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Abstract 
Tree congruence metrics are typically global indices that describe the similarity or dissimilarity 
between dendrograms. This study principally focuses on topological congruence metrics that 
quantify similarity between two dendrograms and can give a normalised score between 0 and 1. 
Specifically, this article describes and tests two metrics the Clade Retention Index (CRI) and the 
MASTxCF which is derived from the combined information available from a maximum agreement 
subtree and a strict consensus. The two metrics were developed to study differences between 
evolutionary trees, but their applications are multidisciplinary and can be used on hierarchical 
cluster diagrams derived from analyses in science, technology, maths or social sciences disciplines. A 
comprehensive, but non-exhaustive review of other tree congruence metrics is provided and nine 
metrics are further analysed. 1,620 pairwise analyses of simulated dendrograms (which could be 
derived from any type of analysis) were conducted and are compared in Pac-man piechart matrices. 
Kendall’s tau-b is used to demonstrate the concordance of the different metrics and Spearman’s rho 
ranked correlations are used to support these findings. The results support the use of the CRI and 
MASTxCF as part of a suite of metrics, but it is recommended that permutation metrics such as SPR 
distances and weighted metrics are disregarded for the specific purpose of measuring similarity. 

Introduction 
Dendrograms are branching graphical representations of hierarchical clusters based on similarity. 
Rooted dendrograms are based on the premise that two given specimens in a sample are more 
closely related than either one is to a third specimen (i.e. c[a,b]). This study is primarily concerned 
with rooted dendrograms which require a minimum of 3 specimens to make a statement about their 
relationships, unrooted dendrograms require a minimum of 4 specimens. Dendrograms are 
commonly referred to as hierarchical cluster diagrams, trees, phenograms, cladograms and 
phylogenies. The latter synonyms are due to their use in systematic biology and palaeobiology for 
depicting evolutionary relationships. Phenograms are constructed from a similarity matrix, while 
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cladograms are chosen heuristically by finding the most parsimonious topology in tree-space or 
choosing the most sampled topology in tree-space. These graphical representations of the 
evolutionary tree may be referred to as phylogenies and the terms are often used interchangeably. 
Dendrograms have become synonymous with evolution but despite that, they have been 
successfully applied in disciplines including but not limited to linguistics, sociology, scholarly 
communications (Franceschet 2009) , business analytics and manufacturing. There are many reasons 
a researcher may wish to represent their sample using a dendrogram and they may use different 
terminology to reflect the sample type or methodology used to estimate the dendrogram. Despite 
the different applications and terminology used for dendrograms, there are good reasons for all 
disciplines to compare and describe the topologies consistently. For example, a Systematist may 
wish to see how adding a new taxon, partitioning data, sequencing different genetic material, or 
making new morphological observations has affected perceived evolutionary relationships. Biological 
studies have also compared tree topologies of parasites and hosts (Page 1994)  to observe 
coevolution. Alternatively, manufacturers, developers and distributors may wish to understand their 
consumers and how they can be concordantly categorised under different key variables to help 
develop commercial strategies. Furthermore, social scientists could derive a dendrogram from a 
discriminant function analysis to demonstrate the voting patterns in demographic groups (e.g. 
Ginsburgh and Noury 2008)  and wish to compare how this has changed over time. 

In response to this, several methods of measuring or demonstrating the similarity/dissimilarity or 
congruence/incongruence of dendrograms have been developed. These methods have been 
reviewed elsewhere in the literature (e.g. Rohlf and Sokal 1981; Rohlf 1982; Swofford 1991; Planet 
2006) , but, a new method was recently presented (Vidovic 2016; Vidovic and Martill 2017)  and due 
to the scope of the published paper, little was said on the methodology and how it compares to 
those pre-existing indices. The method termed Clade Retention Index (CRI) was developed to 
understand topological congruence between evolutionary trees developed by independent research 
groups who over time borrowed more methods and data from one another. However, here it is 
recognised that the CRI’s potential extends beyond evolutionary studies, therefore, its potential and 
limitations are explored using simulated dendrograms free from biological references. The CRI is 
compared to other topological congruence metrics for dendrograms that can be given as indices 
between 0 and 1. Additionally, a new metric utilising the information available from a maximum 
agreement subtree and a strict consensus tree derived from the same pair of fundamental 
dendrograms is proposed and tested. 

Comparison 

Synopsis 
This study is primarily concerned with measures of topological congruence between dendrograms 
that are or can be expressed as an index between 0 and 1, typically with 1 being identical. A 
commonly used incongruence metric which gives identical trees a score of 0 is also studied 
(Robinson-Foulds distance). Congruence indices can be broadly divided into three types: 
permutation; pairwise comparison; and consensus methods. Probabilistic methods also exist, they 
are discussed below but are not tested due to their lack of descriptive power in a global metric. 

