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Deep convolutional neural networks (CNNs) have emerged as the state of the art1

for predicting neural activity in visual cortex. While such models outperform classical2

linear-nonlinear and wavelet-based representations, we currently do not know what3

computations they approximate. Here, we tested divisive normalization (DN) for4

its ability to predict spiking responses to natural images. We developed a model5

that learns the pool of normalizing neurons and the magnitude of their contribution6

end-to-end from data. In macaque primary visual cortex (V1), we found that7

our interpretable model outperformed linear-nonlinear and wavelet-based feature8

representations and almost closed the gap to high-performing black-box models.9

Surprisingly, within the classical receptive field, oriented features were normalized10

preferentially by features with similar orientations rather than non-specifically as11

currently assumed. Our work provides a new, quantitatively interpretable and12

high-performing model of V1 applicable to arbitrary images, refining our view on13

gain control within the classical receptive field.14
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1 Introduction

1 Introduction15

A crucial step towards understanding the visual system is to build models that predict neural16

responses to arbitrary stimuli with high accuracy (Carandini et al., 2005). The classical standard17

models of the primary visual cortex (V1) are based on linear-nonlinear models (Simoncelli18

et al., 2004), energy models (Adelson and Bergen, 1985) and subunit (LN-LN) models (Rust19

et al., 2005; Touryan et al., 2005; Willmore et al., 2008; Butts et al., 2011; McFarland et al.,20

2013; Vintch et al., 2015). Fueled by advances in machine learning technology, recent studies21

have shown that multi-layer convolutional neural networks (CNNs) can significantly improve22

prediction of neural responses to complex images at several stages of the visual pathway23

(Yamins et al., 2014; Khaligh-Razavi and Kriegeskorte, 2014; McIntosh et al., 2016; Zhang24

et al., 2018; Cadena et al., 2019; Kindel et al., 2019), outperforming classical models. The25

current state-of-the-art data-driven model of single-unit activity in monkey V1 is a three-layer26

black-box CNN (Cadena et al., 2019). However, such models are difficult to interpret, limiting27

our understanding of V1 function. In particular, we do not have first principles explaining what28

kind of nonlinear mapping the black-box CNNs approximate.29

A promising candidate to facilitate a more principled description of V1 neurons is to replace30

the black-box computations by divisive normalization (Heeger, 1992), which has been proposed31

to be a canonical neural computation throughout the visual pathway (Carandini and Heeger,32

2012) because it explains a wide variety of neurophysiological phenomena (Carandini and33

Heeger, 2012; Sawada and Petrov, 2017) and can be derived from first principles of redundancy34

reduction (Schwartz and Simoncelli, 2001; Sinz and Bethge, 2008). A prominent example for35

such normalization phenomena in V1 is cross-orientation inhibition. Here, the response of a36

neuron to a driving grating stimulus in the receptive field (RF) is suppressed by superimposing37

a second grating that would not elicit a response when presented alone: for instance, a grating38

with orientation orthogonal to the neuron’s preferred orientation (Bonds, 1989; Morrone et al.,39

1982; DeAngelis et al., 1992; Heeger, 1992; Carandini et al., 1997; Busse et al., 2009).40

The basic idea of divisive normalization (Fig. 1A) is that a neuron’s driving input is normalized41

divisively by a weighted sum over nearby neurons’ responses (Heeger, 1992; Carandini and42

Heeger, 2012). While the general idea is simple, elegant and powerful, our current knowledge of43

DN is limited in two important ways: (1) DN has been studied mostly using simple stimuli44

and we do not know whether incorporating DN into predictive models of neural responses45

improves these models’ performance on natural images, and (2) we currently do not know how46

receptive field location and response properties determine whether a neuron contributes to the47

normalization pool and, if so, with what normalization weight.48

To explain normalization phenomena within the classical receptive field like cross-orientation49

inhibition, current models of divisive normalization assume that all nearby neurons with diverse50

orientation tuning preferences and with similar receptive field locations contribute equally to51

the normalization pool (Heeger, 1992; Carandini et al., 1997; Busse et al., 2009). However,52

some original experimental studies suggest that this assumption may not be correct for some53

neurons (Bonds, 1989; DeAngelis et al., 1992), and normative models of normalization predict54

that the magnitude with which a given neuron contributes to another neuron’s normalization55

depends on the relationship of their response properties (Schwartz and Simoncelli, 2001).56
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Figure 1: Overview of our divisive nor-
malization (DN) model. The model takes
as input an image and predicts neurons’
spike counts in response to this image (de-
tails in Fig. 2). The model is split into two
parts: a core that computes a shared non-
linear feature space and a readout that
maps the shared feature space individ-
ually to each neuron’s spike count. A.
Divisive normalization mechanism (sim-
plified). The visual input is convolved
with 32 filters and then rectified to pro-
duce an excitatory output. The output of
each filter is then divided by a weighted
sum of the excitatory outputs of all fil-
ters with normalization weights pkl and
a semi-saturation constant σl. In our
general formulation, all weights and con-
stants are learned from the data. B. Lin-
ear readout that maps the shared fea-
ture space to each neuron’s spike count
through an individual weighted sum over
the entire shared feature space. The read-
out weights are factorized into a feature
vector – capturing the nonlinear feature(s)
that a neuron computes – and a spatial
mask – localizing each neuron’s receptive
field (RF).

