define the relative incidence Y(X,t) (Eq. and use simulation
results to inspect its statistical dependence on the distance Arz,« between
neighborhoods Z and the city’s largest retail hub x*, where TAS peaks.. Boxplots in
Figure [d]c show that our analyses predict the incidence of influenza to be highest in
downtown GDL and decreasing towards the suburbs. Time dependence represented in

gl suggests a relationship of the form Y (%,t) = Ar;f*(t). Here, d(t) is a
non-negative function that decreases with time, as T(X,t) approaches unity everywhere

towards the end of outbreaks.

- N -1
T(%,1) = I(xlt) (I(x ,t)) (11)
p(x) \ p(x*)

It is clear from Figures [3] and [4] that mobility hotspots play an important role in
setting the growth rate and evolution of epidemics in our model. To gain more insight,
we relocated businesses, schools and housing across the GDL numerical grid and ran
simulations in the resulting geographies. This allowed us to compare outbreaks across
cities with unique transportation networks but the same demographics, area, number of
schools, businesses and daily trips as GDL. In one set of experiments we modified the
Gini coefficients of mobility by relocating businesses, schools and housing across areas
with low and high TAS or population density. As a result, we modulated the
agglomeration of urban mobility but preserved the spatial structure of GDL. In another
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Fig 4. Over 3160 simulations with different initial conditions, panel a shows the time
of peak incidence (when [ I(Z,)dS2 reaches a maximum) plotted against the Ry of
patient zero. A histogram in panel b shows the probability that an outbreak peaks on a
given day and the separate contributions of children (green) and adults (blue) to this
variability. Boxplots in ¢ show radial decrease in expected (1, 25, 50, 75 and 99th
percentiles) relative incidence T (X,t) at a location X given its distance Arz,« to the
city’s largest retail hub x*.

experiment, we redistributed housing, schools and businesses at random to evaluate
whether the effects of agglomeration can be generalized to all cities despite their spatial
structure. All simulations used the same values of § (previously calibrated for GDL)
and an infective period 1/ of 4 days. Results are summarized in Figure

Our simulations suggest that, for all cities, the basic reproduction number R varies
as a function of Gestinations and is virtually independent of Gopigins (Fig. a,b). This
relationship is nonlinear for adults and linear for children, mainly because Ggestinations
is set by commercial and economic superclusters that primarily attract adults.
Furthermore, our results suggest that housing and activities in metropolitan areas with
Glaestinations < 0.58 can be redistributed so that the mean basic reproduction number of
adults remains under the threshold value Ry = 1. Namely, in this illustrative case where
[ is fixed everywhere and transmission dynamics are solely driven by urban design,
cities can be redesigned to render their populations incapable of sustaining epidemics.

At the end of an outbreak, the attack rate z measures the fraction of the population
that contracted the disease. Under homogeneous mixing conditions
(Gaestinations = Gorigins = 1), Ro and z are linked by Equation [37]. At all values
of Ry, this relationship predicts higher attack rates z than observed in our simulations
(Fig. c). Disagreements are largest for low values of Ry, when fractions of the urban
population have Ry < 1 and thus do not contribute to exponential growth. This
highlights the importance of understanding population heterogeneity: because Ry and
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incidence may covary in space (Figs. C), population-averaged parameters may differ s
from the characteristic values obtained from public health reports, whose samples are 2
biased towards subgroups with a higher incidence. Differences between the GDL and 247

Random experiments in Figure [5] suggest that, at equal Ry, realistic urban layouts 28
(where activity areas are clustered near each other) may act to decrease the size of 249
epidemics when compared to cases where housing and activities are distributed 250
randomly. However, notice that a greater Ggestinations 18 required for 251
randomly-designed cities to have the same values of Ry as GDL (Fig. [5la). 252
1—z=¢ foz (12)

b

0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8

Gdestinations

/Wwﬂm,, e % A
g
o
X
& B GDL
g I Random

Theory
4 6 8

Average Rg
Fig 5. The population-averaged basic reproduction number Ry is plotted as thick lines
for adults (a) and children (b). Color shading shows the range of values Ry(X)
calculated with equation in cities with the spatial structure of GDL (blue) and
those with randomized urban design (pink). The relationship between
population-averaged Ry and attack rate z is shown in panel c for cities with realistic
(blue) and random (pink) spatial structures. The theoretical relation for the attack rate
under homogeneous mixing conditions (Eq. is shown in orange. Disagreements
between these curves show the impacts of urban design on the growth rate and size of
influenza-like outbreaks for cities with the same area, population and economic
activities.