Typically, the permutation methods count how many permutations it takes to transform a subject 
dendrogram into a target dendrogram and derive an index number from that exercise. This can be 
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done across a matrix or using permutation algorithms on the dendrogram itself (e.g. Waterman and 
Smith 1978) . The pairwise comparison methods quantify differences observed between 
dendrograms (e.g. Robinson and Foulds 1981) . And, finally, the consensus methods compute a 
consensus or compromise tree and measure how resolved it is compared to the most resolved tree 
possible (e.g. Colless 1980; Mickevich 1978) . 

Below I give a comprehensive but non-exhaustive account of topological congruence metrics 
between two fundamental dendrograms. 

Clade Retention Index 

The CRI (Vidovic 2016; Vidovic and Martill 2017)  is a strict consensus-based metric, which means the 
indices are the product of the agreement and disagreements observed between two fundamental 
trees. Fundamental trees lack polytomies, while a strict consensus only preserves relationships 
shared by each fundamental tree and collapses unshared relationships to the nearest common node, 
forming polytomies. The CRI method quantifies agreement by counting the shared nodes ( N) and 
disagreement by counting the number of individual specimens (or terminal nodes) that terminate in 
a polytomy ( P). P is restricted to individual terminal nodes because groups of specimens in a 
polytomy are far more informative than individual specimens, so this is an intuitive cost. This 
information is in turn put into context by calculating the maximum possible agreement, which is 
always the total number of specimens analysed ( T) less one i.e. T – 1. These fundamental 
components for calculating the level of agreement or disagreement between two tree topologies 
can be used to formulate equation 1 below. 

−i = T−1
P−N  

The maximum agreement score achievable by two fundamental trees is 1, while the maximum 
disagreement achievable is -1. Therefore, the results of Equation 1 can be normalized to be 
expressed as an intuitive similarity score given between 0 and 1, where X is 1. 

RIC = X
(Rmax−Rmin)×(i−Rmin)  

RIC = 1
(1−−1)×((− )−−1)T−1

P−N  

RI .5 (− ) )C = 0 × ( T−1
P−N + 1   

 

Maximum Agreement Subtree x Consensus Fork 

iCong (Vienne, Giraud, and Martin 2007)  is a metric developed based on the maximum agreement 
subtree (MAST) which is the largest tree that is agreed upon by two fundamental dendrograms by 
removing the terminal nodes that are the source of disagreement. In principle, iCong is a useful 
metric because it indicates the specific source of disagreement and quantifies the agreement 
between two dendrograms. However, in practice, iCong can be given as a number greater than 1, 
which does not help compare between multiple analyses. Here, it is recommended that information 
available from a MAST is combined with the information available from a strict consensus to indicate 
the total agreement on both terminal and internal nodes respectively. Like the CRI, N is shared 
nodes and T is the sample of terminal nodes and here mT is the number of terminal nodes 
maintained by a maximum agreement subtree. The first part of the equation is effectively Colless’ 
unweighted Consensus Fork (CF), which does not count the root node, so 1 is subtracted from N and 
2 is subtracted from T. The CF is multiplied by the index obtained by dividing the number of terminal 
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nodes in the MAST by the total number of terminal nodes. The CF is multiplied by the function of the 
MAST to give a factor of total agreement given the name MASTxCF ( i) here. 

i = T−2
N−1 × T

mT  

Consensus Fork Index 

The Consensus Fork Index (CF) was coined by Colless (1980) (=CIc Rohlf 1982) , to provide a metric 
given between 0 and 1 of branching points (resolution) on a consensus dendrogram. The CF is 
calculated by dividing the number of nodes preserved ( N) in a strict consensus, ignoring the basal 
branch ( N-1),  by the maximum possible number of nodes ( T-2) for a rooted tree. 

FC = T−2
N−1  

Colless’ Weighted CF or Mickevich-Platnick Pm 

This weighted metric was developed by Colless (1980) concurrently with the CF and it was 
redeveloped by Mickevich & Platnick (1989) (Swofford 1991). The weighted CF is calculated simply 
by applying a weight of 1 to each terminal node comprising all subtrees in a consensus at all levels 
and normalising by the maximum score possible. 

CFW = ΣN i
Nmax

 

Colless proposed that the maximum score ( Nmax)  should be calculated as follows: 

.5(T )(T )Nmax = 0 − 1 + 2  

However, tests in PAUP* demonstrate that it is unlikely that Colless’ calculation for the maximum 
score is used. 