In this paper, we address two main questions raised above: (1) can an interpretable model based57

on divisive normalization match the superior performance of black-box CNNs over simpler,58

interpretable subunit or energy models when predicting spiking responses to natural images59

and (2) how are V1 neurons normalized? We focus on responses to stimuli mostly restricted60

to the classical receptive field and on models that account only for normalization by neurons61

with overlapping receptive field locations. We developed an end-to-end trainable divisive62

normalization model to predict V1 spike counts from natural stimuli. Our model learns the63

filter coefficients of all neurons as well as their normalization weights directly from the data.64

We applied our model to natural image responses in monkey V1 and found that it outperforms65

linear-nonlinear and subunit models, and is competitive with that of state-of-the-art CNNs66

while requiring much fewer parameters and being directly interpretable. This result implies67

that divisive normalization is an important computation under stimulation with natural images.68

Importantly, we found that oriented features were normalized preferentially by features with69

similar orientation, in contrast to the current standard model of nonspecific normalization70

(Heeger, 1992; Busse et al., 2009). Our work thus advances our understanding of V1 function71

by establishing a new state-of-the-art interpretable model and predicting an orientation-specific72

divisive normalization mechanism under stimulation with natural stimuli.73
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2 Results

2 Results74

2.1 Learning divisive normalization75

The basic idea of divisive normalization (Fig. 1A) is that the response of neuron l

zl(x) =
yl(x)

σl +
∑

k∈K pkl · yk(x)
(1)

is given by its driving input activity yl(x) divisively normalized by a weighted sum over nearby76

neurons’ responses yk(x) (Heeger, 1992; Carandini and Heeger, 2012), where x represents the77

stimulus and σl is a semi-saturation constant. Here, the set of normalizing neurons K and the78

normalization weights pkl define which neurons contribute to the normalization pool of neuron79

l and with what strength, respectively.80

While this formulation is straightforward to write down, it is challenging to build quantitative81

models based on it that are applicable to arbitrary inputs. The denominator depends on a82

potentially large population of neurons – which is unknown in general – and the structure of83

the normalization weights has been studied only using very restricted sets of simple stimuli such84

as oriented gratings and bars. Previous modeling work on divisive normalization has therefore85

made specific assumptions about the filter properties of the underlying neuronal population86

and either modeled only a closed set of stimuli such as gratings of different orientation (Heeger,87

1992; Carandini et al., 1997; Freeman et al., 2002; Heuer and Britten, 2002; Busse et al., 2009)88

or evaluated models only qualitatively (Schwartz and Simoncelli, 2001; Wainwright et al., 2002;89

Froudarakis et al., 2014).90

We developed a general, image-computable predictive model of divisive normalization following91

Eq. (1), which is applicable to arbitrary images and whose parameters are learned by optimizing92

the accuracy of the model in predicting the spiking activity of a large number of neurons in93

response to natural images (see Fig. 1). Our model builds on a recent innovation in predictive94

modeling (Antoĺık et al., 2016; Klindt et al., 2017; Batty et al., 2016; McIntosh et al., 2016;95

Cadena et al., 2019), jointly modeling all recorded neurons instead of learning a predictive96

model for each neuron individually. Because many neurons perform similar computations – up97

to shifts in receptive field location – jointly modeling them makes more efficient use of the data98

and we can learn more complex models. The basic idea is to split the model into two parts99

(Fig. 1): (1) a core that transforms the input image into nonlinear features shared among all100

neurons, and (2) a readout that linearly combines the features to produce a prediction of each101

neuron’s response.102

We use a convolutional network for the core, whose architecture lends itself very well to model103

divisive normalization. By construction, we have a model that contains all filters necessary104

to account for the recorded neurons’ responses. All of these filter responses are automatically105

extracted at each location, providing a good approximation of the underlying population106

of neurons in the brain although it is only sparsely sampled during the experiment. As a107

consequence, we can optimize the pool of neurons providing normalizing inputs and their108

corresponding weights pkl (Eq. 1) to account for the neural responses.109
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Figure 2: Experimental paradigm from Cadena et al. (2019). Natural images were flashed to a monkey
covering 2◦ of their visual angle, and located at the center of the multi-unit receptive field. Multiple
neurons were isolated from recordings with silicon probes inserted into V1 (Denfield et al., 2018). Natural
images were shown in a fast sequence without blanks, each presented for 60 ms. Spike counts from all
isolated neurons corresponding to each image were extracted from a window 40 ms after the image onset
lasting 60 ms.