Discussion 253

Our parameterization of contact heterogeneity in metropolitan areas produces smaller 25
epidemics than homogeneous mixing models (Fig. [5)) and predicts that, depending on 25
where they live, people play unequal roles in disease spreading (Fig. |3]). These 256
inequalities relate the identity of patient zero to the timing of influenza-like outbreaks 27
(Fig. I a,b) and can give rise to spatiotemporal patterns in the spread of disease (Fig. s
@c, S2 Figl [ST Video). In fact, these processes mirror those of large scale transportation 2
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networks, whose heterogeneity leads to spatial inequalities in the size, timing and
growth rate of epidemics [1,/38,/39]. As similar insight is used for the development of
optimal intervention strategies in global-scale infectious outbreaks [40], results like those
presented in Figure [3] may offer valuable information for public health officials who seek
to optimize resources during infectious outbreaks. For example, health inequalities
inferred here suggest that the efficiency of vaccination campaigns is likely to vary
whether they target the inhabitants of the city center, its visitors, or people living in
suburban areas (Figs. . Similarly, the need for treatment and diagnosis is expected
to differ across neighborhoods (Fig. [lc).

Although our figures present the health impacts of urban geography as a function of
place of residence, inequalities result primarily from the remote influence of people in
other neighborhoods and the characteristics of places where interactions occur (Egs.
10). The inclusion of non-residental processes is essential to the accurate
representation of environmental health impacts |[41},42] and is achieved here through
interaction kernels k(x,y’,t) and ¢(X,y’,t). While we used a constant disease
parameter, the representation of local and remote environmental conditions can be
further refined by assigning full spatial dependence to transmission parameters so that
B =pB(x,y’,%X,t). Generally speaking, our analytical framework is designed to map
geographic information onto social space, establishing connections that are weighed by a
risk of contagion . This assigns realistic network characteristics to a spatially-explicit
disease transmission model, which simplifies the interpretation of simulation results and
may enable additional theoretical and statistical analyses [43}44].

Our results highlight the extent to which the assumption of homogeneous mixing in
metropolitan areas can bias model results. Most notably, epidemic size in simulations
that use the same transmission parameter 8 throughout hypothetical, seemingly
identical cities, covers the entire range 0 < z < 1 (Fig. c). This suggests that
macroscopic quantities such as population size and density hold little to no dynamical
significance in the evolution of infectious outbreaks. Instead, the spatial organization of
human mobility (quantified here using the Gini coefficient Ggestinations, Fig. [2)) seems
to control epidemic growth (Figs. a,b) and is statistically correlated with population
size [4,/14]. Dalziel and collaborators explored this notion [14] by comparing agent-based
model results across 48 Canadian cities, but were not able to isolate the effects of
spatial heterogeneity from all other information embedded in massive mobility datasets
that were used as model input.

Empirical relationships between G gesiinations, fo and the attack rate z shown in
Figure [5| suggest that, through its influence on transportation networks, urban design
may be optimized to modify epidemic growth rates and thus reduce the probability of
seeding large outbreaks. The existence of invasion thresholds under which populations
cannot sustain epidemic growth is a general characteristic of metapopulation
models [45]. While many authors have conjectured about the possibility of designing
cities to minimize disease prevalence |4}/14,46.|47], we present the first dynamical
argument to link these ideas and the invasion threshold proposition of Colizza and
Vespignani [45]. More specifically, our results suggest that, by evenly distributing
activity hubs throughout a city (instead of clustering them in the city center), city
planners can segregate subsets of the population and potentially inhibit the rapid
transmission of pathogens across distant neighborhoods (Fig. . Consistent with
known statistical relations between the transmission potential of influenza and the
spatial organization of human behavior [4}/14], our framework explains a plausible
mechanism behind health inequality across the neighborhoods of the worlds’ cities.