Mickevich’s Consensus Index 

Mickevich’s consensus index (CIM) sums the weights given across all subtrees preserved in a 
consensus tree (∑Ni) and normalises it using the divisor Nmax. Where N max is the maximum ∑Ni over 
all possible fully resolved dendrograms derived from a sample of terminal nodes ( T). 

CIM = ΣN i
Nmax

 

Ni is calculated for each subtree preserved in the consensus at all levels by taking the minimum of 
two values derived from either taking 1 from the terminal nodes in the subtree or taking the number 
of terminal nodes in the subtree from the total number of terminal nodes. Therefore, Ni is given as 
follows: 

in{n , T }N i = m i − 1  − ni  

For example, a subtree comprising 14 terminal nodes in a tree comprising 21 terminal nodes 
altogether gives a weight of 7 for that subtree ( Ni = min{14 – 1, 21 – 14} = 7) and a second subtree of 
3 terminal nodes gives a weight of 2 ( Ni = min{3 – 1, 21 – 3} = 2). 

The equation Mickevich gives for resolving Nmax is as follows: 

( ) L( )Nmax = L 2
T

2
T−1  

where L  is the largest integer not larger than its argument. 
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Continuing the example above, Nmax is given as 100 ( Nmax = L(10.5) L(10) = 10 x 10 = 100), therefore, 
if the sum of the weights given above and all other subtrees is 52, CIM is 0.520. 

Rohlf noted, the maximum ∑Ni for CIM is always achieved by the maximally asymmetrical or 
unbalanced dendrogram, meaning other topologies that are fully congruent will never score 1. 
Swofford (1991)  demonstrated that a balanced dendrogram can achieve Nmax but this is only true if 
said dendrogram is ladderized, thus a balanced bifurcating strict consensus dendrogram 
demonstrating complete agreement cannot achieve 1. 

Rohlf CI 1 

Rohlf’s CI1 was developed to perform the same role on a consensus tree as CIM, but correcting for 
tree balance (Rohlf 1982, 137) . Rohlf achieved this by adjusting the weights given to subtrees to a 
simpler monotonic function ( Ni = ni – 1) and calculating Nmax across any possible tree shape by 
arbitrarily resolving polytomies in a given consensus dendrogram in a consistent manner and 
calculating the weights across that fully resolved tree (Rohlf 1982, 137–38) . This was achieved by 
adding Δi calculated on every polytomy (𝒇i ≥3) that requires resolving to ∑Ni. Where 𝒇i is the number 
of subtrees and terminal nodes in a given polytomy and ni are the sizes of those subtrees and 
terminal nodes given in decreasing order ( na, n b, ..., n𝒇).  

 Δi = ∑
f −1i

a=2
[∑

a

b=1
nb − 1]  

Once the Δi has been calculated for all polytomies, it can be summed and applied in the following 
equation. 

CI1 = ΣN i
ΣΔ +ΣNi i

 

Distortion Coefficient 

The distortion coefficient was initially introduced by Farris (1973)  as the difference between the 
subject dendrogram and a Matrix Representation with Parsimony (MRP) (Kluge and Farris 1969)  of 
the target dendrogram. Farris calculated this by finding the maximum extra steps on the subject 
dendrogram for each binary character in the MRP and dividing those by maximum extra steps 
possible, then averaging the results for all characters. However, here the distortion coefficient is 
given as it is implemented in TNT, where it appears the ensemble retention index (RI) (Farris 1989)  is 
calculated for a subject dendrogram against an MRP of the target dendrogram. This differs in that 
the RI is calculated by taking the minimum sum of steps on a particular dendrogram ( S) from the 
greatest sum of steps on any dendrogram of the same dimensions ( G) and dividing that number by 
the greatest number of steps on any dendrogram less the minimum number of steps on any 
dendrogram of the same dimensions ( M). 

ist. Coef . RI  D =  = G−S
G−M  

Robinson-Foulds distance 

Robinson-Foulds (R-F) distance (metric) (Robinson and Foulds 1981)  might also be referred to as 
symmetric difference metric, contraction/decontraction metric, or partition metric (Planet 2006). 
The metric works by sampling two unrooted tree topologies to find groups that appear in one tree 
but not the other. It is a pairwise sampling method that tests for groups present in tree A, but absent 
in tree B and present in tree B, but absent in tree A. The first phase of an R-F analysis is to remove all 
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branch relationships present in tree A, but not in tree B, followed by adding branch relationships to 
tree A, that it lacks, but tree B possesses. The sum of the moves in the two phases is the R-F 
distance. Because it will cost the same to change tree A into tree B and vice versa, no further 
calculations need to be made. The R-F distance was intended to be expressed as an absolute figure, 
but it is possible to divide the R-F distance by the maximum possible differences to give an index 
between 0 and 1. This number needs to be inverted to give 0 as incongruent and 1 as congruent. TNT 
also calculates the R-F distance as an index number between 0 and 1, where 0 is congruent and 1 is 
incongruent. Both methods are analysed here. 