In summary, our model’s core (Fig. 1A) consists of a set of convolutional filters (we use 32)110

that provide the driving inputs, followed by a DN stage (Eq. 1). This core is shared among all111

neurons and converts the image into a set of feature maps. These feature maps are converted112

into response predictions by a linear readout step (Fig. 1B) that picks the relevant features113

and spatial locations for each neuron. To ensure that the readout does not model any complex114

computation, we constrain its weights to be non-negative. The non-negativity ensures that115

activations can only add, preventing the readout stage from accounting for any suppressive116

effects. The readout can, however, account for response invariances such as phase invariance of117

complex cells; see Methods for an in-depth explanation. While our model reflects the general118

formulation of divisive normalization, in this paper we mostly focus on normalization from the119

vicinity of the receptive field.120

2.2 DN model achieves competitive accuracy with fewer parameters121

We fit the model described above to a dataset of 166 neurons recorded in V1 of two awake,122

fixating monkeys (data from Cadena et al. 2019), who viewed a fast sequence of localized natural123

images and textures (Fig. 2). The stimuli were centered on the neurons’ receptive fields and124

covered about twice the area of the classical receptive fields, mostly stimulating the near vicinity125

of the RFs’ center. Images were shown for 60 ms each, without blanks in between. Single unit126

activity was recorded with laminar silicon probes sampling from all cortical layers. We fit the127

model jointly to the responses of all neurons. As neurons were recorded in 17 recording sessions,128

the dataset sampled a diverse range of preferred orientations. The objective function during129

training was to minimize the difference between the model’s prediction and the observed spike130

counts of the neurons in a time window 40–100 ms after image onset (to account for response131

latency).132
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Figure 3: Performance comparison of our models fitted to the data from Cadena et al. (2019) relative
to the gap between the best interpretable model – a subunit one layer convolutional neural network
(CNN) – and the data-driven state-of-the-art three-layer CNN (Cadena et al., 2019) that offers little
interpretability (black-box). Non-specific divisive normalization (DN) accounts for 56% of this gap,
while specific DN improves it up to 72%. Absolute values in terms of percentage of explainable variance
explained (FEV) on the right (mean over the ten best models selected in terms of validation set accuracy).
Error bars show the corresponding standard error of the mean.

To evaluate model performance, we estimated the fraction of explainable variance explained133

(FEV), which quantifies the fraction of the stimulus-driven response variance that is accounted134

for by the model, and ignores unexplainable trial-to-trial variability in the response of the135

neurons (see Methods). A perfect model would reach a FEV of 100%.136

Subunit models are an established approach to model primary visual cortex responses (Rust137

et al., 2005; Touryan et al., 2005; Willmore et al., 2008; Butts et al., 2011; McFarland et al., 2013;138

Vintch et al., 2015). In addition to capturing a fair portion of the explainable variance, they139

provide interpretability in the form of linear projections applied to the input images. Therefore,140

we considered a convolutional subunit model – currently the best-performing interpretable141

model of V1 (Cadena et al., 2019) – as a strong baseline for our model. It consists of a first142

stage of rectified linear filtering followed by a static nonlinearity, and then a linear pooling143

stage. Structurally, it is the same as our DN model, but without the normalization stage. This144

subunit model accounted for 45.9% FEV. In comparison, a regularized linear nonlinear Poisson145

model (LNP) only accounted for 16.3% FEV on the same dataset (Cadena et al., 2019) due to146

its inability to model complex cells.147

As recent developments in machine learning technology have allowed us to improve predictive148

performance, we used the current best data-driven model as a gold standard. This model is a149

black-box convolutional neural network with three convolutional layers and a linear-nonlinear150

readout, reaching a performance of 49.8% FEV (Cadena et al., 2019). However, although this151

model outperforms the simpler subunit model, we currently do not understand how it does152

6

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 9, 2020. ; https://doi.org/10.1101/767285doi: bioRxiv preprint 

https://doi.org/10.1101/767285
http://creativecommons.org/licenses/by-nc/4.0/


2 Results

Number of parameters
Model Core Readout per neuron

Subunit model 5 440 816
Nonspecific divisive normalization 5 536 816
Divisive normalization 6 528 816
Black-box CNN (Cadena et al., 2019) 23 936 867

Table 1: Number of parameters for different models.

so.153

To evaluate how well our DN model accounts for the data, we placed its performance on a scale154

between 0% (baseline: subunit model) and 100% (gold standard: black-box CNN). On that scale,155

our DN model achieved a score of 72% between the baseline and gold standard (48.7% FEV on156

test set, mean over the ten best models selected in terms of validation set accuracy, Fig. 3), being157

the new state-of-the-art interpretable model of primary visual cortex. Notably, we achieved158

this performance gain by simply adding the trainable DN stage to the convolutional subunit159

model, which shows that divisive normalization is an important computational mechanism in160

V1 under stimulation with natural images.161

While our DN model’s accuracy comes close to that of the state-of-the-art black-box CNN, it162

requires substantially fewer parameters to achieve this performance (Table 1): The DN model’s163

core – i. e. the shared computational backend before the linear readout – uses only 27.3% of164

the parameters of the black-box CNN model’s core. This saving in parameters suggests that165

the DN model captures important structure in the data, which we elaborate in the next section.166

