Summary
Nucleoporins (Nups) build highly organized Nuclear Pore Complexes (NPCs) at the nuclear envelope (NE). Several Nups assemble into a sieve-like hydrogel within the central channel of the NPCs to regulate nucleocytoplasmic exchange. In the cytoplasm, a large excess of soluble Nups has been reported, but how their assembly is restricted to the NE is currently unknown. Here we show that Fragile X-related protein 1 (FXR1) can interact with several Nups and facilitate their localization to the NE during interphase through a microtubule and dynein-dependent mechanism. Downregulation of FXR1 or closely related orthologs FXR2 and Fragile X mental retardation protein (FMRP) leads to the accumulation of cytoplasmic Nup protein condensates. Likewise, several models of Fragile X syndrome (FXS), characterized by a loss of FMRP, also accumulate cytoplasmic Nup aggregates. These aggregate-containing cells display aberrant nuclear morphology and a delay in G1 cell cycle progression. Our results reveal an unexpected role for the FXR protein family and dynein in the spatial regulation of nucleoporin assembly.
Highlights Cytoplasmic nucleoporins are assembled by Fragile X-related (FXR) proteins and dynein
FXR-Dynein pathway downregulation induces aberrant cytoplasmic aggregation of nucleoporins
Cellular models of Fragile X syndrome accumulate aberrant cytoplasmic nucleoporin aggregates.
FXR-Dynein pathway regulates nuclear morphology and G1 cell cycle progression
eTOC Blurb Nucleoporins (Nups) form Nuclear Pore Complexes (NPCs) at the nuclear envelope. Agote-Arán at al. show how cells inhibit aberrant assembly of Nups in the cytoplasm and identify Fragile X-related (FXR) proteins and dynein that facilitate localization of Nups to the nuclear envelope and control G1 cell cycle progression.