SPR or rSPR distances 

Subtree pruning and regrafting (SPR) is one of the tree permutation algorithms utilized by cladistic 
software packages. In TNT, SPR distances are implemented by converting the source fundamental 
dendrograms to MRP matrices and performing SPR on the subject dendrogram until it matches the 
target dendrogram (Goloboff 2008). The number of SPR permutations required to change one tree 
into the other is the same as the converse, therefore, the SPR distance is achieved with a single 
analysis. Using TNT’s algorithms, SPR distance calculations are faster than other tree permutation 
methods, such as the nearest neighbour interchange (NNI) (Waterman and Smith 1978). However, 
SPR and NNI distances are limited in that they do not consider the level of disagreement, i.e. two 
groups with the exact same terminal node composition could be recovered in wildly disparate parts 
of the dendrogram, but only one permutation (SPR move) would be required to solve this problem. 
To be able to run two dendrograms from distinct analyses in TNT, they must be reduced to common 
terminal nodes only.  

Quartets and triplets 

Quartets were proposed by Estabrook et al. (1985) specifically to overcome the problem of 
evolutionary direction. The problem of evolutionary direction is that A+B, +C, +D has the same 
relationships as C+D, +B, +A if there is no root. The quartets method reduces the tree to sub-groups 
of four evolutionary units and uses a classification system to compare two trees. The triplets method 
is similar to the quartet method but is employed for rooted cladograms. The triplet method is most 
appropriate for this study, but it is obsolete with respect to other methods available and because 
evolutionary direction is a biologically specific problem, although it is worth noting this method 
could have applications for hierarchical cluster diagrams derived from a principal component or 
canonical variate analysis. 

Rand c 

Rand (1971)  presented one of the earliest measures of similarity between clusters that can be 
applied to hierarchical clusters and therefore dendrograms. This metric had was rediscovered and 
adapted several times in the 1970s and 80s (Hubert and Arabie 1985, 194) . Rand’s c, denoted Rand c 
here, was originally calculated by scoring all possible clustered pairs with 1 if the pair is together ( T) 
in both dendrograms, 1 if the pair is always separate ( S) in both dendrograms, and 1 if a mix ( m) of 
together and separate occurs, else each other category scores 0. The sum of together and separate is 
then divided by the normalizing factor of the sum of all scores. Rand (1971)  gave an example 
comparing clusters “{(a,b,c),(d,e,f)}” and “{(a,b), (c, d,e),(f)}” as in Table 1. 

score/pair ab ac ad ae af bc bd be bf cd ce cf de df ef total 

T 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 
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S 0 0 1 1 1 0 1 1 1 0 0 1 0 0 0 7 

m 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 6 

Table 1. Example given by Rand for scoring ((a,b,c),(d,e,f)) versus ((a,b), (c, d,e),(f)). 

Therefore, 9 is divided by 15, giving a score of 0.6. Note, an algebraic function is available for calculating this 
score (Rand 1971, 847) . 

Rand (1971)  claims that this index scores 1 for absolute similarity and 0 when the clusters have no similarities. 
However, Rand considers clusters consistently plotting separately a similarity, even if those separations are not 
consistent themselves e.g. cf in the example given above. Indeed, it is possible for two entirely distinct 
dendrograms to score greater than 0 (Table 2). For example, ((e,f),((a,b),(c,d))) and ((a,f),((e,c),(b,d))) score 
0.533. Therefore, Rand c does not meet the criteria for inclusion in this study. 

score/pair ab ac ad ae af bc bd be bf cd ce cf de df ef total 

T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S 0 1 1 1 0 0 0 1 1 0 0 1 1 1 0 8 

m 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 7 

Table 2. An example of Rand c scores where there are no shared relationships, but the overall score is greater than 0. 

Clade Concordance Index 

Another metric calculated from a strict consensus of two fundamental dendrograms is the Clade 
Concordance (CC) index (Nixon and Carpenter 1996) . However, the CC index is limited in its 
application as it was specifically developed to measure similarity for evolutionary trees derived from 
cladistic methods and as such it relies heavily on the data matrix used to estimate the trees. The CC 
index uses the sum of the greatest character lengths (GL) across each fundamental tree, the length 
of the shortest (most parsimonious) fundamental tree (PL) and the length of their strict consensus 
tree (CL) in its calculation. The tree lengths refer to the sum of the character (coded morphological 
or molecular data in the matrix) transformations across the branches of the trees. As such the CC 
index can be confounded if the most parsimonious tree is found using ordered states or a weighting 
procedure i.e. not equal weights for character transformations. Furthermore, the CC index has 
limited applications even within the field of cladistics because one cannot calculate a meaningful 
result from fundamental dendrograms derived from distinct matrices. Therefore, in the context of 
this paper, the CC index is mentioned purely for academic purposes and it will not be further 
analysed or compared. 