Compared to the number of parameters required by the subunit model’s core, the DN model167

requires 20.0% more parameters (allocated to the divisive normalization module). The number168

of readout parameters – i. e. the part that turns the shared nonlinear feature representation169

into individual neurons’ responses – is very similar for all models.170

2.3 Normalization is feature-specific171

Having established that the DN model outperforms the current best interpretable model172

and performs close to the black-box gold standard, we next investigated the structure of the173

normalizing input, i. e. the sum in the denominator of Eq. (1) and how strongly different174

features contribute to it. For this analysis, we focus on orientation-selective features. Visually175

inspecting the strength of the normalizing inputs suggests that oriented features are normalized176

preferentially by features with similar orientation preference (Fig. 4). In contrast, orthogonal177

features seem to contribute less.178

To quantify the difference with which the two groups contribute to normalization, we split179

the sum in Eq. (1) into two parts and collect the contribution of normalizing features with180

similar (< 45◦) orientation as the driving feature and that of features with dissimilar (≥ 45◦)181

orientations. Analyzing the normalization of each oriented feature individually, we found that182

7

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 9, 2020. ; https://doi.org/10.1101/767285doi: bioRxiv preprint 

https://doi.org/10.1101/767285
http://creativecommons.org/licenses/by-nc/4.0/


2 Results

Features k to pool from

Fe
at

ur
es

 l
be

in
g 

no
rm

al
iz

ed

Normalization input

0° 45° 0°45°

45°

0°

90°

90°

45°

Figure 4: Structure of divisive normalization. The matrix shows the average strength (over images)
of the normalizing inputs for each combination of filter response being normalized (rows) and filter
response providing normalizing input (columns). Darker shades of blue indicate stronger normalization.
Orientation-selective filters are grouped at the top, ordered by preferred orientation and marked by the
black square. The dashed black lines within the square separate pairs of filters with similar (< 45◦) and
dissimilar (> 45◦) orientations. Normalizing inputs are stronger for similarly tuned filters (see Fig. 6 for
a quantification). Data of the model with highest accuracy on the validation set is shown.
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Figure 5: Normalization input from similar orientations (< 45◦) compared to the normalization input
from dissimilar orientations (≥ 45◦) for each feature. Grey line: identity. Most features are normalized
preferentially by the responses of filters with similar preferred orientations. Data of the model with
highest accuracy on the validation set is shown.

most oriented features are more strongly normalized by features with similar orientations183

(Fig. 5). To assess whether our qualitative observation above is a general property of the data184

or a spurious characteristic of that one particular model we selected, we repeated this analysis185

for the top-10 models (assessed in terms of performance on the validation set) and observed186

similar behavior. Averaging over the features, we found that, for all of these models, similar187

orientations contributed more strongly than dissimilar orientations. Taking the data of all188

top-10 models into account, we found that, on average, similarly oriented features contributed189

75% more normalizing input than dissimilar features (Wilcoxon signed rank test; p < 0.006,190

N = 10 models; Cohen’s d = 1.9).191

Having established that normalizing inputs are orientation-specific, we analyzed this specificity192

in more detail. Instead of using just two groups as before, we split up the normalizing inputs193

into nine bins of 10◦ width each and averaged those bins across the top-10 models. This analysis194

revealed that the strength of the normalizing inputs decreased as the difference in orientation195

increased (Fig. 6). Hence, the more similar a normalizing feature’s orientation was to the196

feature to be normalized, the stronger was its contribution to normalization. In fact, features in197

the group most similar to the driving input contributed 133% more than those in the orthogonal198

group (Cohen’s d = 2.1).199

2.3.1 Control: Nonspecific divisive normalization reduces accuracy200

To determine how important orientation-specific normalization is, we performed a control201

experiment: For each feature l being normalized, we constrained all of its incoming normalization202
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Figure 6: Normalization input, binned into orientation difference of 10◦. Each bin was averaged over
the top-10 models (assessed on the validation set). The shaded area depicts the standard deviation per
bin.

weights pkl to be identical. This constraint resembles non-specific normalization from all features,203

as assumed in previous models (Heeger, 1992; Carandini et al., 1997; Busse et al., 2009). This204

model achieved a performance of 56% between the baseline and gold standard (48.1% FEV).205

While it does not match the performance of our more general DN model, it does outperform206

the subunit baseline. Thus, orientation-specific normalization is necessary to achieve full207

performance.208

2.3.2 Control: All channels contribute to our model’s prediction209

One potential caveat of our analyses so far is that we analyzed the orientation specificity of210

DN in terms of the convolutional feature maps in our model’s core rather than the actual211

neurons we recorded. These features provide a much more compact view of the population of212

neurons, because they are invariant to the receptive field locations and the neural responses213

are simple linear combinations of those features. However, it is not clear a-priori whether all214

features are equally important for predicting the activity of the neurons in our population.215

Thus, considering convolutional features instead of actual neurons may lead to a skewed view216

of the population. To verify that this is not an issue, we quantified how much each feature217

contributed to the overall activity of all neurons by normalizing the feature readout weights218

across channels and averaging across neurons. The resulting distribution (Fig. 7) containing219

these averaged feature readout weights for the best ten models had a coefficient of variation of220

