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ABSTRACT 

We combined genome-wide high-content screenings to identify miRNAs (n = 2,555) and target genes 

(n = 18,107) involved in the APP metabolism. This approach highlighted FERMT2 (or Kindlin-2), a 

genetic risk factor of Alzheimer’s disease (AD). FERMT2 down-regulation by multiple miRNAs 

modulated APP metabolism and increased Aβ secretion. Among these, miR-4504, which is over-

expressed in AD brains, decreased FERMT2 expression depending on the presence of the deleterious 

rs7143400 variant. Decreased FERMT2 expression altered both axonal growth and long-term 

potentiation in an APP-dependent manner. Overall, this work provides important mechanistic insight 

on the roles of FERMT2 and miRNAs in APP biology. 

 

INTRODUCTION 

AD is a neurodegenerative disease characterized by two main pathological hallmarks: (i) intracellular 

neurofibrillary tangles consisting of hyper-phosphorylated Tau proteins and (ii) extracellular amyloid 

plaques consisting of aggregates of β-amyloid (Aβ) peptides resulting from the processing of amyloid 

precursor protein (APP). Three main proteases (α-, β- and γ- secretases) are involved in APP 

processing through (i) the amyloidogenic pathway (β- and γ-secretases), leading to Aβ production, and 

(ii) the non-amyloidogenic pathway (α- and γ –secretase), which prevents Aβ generation by cleaving 

APP within the Aβ sequence (Checler 1995). 

The identification of early-onset autosomal dominant AD-linked mutations in the genes for APP and 

presenilin (PS1 and PS2, part of the γ-secretase), but also late-onset sporadic AD-linked mutations in 

ADAM10 (carrying part of the α-secretase activity in the brain) (Kim et al. 2009), have placed 

abnormal APP metabolism at the center of the disease, further supporting the amyloid cascade 

hypothesis (Hardy 1997; Hardy & Selkoe 2002): the overproduction of Aβ peptides –especially the 

longer forms that are thought to be more neurotoxic– may lead to (or favor) Tau pathology and 

subsequent neuronal death.  

Although the validity of the amyloid cascade hypothesis is strongly debated (Morris et al. 2018), the 

importance of APP has recently been emphasized by the discovery of a rare APP mutation hampering 

Aβ production that lowers AD risk (Jonsson et al. 2012). Recent high-throughput genomic approaches 

have also highlighted APP metabolism in the AD pathophysiological process: the main actors of APP 

metabolism, e.g., ADAM10 and APH1B (part of the γ-secretase complex), have been characterized as 

genetic determinants (Jansen et al. 2019; Kunkle et al. 2019), and numerous other genetic 

determinants have been described as potential modulators of APP metabolism (for a review, see 

(Dourlen et al. 2019)). Taken together, these genetic data strongly suggest that APP metabolism 

regulation and consequently APP function still need to be better understood to decipher the AD 

pathophysiological processes.  
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Previously, we have used a high content screening (HCS) approach that allowed us to test the impact 

of 18,107 genes on APP metabolism using short interfering RNA (siRNA) pools (Chapuis et al. 2017). 

One can argue that endogenous mechanisms regulating the expression of such key players of APP 

metabolism may be also of importance in the development of the AD processes. Among the different 

mechanisms involved in gene regulation, microRNAs (miRNAs) appeared of particular interest for 

several reasons: (i) miRNAs are abundantly expressed in the brain and  it is now well established that 

specific miRNAs expression is altered in AD brain (Hébert et al. 2008; Patrick et al. 2017), (ii) several 

of these miRNAs have been already implicated in APP metabolism (Delay et al. 2016; Z. Li et al. 

2017; Long et al. 2019); (iii) miRNAs have been implicated in various neuronal functions including 

synaptic plasticity, memory formation and neuron survival which are relevant in the AD context 

(Schratt 2009; Delay et al. 2012). 

With this in mind, we extended our previous HCS approach to identify miRNAs modulating APP 

metabolism, and by extension key endogenous factors implicated in APP metabolism. This approach 

led us to characterize 180 genes targeted by 41 miRNAs. Among these genes, we focused on 

FERMT2, a known genetic risk factor of sporadic AD.  
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METHODS 

 

Cell culture 

Human HeLa (RRID:CVCL_0030) and HEK293 (RRID:CVCL_0045) cells were respectively 

maintained in Eagle’s minimal essential medium (American Type Culture Collection, Teddington, 

UK) and DMEM/Ham’s F-12 1:1 medium (Life Technologies, Carlsbad, CA) supplemented with 10% 

heat-inactivated fetal bovine serum and 2 mM L-glutamine, penicilline (10 UI/mL)/Streptomycine (10 

µg/mL). 

 

High-content miRNA screening 

The miRNA library (2,555 miRNA mimics, mirVana™ library, Ambion, Austin, TX) was screened in 

HEK293 cells stably over-expressing mCherry-APP695
wt

-YFP (Supplementary Fig. 1) according to a 

previous protocol (Chapuis et al. 2017). Briefly, each miRNA (50 nM) was first transferred to 384-

well with D-PBS containing 0.1 µl of Lipofectamine RNAiMax (Life Technologies). Then 

approximately 3,000 HEK293-mCherry-APP695wt-YFP cells were distributed in each well and 

incubated for 3 d at 37°C. After removal of the cell medium and Hoechst staining, cells were fixed 

using 10% formalin before image acquisition using an InCell Analyser 6000 (GE Healthcare, Chicago, 

IL) high-resolution automated confocal microscope. 

A customized image analysis software (Columbus 2.7; PerkinElmer, Villebon-sur-Yvette, France) was 

used for the image analysis and quantification as reported previously (Chapuis et al. 2017). The mean 

fluorescence intensity of each signal was normalized with the fold change induced by the non-

targeting miRNA in the same plate. To evaluate the impact of each miRNA, an average of 1,000 cells 

were analyzed per run (n = 3). For quality control, we used strictly standardized mean difference with 

β-score > 3 based on two separate controls (siRNA-APP and miR-NT, Supplementary Fig. 1). 

 

In silico prediction of miRNA targets and functions 

Seven publicly-available algorithms were used for the prediction of miRNA-targeted genes in the 

brain: DIANA-microT-CDS (v5.0, r21) (Paraskevopoulou et al. 2013), MiRanda (August 2010 

release) (John et al. 2004), mirDB (v5.0) (Wong & Wang 2015), miRTarBase (v6.1) (Hsu et al. 2011), 

rna22 (v2.0) (Miranda et al. 2006), TargetMiner (May 2012 release) (Bandyopadhyay & Mitra 2009), 

and  TargetScan (v7.1) (Agarwal et al. 2015). In order to minimize false-positive predictions, miRNA-

targeted genes were defined as genes predicted by at least 4 out of the 7 algorithms used. To predict 

the function(s) of miRNAs that target these genes, pathway enrichment analysis was performed using 

DIANA Tools mirPath (v3.0) (Vlachos et al. 2015). 