CC = 1 − CL−PL
(∑GLn)−PL

 

Probabilistic methods 

Nelson’s consensus index (CIN) and the topological incongruence length distance (TILD) offer 
probabilistic approaches to measuring dendrogram similarity. However, they are analysing how likely 
it is that those dendrograms would be generated, thus they are not truly topological congruence or 
incongruence metrics and are not considered further. 
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Methodology 
In this study, 40 dendrograms are analysed in 180 pairwise comparisons using nine methods. The CF, 
CIM, W CF, CI1, MASTxCF, R-F, R-F using TNT, CRI and SPR were chosen for comparison. One set of 
Distortion Coefficient results were also analysed and are available in the underpinning data, but are 
not presented in the results of this paper because the metric recovers two inconsistent indices 
depending on which dendrogram is used as the target. 

The 40 dendrograms were simulated by creating an MRP of a random dendrogram and retaining 
suboptimal trees in a heuristic analysis. The 40 dendrograms comprise 4 sets of 10, which each have 
11, 21, 31, and 41 terminal nodes respectively. Each set of 10 dendrograms were compared to each 
other using each topological congruence metric, totalling 45 calculations per set of dendrograms per 
metric, 180 per metric, and 1,620 overall. The results are presented in Pac-man piechart matrices 
(Vidovic 2016) for visual comparison, and the results were ranked and compared for 
concordance/discordance (Kendall’s tau-b) and difference (Spearman’s rho). 

The R scripts, procedures, 40 fundamental trees and their 180 pairwise consensus trees are 
presented in an independently published dataset. 

In practice, to do many of the analyses here, all the terminal node names must be the same and the 
two dendrogram topologies should be reduced to common terminal nodes only. This has 
implications at least in systematic biology and palaeobiology where the taxonomic composition of 
two phylogenies produced by two distinct studies are unlikely to be exactly the same. Helpfully, the 
taxonomic composition of a dendrogram can be reduced to common terminal nodes using CompPhy 
(Fiorini et al. 2014). 
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Results 
All 1,620 analyses, plus the 180 analyses using the Distortion Coefficient are available in the 
associated dataset. Additionally, the 10 fundamental dendrograms, their consensus trees and the 
scripts or procedures used to analyse them are also available. 
https://doi.org/10.5258/SOTON/D1069  

Kendall's tau-b 

CF 0.647 0.567 0.702 0.929 0.956 -0.980 0.826 0.214 

0.826 CIM 0.837 0.748 0.627 0.668 -0.634 0.466 0.333 

0.567 0.956 W CF 0.750 0.544 0.587 -0.555 0.395 0.290 

0.865 0.910 0.896 CI1 0.677 0.725 -0.690 0.535 0.315 

0.987 0.823 0.729 0.859 MASTxCF 0.913 -0.911 0.792 0.292 

0.976 0.826 0.750 0.861 0.968 R-F -0.977 0.825 0.242 

-0.981 -0.804 -0.724 -0.843 -0.969 -0.995 R-F TNT -0.840 -0.206 

0.931 0.635 0.548 0.698 0.920 0.933 -0.947 CRI 0.158 

0.263 0.458 0.411 0.414 0.357 0.292 -0.250 0.168 SPR 

Spearman's rho 

Table 3. Results of Kendall’s tau-b (top right) and Spearman’s rho (bottom left) analysis of results (N=1,620) derived from 

180 pairwise tree congruence analyses using 9 metrics. The results are presented in a matrix, designed to be read across 

and down (top right) or down and across (bottom left). CF = Colless’ Consensus Fork, CIM = Mickevich’s Consensus 

Information, W CF = Colless’ Weighted Consensus Fork, CI1 = Rohlf’s Consensus Information, MASTxCF = Maximum 

Agreement Subtree x Consensus Fork, R-F = rescaled Robinson-Foulds distance, R-F TNT = Robinson-Foulds distance 

calculated in TNT, CRI = Clade Retention Index, SPR = Subtree pruning and regrafting similarity index. 