0.2. We therefore concluded that all features were read out by roughly the same number of221

neurons and hence were similarly important to predict neural activity. Thus, our interpretation222
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Figure 7: Histogram of feature readout weights of the ten best performing models in terms of validation
set accuracy. For each model, feature weights are normalized across channels and averaged across
individual neurons. All model’s channels are used to predict neural activity.

of orientation-specific normalization is unlikely to be an artifact of analyzing the convolutional223

features rather than the actual neurons.224

2.3.3 Control: No surround influence in our results and dataset225

We have observed orientation-specific divisive normalization in the classical receptive field.226

Surround suppression is known to be orientation-specific (Blakemore and Tobin, 1972; DeAngelis227

et al., 1994; Cavanaugh et al., 2002; Coen-Cagli et al., 2015), so a potential concern would be228

that some of the extra-classical surround of a unit’s RF contributed to the results presented229

above. To rule out this possibility, we fit a more general DN model, where we additionally230

learn the spatial structure of the normalization pool instead of just limiting it to neurons with231

overlapping receptive fields (see Methods). This extended DN model included two normalization232

pools that could have different patterns of weights along the feature dimension. It is therefore233

general enough to account for the standard model of DN with a nonspecific center normalization234

pool and orientation-specific surround suppression.235

In contrast to what one may expect, spatially expanding the normalization pool to cover236

larger surround areas did not increase our model’s accuracy; in fact, for lager surrounds the237

performance even decreased (Fig. 8). The best performance was achieved for models with a238

normalization pool of approximately the size of the units’ RF (approximately 0.5◦ diameter).239

Since performance for larger normalization pools decreased, we used the model with the smallest240

pool. The normalization weights of the extended spatial normalization pool showed no visible241

separation into center and surround and exhibited no or only weak contributions from the242

classical RF’s surround (Fig. 9). From both the decrease in performance for larger models243

and the spatial shape of the normalization pool, we concluded that our model does not learn244

influence from the RF surround. The reason for this limitation is very likely that the surrounding245

regions in our stimuli were masked out, so there is no surround information available to be246
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Figure 8: Validation set performance of our DN model for different normalization pool sizes (in space).
The normalization pool has a square shape; x-axis denotes the edge length of the covered space that can
contribute to normalization in units of visual angle in degrees.

learned. Consequently, our interpretation of orientation-specific normalization from nearby247

units has no dependency on surrounding regions either.248

3 Discussion249

To improve our understanding of primary visual cortex, we asked what function state-of-the-art250

black-box CNNs might implement for predicting V1 responses to localized natural stimuli.251

To answer this question, we developed an end-to-end learnable divisive normalization model252

and fit it to neural responses. Both the unspecific control model and the full model that253

learned the normalization pool outperformed the current best-performing interpretable model254

of V1, setting the new state-of-the-art. The full DN model improved performance even further,255

reaching an accuracy competitive with the black-box CNN gold standard while having fewer256

parameters. This result predicts that DN is a relevant mechanism to predict V1 responses to257

natural images.258

One may ask whether the difference between the non-specific DN model and the full model259

learning orientation specific normalization weights is relevant, because the full model may simply260

be able to better account for some insignificant biological heterogeneity due to its additional261

parameters. Although it is possible, we believe that this explanation is unlikely, because oriented262

features are preferentially normalized by channels with similar orientation. If the model was263

simply picking up some biological imperfection, we would expect the normalization weights not264

to depend systematically on preferred orientation.265
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Figure 9: Weights of the spatial normalization pool for the best performing model (in terms of validation
set accuracy) with an 5 px×5 px normalization pool (corresponding edge length in angle of the visual field:
1.06◦ × 1.06◦). A. For each feature (rows), the two components of the in total 32 spatial normalization
pools are shown. Darker color corresponds to higher weights. Both components are similar. B. Average
across features and normalization pool components. The model learned normalization from the receptive
field center (on average).
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3 Discussion

Previous experimental work investigated suppressive phenomena within the receptive field only266

with simple stimuli, mainly consisting of a combination of driving and mask gratings. Morrone267

et al. (1982) find suppression at all orientations, but do not investigate orientations similar to268

preferred orientation. Bonds (1989) report predominantly orientation-nonspecific suppression,269

although three of fourteen cells exhibit stronger suppression with masks oriented similarly270

to the neurons’ preferred orientations, and a few other cells are suppressed most strongly by271

mask orientations orthogonal to the preferred orientation. Similarly, DeAngelis et al. (1992)272

find suppression to be predominantly independent of orientation, although for some cells an273

increased suppression for a range of orientations near the optimal excitatory orientation is274

apparent. Heeger (1992) explains those results by proposing an orientation-nonspecific divisive275

normalization model. Carandini et al. (1997) consider the possibility of orientation-specific276

normalization which provides a marginal improvement in the quality of their model fits to the277

data. However, they conclude that their dataset was not specifically designed to provide a278

strong test of this question and their results are inconclusive in this respect. Busse et al. (2009)279

develop a quantitative model for the response of a population of neurons to a combination280

of gratings. Assuming nonspecific normalization by overall contrast, their model predicts281

the collective action of the whole neuron population better than linear and winner-take-all282

baselines, but they do not test against an orientation-specific alternative model. To summarize,283

these studies find phenomena that are predominantly explained by nonspecific normalization284