 

Luciferase reporter assays 
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The FERMT2 3′-UTR sequence was inserted downstream of the luciferase gene in the psiCHECK2 

vector (Promega, Madison, WI, USA), as previously described (Delay et al. 2016). Cells were 

transfected with a miRNA mimic (Ambion) and psiCHECK2/3′-UTR (Promega, Charbonnières-les-

Bains, France). Forty-eight hours after transfection, cells were lysed and luciferase activity was 

measured using the Dual-Glo® Luciferase Assay System (Promega) and a Wallac 1420 Victor 

luminometer (PerkinElmer) according to the manufacturer’s instructions. 

 

RFLP genotyping 

Genomic DNA in the vicinity of the rs7143400 was amplified by PCR using the following primers 5’-

GGTTGGGTGTGAATAGGAAT-3’ and 5’-TGCATGCCTGATTTATTTGG-3’ before digestion 

with Tsp45I enzyme (Thermo Scientific). Finally, treated PCR products were analyzed in 2% agarose 

gel to visualize the cleavage bands. 

 

Designing CRISPR/Cas9 and genome editing 

gRNA sequences were predicted by Benchling (http://www.benchling.com) and cloned into the 

GeneArt CRISPR OFP Nuclease Vector (ThermoFischer Scientific) allowing Cas9 and gRNA 

expression. Homology directed repair was induced by co-transfection of 71 pb double-strained DNA 

oligonucleotide template including rs7143400-T allele in HEK293 cells (Supplementary Fig. 4). 

HEK293 clones were isolated by limiting dilution before RFLP genotyping.  Sequence integrity of the 

FERMT2 3’UTR and predicted potential off-target site were validated by Sanger sequencing 

(Supplementary Fig. 4). 

 

Microfluidic chip fabrication 

Multicompartment microfluidic devices were used that isolate axons from their cell bodies (Blasiak et 

al. 2015). PDMS (polydimethylsiloxane) prepolymer was mixed with curing agent (9:1 ratio) 

according to the manufacturer’s recommendations (Sylgard 184 Silicone Elastomer Kit; Dow Corning, 

Midland, MI) and degassed under vacuum. Then, the PDMS was poured onto a polyester resin 

replicate (polyglass 26/71, Esprit Composite, Paris, France) and cured 2 h at 70°C. The PDMS pad 

was detached from the replicate and access wells were punched out using biopsy punches (Harris Uni-

Core; Merck, Darmstadt, Germany). Devices were irreversibly bonded to glass coverslips via O2 

plasma (Diener, Ebhausen, Germany). The devices were placed in plastic Petri dishes, UV sterilized 

for 30 min, and wetted with sterile dH2O.   

 

Primary neuronal culture and viral transductions 

Primary neuronal cultures were obtained from hippocampus or cortices of post-natal (P0) rats as 

described previously (Kaech & Banker 2006). Briefly, after the dissection of the brains, hippocampi 

were washed three times in HBSS (HBSS, 1 M HEPES, penicilline/streptomycine, 100 mM sodium 
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pyruvate; Gibco) and were dissociated via trypsin digestion (2.5%, 37°C; Gibco) for 7 min. Next, 

hippocampi were incubated with DNAse (5 mg/mL; Sigma) for 1 min and washed again in MEM 

medium supplemented with 10% SVF, 1% Glutamax, 0.8% MEM vitamines, 0.5% 

penicilline/streptomycine and 0.45% D-glucose (Sigma). With a pipette, hippocampi were 

mechanically dissociated and resuspended in Neurobasal A medium (Gibco) supplemented with 2% 

B27 (Gibco) and 0.25% GlutaMax. 200,000 neurons were seeded per well in 24-well plates. 50,000 

neurons were seeded in the somatic chamber of microfluidic devices, pre-coated with poly-L-lysine 

(0.1 mg/mL; Sigma) in borate buffer (0.31% boric acid, 0.475% sodium tetraborate, pH = 8.5). 0.1% 

EDTA (in H2O) was added to the Petri dishes containing microfluidic devices to minimize 

evaporation. The culture medium was refreshed every 3 d. Neurons were maintained at 37°C in a 

humidified 5% CO2 incubator. 

 

Lentiviral transductions 

Lentiviral transductions were carried out at 1 day in vitro (DIV1) with a multiplicity of infection 

(MOI) of 10. In the case of co-transduction, MOI of 5 was used for each lentivirus. Briefly, 

lentiviruses were diluted in culture medium containing 4 µg/mL polybrene (hexadimethrine bromide; 

Sigma) and were added to the cells. After 6 h of transduction, lentivirus suspension was replaced with 

fresh medium. The following lentiviruses were used for transduction: Mission shRNA vectors (Sigma) 

shNT (Non-Mammalian shRNA Control, SHC002), shFERMT2 (TRCN0000191859), shAPP 

(TRCN0000006707) and pLenti6 empty vectors (Mock) or including human FERMT2
WT

 or 

FERMT2
QW 

cDNA sequences. LifeAct-Ruby lentivirus (pLenti.PGK.LifeAct-Ruby.W: 

RRID:Addgene_51009) was a kind gift from Rusty Lansford. 

 

Immunoblotting and Aβ quantification 

Equal amounts (10-25 µg) of cell lysate were collected in RIPA buffer (1 M Tris, 1.5 M NaCl, 0.1% 

NP-40, 10% SDS, 100 mM sodium orthovanadate, 0.5% sodium deoxycholate, pH = 7.4) containing 

protease inhibitors (Complete mini; Roche Applied Science, Penzberg, Germany), lithium dodecyl 

sulfate (LDS), and reducing agent (Invitrogen). Samples were denaturated and analyzed using SDS-

PAGE and the following antibodies: human FERMT2 (RRID:AB_10727911), amyloid precursor 

protein C-terminal domain (RRID:AB_258409), actin (RRID:AB_476692), β-amyloid clone 6E10 

(RRID:AB_662798), β-amyloid clone 4G8 (RRID:AB_662812), Synaptophysin I 

(RRID:AB_887824), PSD95 (RRID:AB_2619800), GAPDH ( RRID:AB_10615768). Extracellular 

culture media were collected in order to dose secreted Aβ using Alpha-LISA assays (AlphaLISA 

Amyloid β1-X Kit, AL288C, PerkinElmer) according to the manufacturer’s instructions. 

 

Live-cell microscopy for axon elongation and actin dynamics 
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After DIV5, once the axons reached the axonal chamber of microfluidic devices, the culture medium 

was replaced with Neurobasal A without phenol red, supplemented with GlutaMax, 2% B27, and 25 

mM HEPES. Phase-contrast images of growing axons were acquired every 10 min for 110 min using 

Zeiss AxioObserver Z1 microscope equipped with a Prime 95B Scientific CMOS (Photometrics, 

Tucson,AZ) camera and 32× objective. Movies were analyzed using Fiji MTrack J Plugin (Meijering 

et al. 2012) to determine the axon growth speed. 