Consensus Fork Index 

Colless’ CF compares favourably to most congruence metrics available in cladistic packages and 
presented in the literature. The CF is strongly concordant with both the R-F calculated in TNT 
(Kendall’s tau-b -0.980, Spearman’s rho -0.981) and calculated by dividing the number of symmetric 
differences by the maximum possible number of symmetric differences (Kendall’s tau-b 0.956, 
Spearman’s rho 0.976). It also compares favourably with MASTxCF despite the results of the MAST 
analyses down weighting the CF (Kendall’s tau-b 0.929, Spearman’s rho 0.987). 

Mickevich’s Consensus Information 

Mickevich’s CIM is concordant with other congruence metrics, but not strongly associated with them. 
Results derived from the analysis of simulated trees demonstrate that Mickevich’s CIM is most like 
other weighted metrics, such as the Weighted CF (Kendall’s tau-b 0.837, Spearman’s rho 0.956) and 
Rohlf’s CI1 (Kendall’s tau-b 0.748, Spearman’s rho 0.910). However, other congruence metrics 
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studied exhibit much stronger concordance with each other than Mickevich’s CIM and the Weighted 
CF do. 

Weighted Consensus Fork 

The Weighted Consensus Fork exhibits weaker correlation to other congruence metrics than 
Mickevich’s CIM.  

For the Weighted CF, topological incongruence appears to be more strongly weighted against in 
dendrograms plotting larger samples. In the Weighted CF analyses, those in the sample size of 41 
score much lower (e.g. Fig 1) than those in the sample size of 11. By comparison, the CF analysis of 
sample size 11 exhibits the lowest scores and while the CF analysis of sample size 41 are also low 
scoring, they are not the lowest. Furthermore, the maximum Weighted CF score (0.425) achieved by 
two dendrograms with 41 terminal nodes exhibits a greater difference from the median score 
(0.230) than the same scores for the CF analysis (median = 0.667, max. = 0.795). Whereas, the 
difference between the maximum and median scores for dendrograms with 11 terminal nodes is 
much smaller than what is observed in all other metrics with the exception of SPR distances. 

Rohlf’s CI 1 

Rohlf’s CI1 is more concordant with all other metrics studied than any of the other weighted 
congruence metrics. However, Rohlf’s CI1 is less well correlated with either Mickevich’s CIM or the 
Weighted CF than those two are with each other. However, like the Weighted CF and Mickevich’s 
CIM, Rohlf’s CI1 appears to down weight observed incongruence more heavily in larger samples, but 
not to the same extent observed in the former two. Four of the pairwise comparisons of the 
dendrograms with 11 terminal nodes score less than the lowest score for the sample size of 41 using 
Rohlf’s CI1. This is compared to 19 using CF, but 0 for both Mickevich’s CI and the Weighted CF. 

Maximum Agreement Subtree x Consensus Fork 

The MASTxCF is among the most concordant with all other tree congruence metrics. Spearman’s rho 
shows MASTxCF to be exceptionally well correlated with the CF, R-F, R-F as calculated by TNT 
(negatively correlated), CRI, and the Distortion Coefficient (0.987, 0.968, -0.969, 0.920, 0.949 
respectively). Kendall’s tau-b, which handles ties, finds CF (0.929) and both R-F metrics (0.913 and 
-0.911) to be more concordant with MASTxCF than the CRI or the Distortion Coefficient (0.792 and 
0.841 respectively). 
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Figure 1. Simulated dendrograms 1a) 3 and 2a) 6 from the sample size of 41, their b) strict consensus and their scores 

(bottom right). 

Robinson-Foulds Distance 

The R-F distances as calculated by TNT and as calculated here find highly similar, but different scores 
(Kendall’s tau-b -0.977, Spearman’s rho -0.995). It is unclear how TNT arrives at a different answer, 
but it is clear that it makes little difference. The R-F distances are among the most concordant with 
all other tree congruence metrics and even compare favourably with the weighted metrics, with the 
R-F (as it is calculated here) marginally more concordant with the weighted metrics than MASTxCF 
(see table 1).  

Clade Retention Index 

The CRI is concordant with other metrics but less so than the CF, MASTxCF and R-F. The analyses of 
dendrograms sampling 11 terminal nodes receive lower scores relative to the larger samples (Fig. 1 
& 2. While CF, MASTxCF and R-F all find the sample of 11 terminal nodes to score the lowest out of 
all the samples, this is more pronounced when using the CRI. Furthermore, when using the CRI, 
fewer tests of the sample size of 11 score more highly than the sample size of 41 by comparison. 
However, the sample sizes of 21 and 31 typically score more highly than the sample size of 41 and 
the highest score for the sample size of 11 is greater than the highest score for 41. Therefore, the 
smaller samples are not being strongly biased like the larger samples when using a weighted tree 
congruence metric. 
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Figure 2. CRI analysis of 10 dendrograms with 11 terminal nodes each. The lower left displays the index numbers derived 

from 45 consensus trees and the upper right displays the corresponding Pac-man pie charts. 