(Heeger, 1992), some of them encountering only weak orientation-specific phenomena and only285

in relatively few cells.286

Thus, our findings are largely consistent with previous experimental results and quantitatively287

refine them using a larger dataset, place them in the context of other models of V1 and show288

that the same mechanisms observed with simple stimuli also apply under more natural stimulus289

conditions. Interestingly, and somewhat unexpectedly based on earlier work, channels with290

preferred orientations within 10◦ of the driving feature provided 133% stronger normalizing291

input than those with orthogonal preferred orientations. The reason for this difference between292

our findings and previous studies could be that we used natural stimuli, which have different293

image statistics compared to simple stimuli used in earlier studies. Furthermore, most previous294

studies of divisive normalization were performed in cats (Morrone et al., 1982; Bonds, 1989;295

DeAngelis et al., 1992; Busse et al., 2009) and the results therein may not generalize to monkeys,296

for which preceding studies are inconclusive regarding orientation specificity (Carandini et al.,297

1997).298

Recent work modeling a large set of classical psychophysical data also suggests an orientation-299

specific divisive normalization:Schütt and Wichmann (2017) developed an image-computable300

model of early vision very similar in structure to ours, and found that in order to explain301

classical data on contrast detection, contrast discrimination and oblique masking, their model302

required divisive normalization to be orientation-specific. Similar results had been reported in303

an earlier study (Itti et al., 2000).304

Following a normative approach, Schwartz and Simoncelli (2001) derive an ecologically justified305

divisive normalization model from the efficient coding hypothesis (Barlow, 1961) that is able to306

describe the orientation masking data of Bonds (1989). Reducing the statistical redundancy of307

responses to natural stimuli predicts that normalization should be stronger for neurons that308
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exhibit a higher dependency in their unnormalized responses. This theoretical result implies309

that normalization weights should not be uniform, consistent with our empirical findings.310

Is our discovery of divisive normalization by similar orientations actually implemented by the311

connectivity of neurons in primary visual cortex? The answer to this question could be reflected312

in the connectivity from inhibitory parvalbumin-expressing (PV) interneurons to pyramidal313

cells and their relation to neurons’ tuning properties. Hofer et al. (2011) find that, in the314

mouse, pyramidal cells and PV cells are homogeneously connected. Although a weak bias315

towards orientation tuning is apparent, they conclude that local inhibition in V1 is primarily316

non-specific. However, despite the connection probability between PV and pyramidal cells317

being homogeneous, it was found that connection strengths are quite heterogeneous: Individual318

PV cells strongly inhibit those pyramidal cells that share their visual selectivity (Znamenskiy319

et al., 2018). This result is in line with our finding of orientation-specific normalization.320

A limitation of our study is that the stimuli in our dataset are spatially restricted to approx-321

imately twice the size of the classical receptive field, which prevented us from learning the322

influence of the surround on normalization. Moreover, we here focused on single images to323

predict a spike count in a relatively short time window covering the transient response, and324

ignored any temporal aspects or more sustained periods of the response. These limitations,325

however, are imposed by the available data – the modeling approach generalizes very well to326

cover both the surround and the temporal structure – and thus should be addressed in future327

work.328

In conclusion, we developed a model consisting of one layer of subunits followed by learned329

orientation-specific divisive normalization, which accounted remarkably well for the V1 data.330

We hope that this quantitative approach of evaluating theories of computation in the brain by331

formalizing them as (components of) trainable predictive models will be used more widely in332

the future, so the field will (slowly) converge to an accurate and interpretable general-purpose333

model of the visual system applicable to natural inputs.334

4 Methods335

4.1 Experimental details336

We used the dataset described in detail in Cadena et al. (2019) and provide a summary of the337

most important characteristics here. Electrophysiological recordings from two healthy, male338

rhesus macaque monkeys aged 12 and 9 years were performed with a 32-channel linear silicon339

probe. The monkeys were head-fixed and placed in front of a screen. They were trained to340

fixate on a target located at the center of the screen. The start of a trial was determined by341

maintained fixation on the target for 300 ms. The fixation tolerance was set to 0.42◦ around342

the center of the target. At the beginning of each recording session, population receptive343

fields were mapped with a sparse random dot stimulus. Each dot was of size 0.12◦ of visual344

angle and was presented over a uniform gray background, changing location and light intensity345

(black or white) randomly every 30 ms. The receptive field profiles per electrode channel were346

then obtained via reverse correlation (i. e. spike-triggered average). The center location of the347
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population receptive field was subsequently estimated by averaging over channels and fitting348

a two-dimensional Gaussian to the reverse correlation profiles. Afterwards, this location was349

used to place the images of the natural stimulus paradigm.350

The dataset in Cadena et al. (2019) consists of 7 250 distinct natural, greyscale images which351

were presented two to four times each. A fifth of these images (1 450) were taken from ImageNet352