To visualize filamentous actin (F-actin) dynamics in the growth cones of elongating axons, neurons 

were co-transducted with LifeAct-Ruby at DIV1. At DIV5, growth cones expressing LifeAct-Ruby 

were imaged using a Nikon microscope equipped with Yokogawa spinning disk system and a Nikon 

CFI Apochromat 100× TIRF objective (NA 1.49), in live superresolution mode (66 nm/px). Processed 

movies were analyzed using Imaris (Bitplane, Zurich, Switzerland) surface tracking tool which reports 

the speed and direction of F-actin puncta undergoing actin retrograde flow.  

 

Immunofluorescence and PLA 

Cells were fixed in 4% paraformaldehyde (PFA) for 15 min, washed 3× with PBS, and permeabilized 

for 5 min with 0.3% Triton X-100. Cells were incubated with 5% normal donkey serum for 2 h at RT 

before overnight incubation with the following primary antibodies: human FERMT2 

(RRID:AB_10727911), Kindlin2 (RRID:AB_2278298), amyloid precursor protein C-terminal domain 

(RRID:AB_258409), APP A4 clone 22C11 (RRID:AB_94882), Synaptophysin I ( 

RRID:AB_887824), PSD95 (RRID:AB_2619800), Homer (RRID:AB_2631222), α-Tubulin 

(RRID:AB_2210391). The cells were then washed 3× with PBS and incubated with the following 

secondary antibodies raised in donkey (AlexaFluor-conjugated AffiniPure Fragment 405, 488, 594 or 

647, Jackson ImmunoResearch), 1:10,000  Hoechst 33342, or 1/40 SiR-Actin probe (SC001, 

Spirochrome). Alternatively, Kindlin2 (RRID:AB_2278298) and APP A4 22C11 (RRID:AB_94882) 

antibodies were used for proximity ligation assay (PLA) according to manufacturer’s instructions 

(Duolink®, Olink Bioscience). 

 

Visualisation of miRNA expression at the single-cell level 

To visualize RNA molecules by fluorescence at single-cell resolution and quantify gene expression, 

we used ViewRNA Cell Plus Assay kit (ThermoFischer Scientific) according to the manufacturer’s 

instructions. Briefly, after fixation and permeabilization, cells were washed 3× with PBS containing 

RNAse inhibitor and were incubated with probes directed against specific mRNA or miRNA for 2 h at 

40°C. After washes, probes were amplified, first, in a pre-amplifier solution and secondly, in an 

amplifier solution, both for 1 h at 40°C. Then, cells were incubated with nucleotide probes stained 

with different fluorophores allowing the detection of mRNA or miRNA puncta. This approach was 

coupled with immunofluorescence experiments described. 
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miR quantification in human brain samples 

This study was approved by CHU de Québec – Université Laval Research Ethics Committee (#2017-

3017). Frozen human brain tissue (0.5–1.2 g per sample) was obtained from the Harvard Brain Tissue 

Resource Center in Belmont, USA, the Brain Endowment Bank in Florida, USA, and the Human 

Brain and Spinal Fluid Resource Center in Los Angeles, USA, via NIH Neurobiobank. The cohort of 

patients included non-dementia controls (N = 30) and AD cases (N = 52), based on neuropathological 

diagnosis. Upon receipt of the specimens, frozen post-mortem parietal coxtex (BA39) was crushed 

using a biopulverizer prior to RNA extraction and analysis. 

Total RNA was extracted from brain tissue (Supplementary Table 2) using TRIzol reagent (Ambion, 

15596018) according to the manufacturer’s instructions. miRNA quantifications were done using the 

TaqMan miR Reverse Transcription Kit (Applied Biosystem, Burlington, Canada) and TaqMan 

Universal Master Mix (Applied Biosystem, 4324018) following the manufacturer’s instructions. 

Primers were purchased from ThermoFisher (miR-4504 ID: 464271_mat; RNU48 ID: 001006; miR-

222-3p ID: 002276). MiR-4504 and miR-222 levels were normalized to RNU48. The relative amounts 

of each mature miRNA were calculated using the comparative Ct (2
-
ΔΔCt) method (Smith et al. 2011). 

 

Cell surface Biotinylation 

HEK293-APP
695WT

 cells were transfected with PCDNA4.1, FERMT2
WT

 or FERMT2
QW

 

(PCDNA4/HisMax, ThermoScientific V86420) for 48 h. Next, cell surface proteins were biotinylated 

using sulfo-NHS-SS-biotine (sulfosuccinimidyl-20(biotinamido)ethyl-1,3-dithiopropionate) for 30 min 

at 4°C according to the manufacturer’s instructions (Cell Surface Protein Isolation Kit, Pierce, 89881). 

Then, cells were lysed and immunoprecipitated with streptavidin beads. Precipitated proteins were 

eluted from the beads with loading buffer containing 50 mM DTT, heated for 10 min at 95°C and 

analyzed by WB.  

 

Co-Immunoprecipitation 

Equal amounts of protein were collected in co-immunoprecipitation buffer (10 mM HEPES, 140 mM 

NaCl, 0.5% NP-40, pH = 7.4) containing protease inhibitors (Complete mini, Roche Applied Science) 

and phosphatase inhibitor (100 mM sodium orthovanadate) and incubated with the primary β-amyloid 

antibody clone 4G8 (RRID:AB_662812) overnight, with gentle rocking. Production of recombinant 

C100 fragment was performed as previously described (Sevalle et al. 2009). Co-immunoprecipitation 

was carried out using Pierce Protein A/G magnetic beads kit (Thermo Scientific, 88802) according to 

the manufacturer’s instructions. Samples with proteins and antibody complexes were incubated with 

25 µL (0.25 mg) of A/G magnetic beads previously washed with co-immunoprecipitation buffer. After 

1 h of incubation at 4°C, the magnetic beads were washed 3×, resuspended with loading buffer (LDS 

and reducing agent) for 10 min at RT, and analyzed by WB. 
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Synaptosome extraction 

To verify the presence of proteins at the synaptic level we did a subcellular fractionation as previously 

described (Frandemiche et al. 2014). Briefly, cortical neurons were resuspended in a solution (0.32 M 

sucrose and 10 mM HEPES, pH = 7.4) and were centrifuged at 1,000× g for 10 min to remove nuclei 

and debris. The supernatant was centrifuged at 12,000× g for 20 min to remove the cytosolic fraction. 