The mechanism through which urban design impacts epidemic growth is illustrated
in Figure [} when daily activities are centralized in a handful of hyper-affluent areas
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Fig 6. Schematic comparison of urban design scenarios. When activities are centralized
in a single hub (left), people from all parts of the city gather in this place and can
potentially interact [21]. Meanwhile, more even distributions of daily activities (right)
segregate subsets of the population and can lower the growth rate of infectious
outbreaks (Fig. [5)).

(Fig. @a), mixing patterns become more homogeneous [21] and thus favor interactions
between residents of distant neighborhoods (Fig. @c) However, when activity hubs are
distributed throughout the city (Fig. @b), economic opportunities become locally
available to greater fractions of the population. Ultimately, this reduces the probability
of interactions between residents of distant neighborhoods (Fig. @d) and can thus
inhibit the spatial spread of influenza-like pathogens. This mechanism is evidenced by
results in Figure || Positive relationships in Figure |5| demonstrate that the size and Ry
of urban epidemics increase with the centralization of daily activities. Moreover, the
results of simulations made using randomnized activity layouts (pink lines) show that
when trip-attraction clusters are broken apart and their places of interest distributed
randomly, Ry becomes significantly smaller even if Ggestinations remains constant (Fig.
Bla).

Notice that children’s Ry was not affected by the breakup of activity hubs in Figure
[Blb. This lack of effect may be due to the fact that children’s TAS is already scattered
through GDL in a seemingly-random manner, while the TAS of adults is highly
organized (Fig. . While the centralization of labor markets is thought to favor
economic efficiency [19,/48], our theoretical analyses suggest that this may have negative
epidemiological consequences. In contrast, the decentralization of economic activities
may help slow the propagation of influenza-like outbreaks (Figs. [f [6]), reduce pollution
and improve overall welfare [49].

Agent-based models are the standard method to run realistic simulations of disease
spreading in cities |[7H10l12-14]. These intricate models have allowed for the evaluation
of intervention strategies [12] and health inequalities [8.[15], but require input from
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massive mobility datasets that are not openly available for most of the world’s cities.
Consequently, US [50] and European cities are over-represented by agent-based methods,
which remain inaccessible for many research groups and public health organizations.
Likewise, large-scale epidemiological models often assume homogeneous mixing
conditions in cities and neglect all processes that occur at the neighborhood

level [1L[4L|11L[51]. When compared to agent-based model output, this simplification can
lead to overestimate the size of epidemics and miscalculate their timing, and can thus
introduce considerable bias |11]. Although far simpler, our parameterization of
small-scale heterogeneity leads to the same conclusions (Figs. [d] [f). Thus, we believe
that the mathematical framework presented here is an adequate alternative to introduce
neighborhood-level processes in large scale epidemiological simulations.

Because it uses standard census and economic data to infer daily mobility patterns
(see Materials and Methods), our method enables researchers to investigate transmission
dynamics in virtually any city. Unfortunately, mobility parameters used here (Eqs. [13))
were not calibrated with real origin-destination data (which exist for GDL during the
2009 A/HINI pandemic [13] but are not openly available) and may thus be inaccurate.
Nonetheless, our analyses rely on the patterns that arise from fundamental processes
driven by the agglomeration of economic activities and highlight small-scale inequalities
that are not resolved by most epidemiological datasets. Agent-based simulations of
influenza outbreaks in the city of Buffalo [10] show spatiotemporal patterns (their
Figure 9) that are very similar to those presented here (S1 Video, Fig. |3) and thus
suggest that urban design may play a leading-order role in setting the dynamics of
influenza-like outbreaks in cities throughout the world.

In reality, spatial inequalities in health result from the complex interactions of social,
environmental and biological processes among which urban design is only one. Even
though this article focuses on the underlying effects of urban design on mixing
heterogeneity and epidemic growth, our mathematical framework can incorporate
additional layers of complexity that exist in reality. Among other factors, realistic
representations of asymptomatic periods, reactive behavior and the use of time-varying
mobility matrices could enrich future analyses. Nonetheless, the development of
theoretical frameworks that seek to understand these complex interactions is crucial to
help design new policies and research that aim to improve health in cities [46L|47}[52].
Ultimately, this study shows that systematic spatial variations in the mobility of
infective individuals can drive robust patterns in the spread of disease and thus give rise
to health inequalities at the neighborhood level (Figs. S1 Video).