(Russakovsky et al., 2015). Four additional texturized images were synthesized from each353

of them, preserving varying degrees of higher-order statistics. The images were cropped to354

140 px× 140 px covering two degrees of visual angle. Before displaying the images on the screen,355

the images were normalized such that the central 1◦ (70 px) of each image had the same mean356

and standard deviation. The mean was set to the screen’s mean gray intensity (128) and the357

standard deviation was set to the average standard deviation of the original images. Pixels358

with an intensity that fell outside the display’s range [0, 255] where clipped. Afterwards, all359

images were overlaid with a circular mask with a soft cosine fade-out and an aperture with a360

diameter of 1◦.361

Images were presented for 60 ms with no blanks in between. Neural responses were extracted362

in time windows of 40–100 ms after image onset (Fig. 2), accounting for typical response363

latencies in primary visual cortex. The image sequence was randomized with the restriction that364

consecutive images do not belong to the same type (i. e. natural or one of the four texturized365

versions).366

We discarded a few isolated neurons if their stimulus driven variability was too low. The
explainable variance in a dataset is smaller than the total variance because the observation
noise prevents even a perfect model to account for all the variance in the data. Thus, targeting
neurons that have sufficient explainable variance is necessary to train meaningful models of
visually driven responses. For a neuron’s spike count r, the explainable variance Varexp[r] is
the difference between the the total variance Var[r] and the variance of the observational noise
σ2noise,

Varexp[r] = Var[r]− σ2noise . (2)

We estimated the variance of the observational noise by computing the variance of a neuron’s
response rt in multiple trials t in which we presented the same stimulus xj and subsequently
taking the expectation Ej over all images,

σ2noise = Ej [Vart [rt|xj ]] . (3)

We removed data of neurons if the ratio between the explainable to total variance was below 0.15.367

The resulting dataset includes spike count data for 166 isolated neurons, with an average ratio368

of explainable to total variance of 0.285. These neurons were recorded at 1◦ − 3◦ eccentricities369

and had receptive field size diameters between 0.25◦ and 0.75◦.370

To keep our results of the full DN model without the extension to the surround consistent and371

comparable to the gold standard baseline from Cadena et al. (2019), we down-sampled the372

images by a factor of two to train our models. Likewise, images were cropped symmetrically,373

keeping the 40× 40 central pixels. This size covers all of the recorded neurons’ receptive fields,374

with a slight variability in their spatial location. Furthermore, the stimuli light intensities375

across all pixels and all images were centered around zero and normalized to have unit standard376
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deviation. Additionally, we used the same random dataset splits of Cadena et al. (2019) into377

training (64%), validation (16%) and testing (20%). We assessed our models’ accuracy for a378

specific architecture or set of hyper-parameters in the validation set and we report performance379

on the test set. We consistently used the same split throughout our study.380

4.2 Divisive normalization model381

Our model consists of two parts, a nonlinear core and a linear readout (Section 2.1 and Fig. 1).
The core (Fig. 1A) processes the input stimulus x by convolving it with 32 filters wk of size
13 px × 13 px without padding, defining a bank of features indexed by k. Subsequently, we
apply batch normalization without re-scaling (BN*) leading to responses of unit variance (Ioffe
and Szegedy, 2015), followed by a rectified linear unit (ReLU) nonlinearity

f( · ) = max(0, · ) . (4)

Hence, the resulting 32 feature maps of size 28 px× 28 px for the excitatory drive are given by

yk = f(BN*(wk ∗ x)) . (5)

Many neurons perform similar computations but respond at different localized areas of the382

visual field. Those receptive fields are represented by the kernels wk, which we implemented383

convolutionally to exploit this knowledge. Furthermore, the ReLU nonlinearity (Eq. 4) ensures384

that all feature maps are positive, yk ≥ 0, which is coherent to the biological interpretation of385

an excitatory drive.386

The feature maps yk are then normalized divisively to produce 32 output feature maps

zl =
ynl
l

σnl
l +

∑
k pkl 〈y

nk
k 〉

(6)

shared by all neurons. Here, all operations are element-wise and the scalar semi-saturation387

constant σl ≥ 0 is learned from the data. To include normalization by other channels k, we first388

exponentiate the excitatory feature maps yk by the scalar nk ≥ 0 element-wise, which is learned389

from the data as well. Subsequently, low-pass filtering is performed through average pooling in390

space with pool-size 5 px× 5 px, denoted by 〈ynk
k 〉. We perform this pooling in order to achieve391

(approximate) phase invariance of the normalizing input without requiring a large number of392

filters with different phases. Subsequently, the results of the low-pass filtering are summed up,393

weighted by the normalization weights pkl, and added into the denominator, resembling Eq. (1).394