The pellet was resuspended in a second solution (4 mM HEPES, 1 mM EDTA, pH = 7.4) and was 

centrifuged 2× at 12,000× g for 20 min. The new pellet was resuspended in a third solution (20 mM 

HEPES, 100 mM NaCl, 0.5% Triton X-100, pH = 7.2) for 1 h at 4°C and centrifuged at 12,000× g for 

20 min. The supernatant collected corresponds to the non-PSD fraction (Triton-soluble). The 

remaining pellet was resuspended in a fourth solution (20 mM HEPES, 0.15 mM NaCl, 1% Triton X-

100, 1% deoxycholicacid, 1% SDS, pH = 7.5) for 1 h at 4°C and was centrifuged at 10,000× g for 15 

min to obtain a supernatant containing the PSD fraction (Triton-insoluble). The different fractions 

were then analyzed by WB.  

 

Lentivirus injection 

For stereotactic injections, C57Bl6/J mice (RRID:IMSR_JAX:000664) were anesthetized with 4% 

isoflurane (2 L/min) and placed in a stereotaxic frame (68528, RWD Life Science, Shenzhen, China) 

in which the head of the animal was fixed with a pair of ear bars and a perpendicular tooth bar. During 

surgical procedures 1.5% isoflurane (2 L/min) was delivered through a facial mask via spontaneous 

respiration. Their body temperature was maintained between 36.5 and 37.5°C with a homeothermic 

blanket. Head was shaved and Vetedine was applied. Wounds and pressure points were infiltrated with 

lidocaine. A skin incision was made along the sagittal midline of the scalp. Craniotomy was made to 

target our structures of interest. Lentiviruses were injected in right and left hippocampus (1.5 µL per 

hemisphere; 0.2 μL/min). After injections, wound clips were used for skin closure. For the sham 

group, surgical procedures were performed without any injection. During the surgery, the level of 

anesthesia was regularly verified by testing the nociceptive hind limb withdrawal reflex. Subjects were 

then allowed to recover in their home cages for at least 7 d before sacrifice for ex-vivo 

electrophysiological recordings. 

 

Hippocampal acute slices preparation 

One week after the surgery, sagittal hippocampal brain slices were obtained using standard brain 

slicing methods. Mice were deeply anesthetized with isoflurane and decapitated. The brain was 

quickly removed and immersed in ice-cold pre-oxygenated artificial cerebrospinal fluid (aCSF) 

containing: 124 mM NaCl, 3.75 mM KCl, 2 mM MgSO4, 2 mM CaCl2, 26.5 mM NaHCO3, 1.25 mM 

NaH2PO4, 10 mM Glucose, continuously oxygenated (pH = 7,4; 27°C). 350 µm-thick slices were 

prepared using a Vibratome (VT 1000S; Leica Microsystems, Bannockburn, IL), and placed in a 
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holding chamber filled with aCSF. Slices were allowed to recover in these conditions at least 1 h 

before recording. 

 

Electrophysiological recordings 

For electrophysiological recordings, a single slice was placed in the recording chamber, submerged 

and continuously superfused with gassed (95% O2, 5% CO2) aCSF at a constant rate (2 mL/min). 

Extracellular fEPSPs were recorded in the CA1 stratum radiatum using a glass micropipette filled with 

aCSF. fEPSPs were evoked by the electrical stimulation of Schaffer collaterals/commissural pathway 

at 0.1 Hz with a glass stimulating electrode placed in the stratum radiatum (100 µsec duration). 

To test the effect of miRNA-expressing lentiviruses on basal synaptic transmission, Input/Output (I/V) 

curves were constructed at the beginning of the experiment. The slope of fEPSPs was measured and 

plotted against different intensities of stimulation (from 0 to 100 µA).  

Stable baseline fEPSPs were recorded by stimulating at 30% maximal field amplitude for 10 min prior 

to beginning experiments (single stimulation every 10 s (0.1 Hz). The same intensity of stimulation 

was kept for the reminder of the experiment. After a 10 min stable baseline period, long-term 

potentiation (LTP) was induced by the following stimulation protocol: 3 trains of 100 stimulations at 

100 Hz at the same stimulus intensity, with a 20 s interval between trains. Following this conditioning 

stimulus, a 1 h test period was recorded where responses were again elicited by a single stimulation 

every 10 s (0.1 Hz) at the same stimulus intensity. Signals were amplified with an Axopatch 200B 

amplifier (Molecular Devices, Union City, CA) digitized by a Digidata 1550 interface (Axon 

Instruments, Molecular Devices, US) and sampled at 10 kHz. Recordings were acquired using 

Clampex (Molecular Devices) and analyzed with Clampfit (Molecular Devices). Experimenters were 

blinded to treatment for all experiments.  
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RESULTS 

Screening for miRNAs modulating APP metabolism 

We used an unbiased screening approach to identify miRNAs that modulate APP metabolism in our 

HCS system (Chapuis et al. 2017). Specifically, this model is based on HEK293 cells stably over-

expressing an APP fusion protein (mCherry-APP
695WT

-YFP) that allows for the quantification of 

intracellular APP fragments. We screened a total of 2,555 mature human miRNAs in a 384-well plate 

format. As positive control, a siRNA directed against APP was used to calculate the standardized 

mean difference (denoted as β in Supplementary Fig. 1). The complete screen was performed in 

triplicate and plates with β > 3 were analyzed according to HCS guidelines (Bray et al. 2013). This 

procedure led us to identify 50 miRNAs (top and bottom 1%) with the strongest impact on APP 

metabolism (Fig. 1a, Supplementary Fig. 1 and Table 1). Pathway enrichment analysis revealed that 

these 50 candidate miRNAs are predicted to regulate pathways already identified to involve APP, such 

as axon guidance (Sosa et al. 2013) and glutamatergic synapse (Martinsson et al. 2019). 

To determine which genes were potentially regulated by these top 50 hits, we selected the intersection 

of predictions resulting from at least four different algorithms (see methods) and thus identified 6,009 

putative miRNA-target genes. To further refine the list of predicted genes, we cross-checked them 

against the 832 genes identified to have a major impact on APP metabolism in our previous genome-

wide siRNA screen (Fig. 1c). This resulted in 180 common genes that are putative targets of 41 

miRNAs.  

To determine if any of these 180 genes were preferentially regulated by this pool of 41 miRNAs, we 

performed 1 million drawing lots of 41 miRNAs among the 2,555 tested and compared them against 

the list of miRNAs predicted to bind in the 3'-UTR of each of the 180 genes (see Supplementary Fig. 

2). Distribution of the obtained p-values is shown in Fig. 1d. FERMT2 (encoding Kindlin-2), an AD 

genetic risk factor, was among the 7 most significant genes (p-value < 2.7×10
-4

 after Bonferroni 

correction, Fig. 1e), i.e., genes that strongly modulate APP metabolism and whose expression are 

potentially regulated by miRNAs that also strongly modulate APP metabolism. We therefore focused 

on this gene.  