 

Figure 3. CRI analysis of 10 dendrograms with 31 terminal nodes each. The lower left displays the index numbers derived 

from 45 consensus trees and the upper right displays the corresponding Pac-man pie charts. 

SPR distances 

The SPR distances are by far the least concordant scores compared with all other metrics. The 
greatest similarity the SPR method has is with Mickevich’s CI, but this is weak and largely discordant 
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(Kendall’s tau-b 0.333, Spearman’s rho 0.458). Compared with the unweighted metrics, the larger 
samples score lower relative to the smaller samples. In fact, the sample size of 11 is generally the 
second-best scoring for SPR distances, while that same sample has among the lowest scores given by 
other metrics – even the weighted metrics that preferentially down weight larger samples mostly 
find lower scores for the sample size of 11 (Fig. 1) than those of 21 and 31 (Fig.4). 

Discussion 

 

Figure 4. Simulated dendrograms 1a) 5 and 2a) 9 from the sample size of 31, their b) strict consensus and scores (bottom 

right). 

Colless’ Consensus Fork index was largely forgotten in the literature and despite being included in a 
suite of consensus metrics in the cladistics software package PAUP*, the software’s developer 
consigned the CF to “the scrap heap” (Swofford 1991, p. 308). Swofford disregarded the CF because 
it was unable to differentiate between two example consensus trees with 12 taxa and two nodes 
each. Swofford (1991) argued that a consensus tree with polytomies in each of its two nested clades 
preserved more information about relationships than a consensus tree with fewer terminal nodes in 
a well-resolved pair of nested clades. Here, I agree with that assessment, but also recognise that 
Swofford’s example of a less informative consensus tree demonstrates that there is complete 
agreement about the relationships of those three resolved terminal nodes, while a far greater 
number of relationships among the sample could explain the consensus with nested polytomies. In 
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other words, Swofford (1991)  was more or equally concerned with preserved information in the 
consensus tree as he was with topological congruence, leading to misplaced criticism. Here, Kendall’s 
tau-b and Spearman’s rho tests indicate that Colless’ CF produces results broadly in agreement with 
commonly preferred metrics, such as the Robinson-Foulds distance. Thus, the CF may have been 
prematurely dismissed.  

Unlike the CF, the CRI and MASTxCF are capable of demonstrating topological congruence and 
information loss as a result of disagreement. Polytomous terminal nodes and the disagreement 
between the two fundamental dendrograms that cause them are indicators of incongruence. In 
response to those tenets, I down weight scores based on preserved nodes by combining information 
from the composition of polytomies for the CRI and information about how many wildcard terminal 
nodes are causing disagreement from a MAST for the MASTxCF. Thus, the CRI and MASTxCF may 
score greater if a few terminal nodes present a well agreed upon relationship, compared to many 
nested polytomous terminal nodes.  

The CRI is concordant with other metrics analysed in this study, but not strongly so. As such, the CRI 
is telling us something slightly different and used alongside other metrics to interrogate the 
topological congruence of two fundamental dendrograms it may prove to be a powerful tool. 
Notably, the CRI results for the smallest sample are skewed towards 0. This may be because less 
resolution is likely to occur within a polytomy with fewer sampled specimens, as opposed to any 
active bias. In other words, it is far less likely a dichotomous relationship will occur in a polytomy if 
there are fewer specimens capable of demonstrating a relationship with one of the polytomous 
specimens. Also, it stands to reason when working on smaller sample sizes, fewer differences will 
have a far greater effect on the overall outcome. While a lack of resolution linked to the sample size 
is undesirable, such an effect is still informative of the lack of information preserved in a consensus 
which is in contrast to the pronounced sample size bias observed in the weighted suite of metrics. 
Therefore, the CRI should be used with caution when studying smaller sample sizes but it can be 
used effectively alongside other metrics. 

MASTxCF performs well in these tests and is logical as a metric. As noted above, MASTxCF is capable 
of demonstrating topological congruence and shared information. This is done by down weighting 
the score based on common nodes in a strict consensus by a function of the preserved terminal 
nodes in a MAST. This means MASTxCF is able to demonstrate a difference where incongruence is as 
a result of significant disruptive disagreement among few specimens, or a little disagreement among 
many specimens. In the case of the first scenario, the MASTxCF will recover a greater score because 
a greater proportion of the dendrograms will be in agreement. 