Materials and methods

Inclusion of census data

We solved equations ([5)-(7) in finite differences by mapping all their variables onto a
1580-element triangular mesh representing GDL ( [53], Fig. [I). Neighborhood-level data
from the 2010 census [35] were used to calculate the total adult (age > 15) and infantile
(age < 15) populations at each grid element. TAS(y’) was estimated for adults and
children from two publicly available datasets: The 2015 National Statistical Directory of
Economical Units (DENUE) lists all registered employers in Mexico along with their
sector, number of workers and location [34]. Similarly, the National System for School
Information (SNIE) locates all of the country’s schools and universities and lists their
enrollment at each educational stage |[36]. DENUE employment data were combined
with SNIE enrollment at the high school and university levels to calculate TAS for the
adult population via equation |2} On the other hand, TAS for infantile mobility was
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inferred using SNIE enrollment data for educational stages up to the middle school level,
roughly corresponding with the age threshold between our age groups. Next,
time-constant origin-destination matrices were obtained for all grid elements using
equations and . Resulting maps of population density and TAS for adults and
children are shown in Figure

Mobility parameters were established a priori as Arg =5 km, b = 1.75, k = 80 km in
equation [T} Sensibility analyses showed that variations in these values primarily impact
Gaestinations, Whose consequences are shown in Figure [l but do not change the
fundamental phenomena described in this study. Similarly, ¢(x) in equation |3| was
chosen to yield an average of 1.18 and 0.85 daily trips per person for adults and children
respectively. The mobility of infected individuals was computed via equation [4] with
a = 0.8 and an 8% probability of visiting the hospital once in an infective period.

Numerical solutions

Time-varying solutions to equations — were obtained using a forward
finite-difference scheme that considered piece-wise constant functions defined over the
triangular mesh shown in Figures [l and [3] Continuous input variables were transformed
to be constant at all grid elements, which are henceforth noted as ©; C €2, and whose
area is A; = fQ dQ). For instance, the number of susceptibles in €2; at time ¢, was

calculated as S;(tx) fﬂ (x,t) dQ2. Origin-destination matrices were defined using the
corresponding orlgln—destlnatlon density functions (Eq. ' as

PS m = / Ps(X Yy )dﬂ/ dfQ. (13)
A Jo, Jo,
Similarly, 8(y’) can be mapped onto the grid as
1 / /
Bm = AT Bly')de'. (14)

Q/

With all variables defined within the numerical grid, integrals over Q and Q' in
equation ([5)) were replaced by sums over infective origins Q, and trip destinations /.
Thus, the temporal evolution in the number of susceptibles at €2; over one timestep At
was computed as

Sj(tr+1) = Sj(tk)

1— At Z BmPs:jm z PrmIn(ty) | - (15)
m h

Data and code availability

MATLAB software and data used to perform the simulations described in this article are
available at https://github.com/inciente/Urban-Epidemiology/tree/master/RUDDS/. A
Python Jupyter Notebook that describes our methods is also included.

Supporting information

S1 Fig. Comparison of data and model output. The city-wide number of
weekly hospitalizations in GDL during the 2009 AHIN1 influenza pandemic (blue) is
compared to simulation results under various initial conditions (gray). Because our
model does not feature interventions nor a time-dependent behavioral response to
outbreak intensity, values of 8 were calibrated using only 9 weeks of data at the onset of
the third and largest wave in the AHINI epidemic (pink shading).
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S2 Fig. Radial dependence of relative incidence. Expected evolution of
relative incidence at different times since the onset of 1580 outbreak simulations, each
run under a different initial condition. Color shading shows probability density
functions for different values of x*. At any time, the proportion of people who are sick
is maximum near the city center where TAS (Eq. [2)) peaks, and decreases radially
towards the suburbs. As epidemics die out and the pool of susceptibles available to
spread infection is depleted, relative incidence approaches unity everywhere, weakening
the health contrasts that exist between residents of the downtown and suburban areas.

S1 Video. Spatiotemporal evolution of an outbreak. Model output shows the
time-dependent fraction of people who are sick at each location in our numerical grid.
The outbreak shown in this video was seeded by adding 15 infective adults to a grid
element in the suburbs.
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