 

Endogenous FERMT2 expression is down-regulated by miRNAs 

Four (out of 41) miRNAs were predicted to target FERMT2 3’UTR: miR-582-5p, miR-200b-3p, miR-

221-3p and miR-222-3p. Of note, we previously identified a variant (rs7143400) within the 3’-UTR of 

FERMT2, where the minor T allele creates an 8-mer binding site for miR-4504 (Delay et al. 2016) 

(Fig. 2a and Supplementary Fig. 3). However, miR-4504 had limited effects on APP metabolism in 

our HCS (mCherry fold change = 1.18±0.09, rank 688 in the top 30%). Since the potential effects of 

this miRNA on FERMT2 expression would depend on the presence of the rs7143400 minor T allele, 

we genotyped the HEK293 cell line (used in our HCS) for this variant. We observed that this cell line 

was homozygous (GG) for rs7143400 and, as a consequence, FERMT2 expression in this cell line 
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could not be modulated by miR-4504, potentially limiting its impact on APP metabolism. However, 

since rs7143400 exhibited genome-wide significance in its association with AD risk, we decided (i) to 

add miR-4504 to the list of four miRNAs resulting from the HCS screening and (ii) to consider the 

rs7143400 variant in our subsequent analyses.  

We first developed a luciferase activity assay in HEK293 cells to determine if the 5 miRNAs of 

interest could indeed modulate FERMT2 expression. The capacity of each miRNA to induce a down-

regulation of the reporter gene expression (luciferase activity) in the presence of FERMT2 3’UTR 

sequence was confirmed (Fig. 2b). As hypothesized, miR-4504 was able to down-regulate reporter 

gene expression only in the presence of the rs7143400 T allele. We then assessed whether these 

miRNAs were also able to modulate endogenous FERMT2. For this purpose, we transfected the 5 

selected miRNAs in either wild-type HEK293 (HEK293
wt

) or rs7143400-mutated HEK293 cell lines 

(HEK293
rs7143400-G/T

) generated via the Crispr-Cas9 technology (Supplementary Fig. 4). All 5 

miRNAs were able to decrease the endogenous FERMT2 expression; however, miR-4504 only in the 

HEK293
rs7143400-G/T 

cell line (Fig. 2c and 2d). Notably, all 5 miRNAs could down-regulate endogenous 

FERMT2 expression in HeLa cells that are heterozygous for rs7143400 (Fig. 2e).  

Collectively, these data suggest that endogenous FERMT2 expression is dependent on miRNAs 

expression and that a functional variant is able to modulate the miRNA-dependent FERMT2 

expression by creating a binding site for miRNAs.  

 

APP metabolism is regulated by miRNAs 

According to our hypothesis, the 5 miRNAs are potential candidates to modulate APP metabolism 

through a direct down-regulation of FERMT2. However, it is also possible that these miRNAs 

modulate the APP metabolism through targeting additional genes, making it difficult to determine the 

true effect of FERMT2 on the read-outs observed. To assess this question, we reasoned that if a 

candidate miRNA affects the APP metabolism mainly through down-regulating FERMT2, this 

candidate miRNA would have similar effects on APP metabolism as the direct FERTM2 down-

regulation by siRNAs we assessed previously (Chapuis et al. 2017). For this purpose, we evaluated the 

effects of miR-582-5p, miR-200b-3p, miR-221-3p and miR-222-3p over-expression on the APP 

metabolism in HEK293
WT

 cells. Only miR-222-3p was associated with an increase in endogenous 

APP levels (Fig. 3a). We further assessed the impact of miR-222-3p on Aβ secretion by co-

transfecting this miRNA with APP cDNA in HEK293
WT

. Results showed that miR-222-3p decreased 

FERMT2 expression and increased Aβ secretion in a dose-dependent manner (Fig. 3b). Of note, miR-

582-5p and miR-200b-3p were also predicted to directly target APP, thus making it impossible to 

assess whether these miRNAs affected APP metabolism directly or through FERMT2.  

We also addressed the same question for miR-4504 by taking advantage of the HEK293
rs7143400-G/T

 and 

HeLa cell lines. As for miR-222-3p, we observed that miR-4504 transfection was associated with an 

increase in total APP in both cell lines (Fig. 3c). Nonetheless, our findings indicate that miR-222-3p 
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and miR-4504 have the same impact on APP metabolism as seen by FERMT2 silencing alone. To 

note, the impact of miR-4504 was only observed in HEK293
rs7143400-G/T

 cells.  

 

miR-4504 is over-expressed in AD brains  

To provide further physiological relevance to our findings, we combined classical 

immunocytochemisty with RNA hybridisation allowing miRNAs detection at single-copy sensitivity. 

We first observed that both miR-222-3p and miR-4504 were expressed in primary hippocampal 

neurons (Fig. 4a). We next measured the expression levels of miR-222-3p and miR-4504 in the post-

mortem brain samples from AD patients and control subjects. We observed that the expression levels 

of miR-4504, but not of miR-222-3p, were significantly increased in AD brains compared to controls 

(Fig. 4b). Taken together, these data suggest that several miRNAs (some of which are over-expressed 

in AD brains) are able to down-regulate endogenous FERMT2 expression and modulate APP 

metabolism. In addition, this miRNA-dependent regulation is modulated by a functional genetic 

variant associated with an increased AD risk in GWAS. This implies that under-expression of 

FERMT2 is potentially deleterious in an AD pathophysiological context in neurons.  

 

Interaction between FERMT2 and APP controls APP metabolism  

How FERMT2 modulates APP metabolism is not fully established. To address this, we tested the 

possibility that APP and FERMT2 form a protein-protein complex. This hypothesis is supported by 

proximity ligation assay (PLA) signals in hippocampal primary neuronal cultures (Fig. 5a). We then 

aimed to validate this complex formation via three complementary approaches: (i) Pull-down of 

endogenous APP from hippocampal primary neuronal culture extracts co-immunoprecipitated 

endogenous FERMT2 (Fig. 5b). (ii) Over-expression of wild-type FERMT2 (FERMT2
WT

) was also 

able to pull-down the recombinant intracellular domain of APP (C100) (Fig. 5c and d). (iii) In 

addition, we generated a Q621W622AA FERMT2 mutant (FERMT2
QW

) which was previously shown to 

abolish the interaction between the FERMT2 F3 domain and the NxTY motif of Integrin-β3 (which is 

also present within the intracellular domain of APP) (Ma et al. 2008). Remarkably, when over-

expressed in HEK293 cells, FERMT2
QW

 was not able to pull-down the recombinant intracellular 

domain of APP. Cumulatively, these findings support a direct interaction between FERMT2 and APP. 

Based on the recently solved crystal structure of FERMT2 in complex with the integrin-β3-tail (H. Li 

et al. 2017), we built a structural model of the FERMT2/APP complex (Fig. 5e), supporting our 

hypothesis that a protein-protein interaction exists between FERMT2 and APP. 