Like MASTxCF, weighted metrics attempt to preserve information from the fundamental 
dendrograms at the same time as demonstrating topological congruence. Unfortunately, the 
procedures for weighting clusters of relationships in subtrees introduce their own problems. For 
instance, Nmax in Mickevich’s weighted CIM  is only achievable if the tree is maximally bifurcating 
and maximally asymmetrical. This means the weighted CIM can only reach 1 if the fundamental 
dendrograms are fully bifurcating and asymmetrical, therefore, a result less than 1 may not be 
indicating any incongruence at all. Additionally, all of the weighted metrics tested here were shown 
to weight scores more heavily against larger samples. This is observed to be a significant effect and 
will affect researchers’ ability to draw comparisons between studies of different sample sizes. 

Similarly, SPR distances fail to demonstrate the level of difference between sets of dendrograms 
being analysed. The results of analyses done here find that one of the worst performing sets of 
dendrograms for all other metrics is one of the best performing for SPR distances. Even the weighted 
metrics that preferentially down weight larger dendrograms are more consistent with other metrics 
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(table 3) than the SPR distances are! Furthermore, because significant disagreements between two 
tree topologies can be resolved with very few swaps, maybe as little as one, many tests score the 
same while other congruence metrics find nuanced differences. Therefore,  this type of metric 
demonstrates very little resolution or truth in terms of topological congruence. However, where 
subtree pruning and regrafting is used to generate dendrograms this method may illustrate how 
close two fundamental trees are despite appearing drastically different to the eye or other metrics. 

The R-F distance is one of the most favoured tree comparison metrics, possibly due to its ability to 
compare non-binary trees (Robinson and Foulds 1981). The metric has several limitations, including 
that structurally similar rooted cladograms with one taxon difference can achieve the highest R-F 
distance possible for a given taxon number (Böcker, Canzar, and Klau 2013) . When the actual R-F 
number is divided by the maximum possible difference between two dendrograms a number 
between naught and one is produced, but it is not the same as the number produced by TNT. TNT is 
not open source, thus it is difficult to know what the R-F distance in TNT relates to. Therefore, it is 
not recommended that the R-F distance is used without any accompanying metrics, such as the CF, 
CRI or MASTxCF to confirm its findings. 

Conclusion 
“Unfortunately, none of these indices [CF, CI1, CI2 & Pm] provides what we really need: an 
index that is sensitive to both agreement among and information content of the original 
trees, but that also allows us to quantify the relative contributions of each of these aspects 
to lack of resolution in the consensus. We cannot hope to achieve such precision and 
versatility in a one-dimensional index, but further work in this area may prove fruitful.” 
Swofford 1991, p. 310 

Similarity is clearly a multidimensional concept (Fowlkes and Mallows 1983) , even when comparing 
pairs of two-dimensional graphs. Indeed, no one metric can be used to inform a Researcher of 
topological congruence and information content – nor do I think they should. when a metric is 
calibrated to represent multiple variables, it can become difficult to understand and interpret the 
effects of states. Among systematists studying evolution, the R-F distance has become popular, but 
there are potential problems with the R-F distance (Böcker, Canzar, and Klau 2013)  and it certainly 
shouldn’t be used alone. The CF and R-F would make an appropriate pairing to help understand the 
topological congruence between two fundamental dendrograms. Alternatively, the CRI and 
MASTxCF used together could help a researcher understand the information content and type of 
incongruence where it is detected as well as how congruent the dendrograms studied are. 
Combining the CF with those two metrics would deliver yet more information. 

Here, it is recommended that weighted metrics are generally avoided unless comparisons between 
different analyses of different dimensions and tree shapes are not being made – but in that case, it’s 
not clear why you would want to use a metric at all. In the sense of measuring topological 
congruence, the Distortion Coefficient and SPR distances should be abandoned altogether. The 
Distortion Coefficient does approximately indicate congruence, but it is not consistently reproducible 
because the score can vary depending on the reference tree used and the SPR distances are not 
scalable, nor are they informative. 

Beyond what is discussed and analysed here, there are other ways of testing similarity between 
dendrograms. This includes methods which are available in the R package, Dendextend (Galili 2015) . 
Such as, the Bk (Fowlkes and Mallows 1983) which uses branch lengths to test similarity at different 
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levels of the dendrogram, and Baker’s gamma which tests concordance/association between 
subsets. These methods are not technically topological congruence metrics and therefore were not 
tested here, but may prove useful being used alongside the methods presented. 

Dataset 

All data supporting this study are openly available from the University of Southampton repository at 
https://doi.org/10.5258/SOTON/D1069. 

How to cite: 

Vidovic, S. U. 2019. Dataset for tree congruence: quantifying similarity between dendrogram 
topologies. ePrints|Soton. https://doi.org/10.5258/SOTON/D1069  
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