We next assessed the biological impact of the FERMT2/APP interaction on APP metabolism. By 

performing extracellular biotinylation experiments, we observed that FERMT2
 
over-expression in 

HEK293-APP
695wt

 cell line decreased the levels of APP at the cell surface, an effect that was abolished 

by the presence of the QW mutation (Fig. 5f). Further, a dominant negative effect of the FERMT2
QW

 

mutant was observed: its over-expression impacted APP metabolism similarly to FERMT2 silencing, 
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i.e., resulting in increased mature APP at the cell surface and increased Aβ production, as previously 

reported (Chapuis et al. 2017). Altogether, our data suggest that a FERMT2/APP interaction is 

necessary for FERMT2 to have an impact on APP metabolism. We decided to further characterize the 

interaction between FERMT2 and APP at the molecular level and to determine how FERMT2 under-

expression may modulate neuronal phenotypes in which APP is known to be involved. 

 

FERMT2/APP interaction is involved in axonal growth 

During brain development, APP is enriched in axonal growth cones and acts as a co-receptor for axon 

guidance and cell migration cues through its interaction with the extracellular matrix (Soldano & 

Hassan 2014) (Sosa et al. 2013). Interestingly, our pathway analysis highlighted axon guidance as the 

most enriched pathway (Fig. 1b). For this reason, we decided to investigate the potential involvement 

of FERMT2/APP interaction in axon growth. Using primary neurons cultured in microfluidic devices 

that fluidically isolate axons from their cell bodies, we first observed the co-localization of 

endogenous FERMT2 with APP, as well as with PLA spots in axonal growth cones (Fig. 6a). These 

data suggest a potential function of the FERMT2/APP complex in axon growth behavior. We then 

addressed the impact of FERMT2 silencing on axonal growth cone morphology after transduction 

with lentiviral vectors expressing either shRNA against FERMT2 (shFERMT2) or a non-targeting 

shRNA (shNT). Actin staining revealed than FERMT2 under-expression led to a significant decrease 

in growth cone area (9.13±0.71 vs 12.79±1.10 μm²) as well as in the angular dispersion of growth cone 

filopodia (0.67±0.04 vs 0.84±0.02) (Fig. 6b). Of note, no significant impact on actin retrograde flow 

rate was observed (0.166±0.003 vs 0.157±0.002 μm/s). These observations suggest a potential 

impairment of the exploration behavior of the growth cones due to FERMT2 silencing, but not an 

effect on actin dynamics per se. FERMT2 under-expression was also associated with an accumulation 

of endogenous APP in the growth cones (1.38±0.11 vs 0.85±0.08, after normalization by the growth 

cone area). 

In order to characterize in-depth the impact of FERMT2 and/or APP expression on axonal growth, we 

conducted time-lapse microscopy and measured axon growth speed at DIV5 following lentiviral 

transduction (shNT, shFERMT2, or shAPP) of neurons in microfluidic devices at DIV1. FERMT2 

silencing led to 31.7% increase in axon growth speed (Fig. 6c). Conversely, APP under-expression led 

to 16.7% decrease in axon growth speed. Remarkably, silencing of APP was able to fully abolish the 

effect of FERMT2 under-expression on axon growth speed, suggesting that APP was required for the 

molecular mechanism by which FERMT2 controls the axon growth speed. In addition, we observed 

that FERMT2
QW

 mutant over-expression was able to induce 15.9% increase in axon growth speed 

(Fig. 6c). Since over-expression of FERMT2
WT

 did not show any impact, these data also suggested a 

potential dominant negative effect of the FERMT2
QW

 mutant and further supported the involvement of 

FERMT2/APP complex in axonal growth. 
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FERMT2 expression regulates synaptic plasticity in APP dependent manner 

Next, we decided to investigate the impact of FERMT2 silencing on neuronal maturation at DIV14. 

First, co-staining between FERMT2 and synaptic markers (Synaptophysin and Homer) suggested the 

localization of FERMT2 at the synapse (Fig. 7a). The presence of FERMT2 in both pre- and 

postynaptic compartments was confirmed by synaptosomal purification (Fig. 7b). PLA-FERMT2/APP 

signals were also co-localized with Synaptophysin and Homer puncta (Fig. 7c) supporting the 

possibility of the involvement of FERMT2/APP complex in synapses.  

We sought to establish the functional impact of FERMT2 and/or APP silencing on CA1 basal synaptic 

transmission and long-term potentiation (LTP) in ex vivo mouse hippocampal slices, after stereotactic 

lentivirus injection allowing expression of shNT, shFERMT2, shAPP or shFERMT2+shAPP. No 

significant difference was observed for the normalized average slope of the evoked field excitatory 

postsynaptic potential (fEPSP), indicating no alteration of the CA1 basal synaptic transmission in each 

group analyzed (Fig. 7d, Supplementary Fig. 5). Then, in the same slice, tetanic stimulation was 

delivered to the Shaffer collaterals (SC) in order to induce LTP (Fig. 7e). Tetanic stimulation of the 

SC resulted in a robust, long-lasting potentiation of the fEPSP slope in slices from mice infected with 

shNT and in shAPP, whereas LTP was impaired in slice form shFERMT2-infected mice. An LTP 

deficit was observed in hippocampal slices infected with shFERMT2, but not in those also infected 

with shAPP (Fig. 7e 7f and 7g). Remarkably, this deficit was abolished when both APP and FERMT2 

were silenced, suggesting that APP was required for the molecular mechanism by which FERMT2 

impacts LTP. 

 

Discussion 

As in other multifactorial diseases, GWAS in AD are agnostic approaches, and how a genetic risk 

factor is implicated in pathophysiological processes is typically unknown. Sometimes, even the 

physiological functions of an AD genetic risk factor in the brain are not known. Understanding the 

role of these genes is thus a challenge that requires several key questions to be addressed: (i) Does the 

corresponding protein interact with other key players and pathways known to be involved in AD? (ii) 

What is (are) the functional variant(s) responsible for the GWAS signal and does this (do these) 

variant(s) impact the biological function of the corresponding protein and its interaction with key 

players of AD? (iii) How does the protein (taking into account how the functional variant(s) impact the 

protein) modulate the physiological and/or pathophysiological functions of key players/pathways? 

With these questions in mind, we developed systematic approaches to determine the genes that are 

involved in APP metabolism, a major player in AD development. To this end, we previously 

developed an HCS, based on the quantification of intracellular APP fragments, to measure the impact 

of under-expression of 18,107 genes (via siRNA pools) on APP metabolism (Chapuis et al. 2017). In 

the current study, we screened the impact of the over-expression of 2,555 miRNAs on APP 

metabolism with the hypothesis that genes (i) that modulate APP metabolism (ii) whose expression 
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levels are regulated by miRNAs that also modulate the APP metabolism are likely some of the key 

actors controlling APP metabolism and functions. The convergence of these two agnostic screens 

highlighted FERMT2, a GWAS-defined genetic risk factor of AD, for which almost nothing is known 

in the cerebral and AD contexts. We thus proposed that FERMT2 could be down-regulated by several 

miRNAs and involved in AD through regulating APP metabolism and/or function (Fig. 8).  

Of note, we previously identified the rs7143400 variant located in FERMT2 3’UTR as susceptible to 

alter a binding site for miR-4504 (Delay et al. 2016). Here, in addition to in silico prediction 

supporting the impact of this variant on miRNA binding (Supplementary Fig. 3), we demonstrate that 

this variant is functional: the AD-associated rs7143400 T allele down-regulates FERMT2 and 

modulates APP metabolism via its interaction with miR-4504. Remarkably, we observed that miR-

4504 is over-expressed in the brains of AD cases compared to controls, and is mainly expressed in 

neurons in primary mixed hippocampal cultures.  

Together, our data indicate that a deleterious over-expression of miR-4504 can lead to a decrease in 

FERMT2 expression in individuals bearing the rs7143400 minor T allele, which subsequently 

modulates APP metabolism (Fig. 8). Supporting a link between FERMT2 and APP metabolism, 

studies from cohorts of patients have reported an association between variants in FERMT2 gene and 

Aβ in CSF (Chapuis et al. 2017) and brain amyloidosis (Apostolova et al. 2018).  

Of note, in publicly-available RNA-seq analyses (Mayo Clinic Brain Bank), an over-expression of 

FERMT2 mRNA is observed in post-mortem human temporal cortex of AD patients relative to 

controls (Sullivan et al. 2018). Even if we did not observe such a variation of the FERMT2 mRNA 

level in a smaller number of brains, we nevertheless detected an increase in the protein levels as a 

function of Braak stages, especially at the latter stages (Supplementary Fig. 6). This point is of 

particular importance since in the Genotype-Tissue Expression Database (GTEx Consortium et al. 

2015), FERMT2 variants associated with an increase in AD risk at the genome-wide significance level 

are also part of an expression quantitative trait locus, significantly associated with decreased brain 

expression of FERMT2 mRNA (sentinel variant in GWAS rs17125924; -18% p-value = 2×10
-6

). This 

observation strongly supports our conclusion that FERMT2 under-expression is deleterious and 

suggests that FERMT2 down-regulation would be deleterious at the earliest stage of the disease, 

whereas, FERMT2 over-expression may occur as a pathological consequence at a very late stage. 

Here, we propose that FERMT2 down-regulation at the earliest stage of AD would depend in part on 

(i) the miR-4504 expression, (ii) cerebral cell type (i.e., neurons), and (iii) the presence of the 

rs7143400 minor T allele (observed in 9% of Caucasians). Unfortunately, it is important to keep in 

mind that all these constraints will make difficult, if not impossible, to detect such a miRNA-

dependent decrease in FERMT2 mRNA levels. Of note, this point may also underline the limitation of 

expression databases in deciphering the mechanisms underlying the functional effects of GWAS 

variants, for they do not allow capturing (even hide) subtle mechanisms.  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted October 8, 2019. ; https://doi.org/10.1101/767194doi: bioRxiv preprint 

https://doi.org/10.1101/767194


Our current hypothesis holds that FERMT2 controls APP internalization and degradation (Chapuis et 

al. 2017), such that FERMT2 silencing leads to a greater amount of full-length APP and by-products 

and FERMT2 over-expression leads to a reduction of these metabolites. In the current paper, we 

demonstrate that a direct interaction between FERMT2 and APP –through the F3 domain of FERMT2 

and the NxTY motif within APP’s intracellular domain– is necessary for FERMT2 to have an impact 

on APP metabolism. Moreover, we observed than the FERMT2/APP interaction could be involved in 

the regulation of axonal growth in line with APP’s function within the growth cone (Sosa et al. 2013) 

(data we replicated in this study). Because APP silencing abolishes the impact of FERMT2 silencing 

on axon growth speed, we could postulate that the effect of FERMT2 might be –at least in part– due to 

the accumulation of full-length APP or its by-products within the growth cone, impairing vesicle 

trafficking and/or cell adhesion. 

Apart from this developmental read-out, we also analyzed synaptic plasticity, a read-out more relevant 

to AD, where synaptic dysfunction/loss is one of the earliest events observed. FERMT2 under-

expression leads to a harmful effect on LTP in an APP-dependent manner. As FERMT2 silencing 

leads to an accumulation of full-length APP and all by-products (including Aβ peptides), we can 

hypothesize that these accumulations could be involved in the synaptic dysfunction observed when 

FERMT2 is under-expressed. Moreover, it could explain why APP expression seems to be required 

(for FERMT2 to impact developmental and synaptic read-outs), although further experiments are 

needed to decipher the consequences of the causal link between FERMT2 and APP, i.e., to determine 

whether it impacts full-length APP function or invokes Aβ synaptotoxicity. 

This is of particular interest since, APP shedding strongly enhances its cell adhesion and synaptogenic 

activity (Stahl et al. 2014). Moreover, the APP intracellular domain is required for normal synaptic 

morphology and synaptic plasticity, suggesting that intracellular interactors could be required for 

proper synaptic function (Klevanski et al. 2015). Remarkably, we have recently proposed a circular 

model of AD pathogenesis, where the core of the focal adhesion pathway –which FERMT2 and APP 

are part of– may participate in the dysfunction of synaptic plasticity in AD (Dourlen et al. 2019).  

In conclusion, we propose that FERMT2 under-expression through miRNAs and/or genetic regulation 

leads to synaptic dysfunction in an APP-dependent manner. Our hypothesis may thus call for new 

therapeutic approaches in AD targeting FERMT2 and/or APP function, rather than Aβ peptide 

production/clearance. Once therapeutic approaches that target FERMT2-dependent pathways are 

eventually developed, one can argue that it might be an example of personalized medicine for AD, 

preferentially targeting patients who have high levels of miR-4504 and who bear the rs7143400 minor 

T allele.   
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Fig 1. High-content miRNA screening identifies modulators of APP metabolism 

a. Mean fluorescence intensity variations (log2 fold change) of the mCherry signal obtained during the 

microRNA (miRNA or miR) screen, conducted in triplicate. The mCherry signal was used to 

determine the 1% hits exhibiting the strongest variation (0.5% showing an upregulation and 0.5% 

showing a downregulation). b. The 10 most likely canonical pathways identified after pathway 

enrichment analysis using DIANA Tools mirPath (v3.0). c. A graphical representation of the workflow 

developed to identify miRNA-targeted genes that are also able to modulate APP metabolism according 

to our genome-wide, high-content siRNA screening. Predictions of target sites for genes expressed in 

the brain were determined by at least 4 out of 7 software programs used (see methods). d. p-value 

distribution for the 180 genes targeted by the 41 miRNAs identified by HCS (see Fig. S2). e. Genes 

significantly enriched to be targeted by these 41 miRNAs after Bonferroni correction 

(0.05/180=2.7×10
-4

). Bold text indicates the only AD genetic risk factor in the list and its predicted 

miRNAs. 
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Fig 2. Validation of functional miRNAs targeting FERMT2 3’UTR 

a. Relative positions of miRNA target sites on FERMT2 3’UTR. Target sites created by the 

rs7143400-T allele, which is associated with AD risk, are shown in red. b. Luciferase assay showing 

the effect of rs7143400-G/T on the repressor activities of 5 miRNAs with regard to the 3′-UTR of 

FERMT2 in HEK293 cells. c. RFLP genotyping of HeLa and HEK293 cell lines edited or not for the 

rs7143400 via CRISPR-Cas9 (supplementary fig. 4). d. Endogenous FERMT2 expression levels 

were assessed by Western blot using indicated cell extracts following transient transfection with a non-

targeting miR (miR-NT) or with the indicated miR for 72 h. e. WB quantifications from three 

independent experiments as in d. Histograms indicate the mean ± SD. Mann–Whitney test, * p<0.05. 
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Fig 3. Impact of miRNAs on APP metabolism 

a. Endogenous FERMT2 and APP expression levels were assessed by Western blot using HEK293 

cell extracts following transient transfection with a non-targeting miR (miR-NT) or with the indicated 

miR for 72 h. b. Endogenous FERMT2 expression levels were assessed by Western blot and Aβ1-x by 

Alpha-LISA, using HEK293-APP cell extracts following transient transfection with miR-222-3p at the 

indicated concentration for 72 h. c. Endogenous FERMT2 and APP expression levels were assessed by 

Western blot using cell lines carrying the rs7143400-T allele (or not) following transient transfection 

with a non-targeting miR (miR-NT) or miR-4504 for 72 h. Histograms indicate the mean ± SD. A.U., 

arbitrary units. Mann–Whitney test, * p<0.05. 
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Fig 4. Expression of miRNAs in primary neurons and in AD brains 

a. miR-222-3p and miR-4504 are expressed in primary hippocampal neurons. Hybridization 

experiments in rat postnatal hippocampal neuron cultures enabling single-copy detection of miRNA 

combined with immunocytochemistry against astrocytic (SOX9) and neuronal (NeuN) markers. Scale 

bar = 20 µm. The box plot shows the quantification of miRNA copy number in SOX9- or NeuN-

positive cells (N > 30 cells for each condition). Cross: mean copy number per cell; middle line: 

median; upper horizontal line: inclusion of 75%; lower horizontal line: inclusion of 25%. b. 

Expression of miR-4504 is increased in AD brains. Relative miR-222 and miR-4504 expression levels 

in temporal lobes of non-demented (CTL) and AD groups. Mann–Whitney test; **** p < 0.0001. 

 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted October 8, 2019. ; https://doi.org/10.1101/767194doi: bioRxiv preprint 

https://doi.org/10.1101/767194


 

 

 

 

Fig 5. Interaction between FERMT2 and APP controls APP metabolism 

a. Localization of proximity ligation assay (PLA) signals between endogenous APP and FERMT2 in 

hippocampal neurons. PLA was co-stained with antibodies against post- and presynaptic markers 

(PSD95 and Synaptophysin, respectively) and α-tubulin. Scale bar = 10 µm. b. Co-IP between 

endogenous APP and FERMT2 from membrane extracts of hippocampal PNC. Protein extracts were 

incubated with beads only, a mouse (Ms) antibody against APP (4G8) or a non-relevant (NR) 

antibody. c. The domain organization of FERMT2 protein. Q614A/W615A (QW) mutation was 

reported to abolish the interaction of F3 domain of FERMT2 with the NxTY motif. d. APP pull-down 

experiment with wild type (WT) or mutated (QW) FERMT2. Protein extracts from HeLa cells 

overexpressing FERMT2
WT

 or FERMT
QW

 were incubated with recombinant APP C-terminal fragment 

(C100). e. Structural model of the FERMT2-APP complex built by homology using the crystal 

structure of the FERMT2-Integrin-β3-tail complex (H. Li et al. 2017). f. The impact of FERMT2 on 

APP metabolism in HEK293-APP
695WT

 cells is reverted with the overexpression of FERMT2
QW

 

compared to FERMT2
WT

.  

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted October 8, 2019. ; https://doi.org/10.1101/767194doi: bioRxiv preprint 

https://doi.org/10.1101/767194


 

 

 

Fig 6. FERMT2/APP complex is involved in axonal growth 

a. Immunofluorescence images showing the presence of APP and FERMT2 within the axonal growth 

cone stained with SiR-actin. The right panel shows the presence of PLA-FERMT2/APP puncta within 

the axonal growth cone. b. Impact of lentiviral transduction of non-targeting shRNA (shNT) or 

shRNA against FERMT2 (shFERMT2) on the area of the growth cone, angular dispersion and speed 

of the actin retrograde flow, and APP immunostaining. c. Impact of lentiviral transduction on axonal 

growth speed. Individual axon tracks from a representative set are plotted. Scale bars = 50 μm. Box 

plots and cumulative distribution plots are color-matched. N is the number of axons analyzed from at 

least three independent experiments. Kruskal-Wallis ANOVA with multiple comparisons; * p < 5×10
-

3
; *** p < 5×10

-7
.  
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Fig 7. FERMT2 is present at the synapse and modulates synaptic plasticity 

a. Immunofluorescence in hippocampal primary neuronal culture showing a co-localization of 

FERMT2 staining with post- and presynaptic markers (Homer and Synaptophysin, respectively). b. 

Synaptic fractionation experiment revealed the presence of FERMT2 in both pre- and postsynaptic 

compartments. c. PLA-FERMT2/APP puncta were observed at the synapses stained for post- and 

presynaptic markers. d. Normalized average slope of fEPSP evoked during input–output (I/O) 

responses in stratum radiatum of area CA1 with Schaffer collateral stimulation from sham control 

(shNT) and after viral injection of the indicated lentivirus. e. Examples of fEPSP traces during 

baseline (light line) and 30-60 min post LTP induction (dark line). f. Time course of the average slope 

of elicited fEPSP responses following LTP induction by a tetanic stimulation protocol at hippocampal 

CA1 synapses from 5 mice after viral injection. Time-point 0 represents the delivery of tetanic 

stimulations. Slopes of each fEPSP are normalized to baseline and plotted against time. g. Box plots of 

the average slope response during 30-60 min post LTP induction. N = 5 mice; 2 slices per animal. 

Unpaired t-test; * p<0.05, ** p <0.01. 
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Fig 8. Increase of miR-4504 observed in AD brains could impact FERMT2 expression for individuals 

carrying the rs7143400-T allele. The down-regulation of FERMT2 in neurons might modulate APP 

metabolism increasing Aβ production and impairing synaptic plasticity.  
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