Furthermore, the normalization weights are constrained to be non-negative, pkl ≥ 0. Together395

with yk ≥ 0 and σl ≥ 0, this ensures that the denominator in Eq. (6) is non-negative, hence396

having a well-defined biological interpretation.397

We converted the core’s output feature maps zl, shared by all neurons, to the activity of
individual neurons via a linear readout for each of them (Fig. 1B). To do so, we factorized the
readout into spatial readout weights auv,i ≥ 0 and feature readout weights bl,i ≥ 0 that pick the
relevant locations and features,

r̂i = (auv,i bl,i) zuvl . (7)
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Here, u, v index space and i indexes neurons. This factorization is beneficial because it reduces398

the number of parameters in the readout. Also, we wanted to ensure that the readout does399

not model any complex computations, which we achieved by this factorization and the non-400

negativity of the readout weights. Additionally, we limited complexity by imposing a sparseness401

prior on both weights, because each neuron should only respond to its receptive field which402

is represented by a sparse spatial readout weight and should not mix many different features403

which corresponds to a sparse feature readout weight. The readout can, however, model a404

complex cell (Hubel and Wiesel, 1962) by linearly combining multiple channels of the shared405

feature space.406

To optimize our model’s parameters, we maximized the log-likelihood of the model’s predictions
given the data. To do so, we assumed that neurons’ spikes are produced by a Poisson process.
Our model predicts the average spike count r̂ of a neuron, hence the probability of observing r
spikes in the experiment is

P (r|r̂) =
r̂r

r!
e−r̂ . (8)

From that follows the Poisson log-likelihood

lnP (r|r̂) =
∑
i,j

(ri(xj) ln r̂i(xj)− ln(ri(xj)!)− r̂i(xj)) (9)

for all neurons i and all stimuli xj . A neuron’s response ri ≡ ri(xj) depends on the stimulus xj ,
which we suppress in our further notation for better readability. For implementation reasons,
we wanted to minimize the Poisson loss function

LPoisson =
∑
i,j

(r̂i − ri ln r̂i) , (10)

which is the negative of the Poisson log-likelihood (Eq. 9), where we omitted ln(ri!) since this407

term does not depend on our model.408

Furthermore, two terms regularizing the model’s parameters were applied to the loss. We
imposed a smoothness prior on the kernels wk to ensure the spatial continuity of the predictors’
receptive fields. The according penalty on the loss for not-smooth weights was determined with
a Laplace filter L to be

Lsmooth =

√∑
u,v,k

(L ∗ wk)2uv , L =

0.25 0.5 0.25
0.5 −3 0.5
0.25 0.5 0.25

 . (11)

Due to their receptive fields, neurons only respond to a small, localized area of the visual field,
which is why we imposed a sparsity regularizer on the spatial readout weights auv. Furthermore,
neurons should only pool from a small set of feature maps to ensure that the readout does not
perform complex computations. Thus we imposed a sparsity regularizer on the feature readout
weights bl as well. We achieved this by adding the L1-norm of both weights

Lsparse =
∑
i

∑
u,v,l

|auv| · |bl| (12)
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to the loss function.409

The final loss function to minimize with respect to our model’s parameters is

L = LPoisson + λsmooth Lsmooth + λsparse Lsparse , (13)

where λsmooth and λsparse are hyper-parameters which set the strength of the smoothness and410

the sparsity regularizer, respectively.411

4.3 Divisive normalization model extended to normalization from surround412

To extend our DN model to capture normalization from the spatial surround of a unit’s classical
RF, we replaced the weighted sum accounting for normalization (Eq. 6) by a convolution that
also covers space, keeping the rest of the original DN model unchanged,

zl =
ynl
l

σnl
l + sl

, sl =
∑
k

pkl·· ∗ 〈ynk
k 〉 . (14)

The new shared feature space zl consist of all element-wise operations where the normalization413

feature maps sl represent the strength by which the excitatory drive ynl
l is normalized. The414

normalization feature maps are the result of a convolution between 〈ynl
l 〉 and normalization415

pool kernels pkluv. These kernels encode which features (indexed by k) are pooled over what416

spatial extent (indexed by u, v). Note that for an u× v = 1× 1 convolutional kernel p, this is417

equal to the DN model without normalization from the surround (Eq. 6).418

For a larger convolutional kernel p, the feature maps s have smaller spatial dimensions than the419

excitatory feature maps y due to the valid convolution. To be able to perform the element-wise420

division, we symmetrically cropped the excitatory feature maps y so that the resulting feature421

maps had the same spatial dimensions as s.422

Additionally, we wanted to keep the complexity (number of parameters) of the linear readout423

constant for all the size choices of the normalization kernel p. To this end, we slightly modified the424

image prepossessing: after down-sampling the full images by a factor of two, we symmetrically425

cropped them to a size that corresponds – after a forward pass through our model – to a shared426

feature space of spatial dimensions 34 px × 34 px. In the particular case of a normalization427

kernel p of size 7 px× 7 px, the input images needed to be larger than the actual stimulus size428

to fulfill that constraint. Thus, we removed any offset at the masked out edges of the images429

by shifting their mean accordingly, and introduced the necessary zero padding. Overall, this430

process enabled a fair comparison across all sizes of p.431

To keep the kernel size of p computationally tractable, we used convolutions with a dilation
factor of five to be able to pool from a relatively large extra-classical RF while using few
parameters. If we would compute the convolution directly on the feature maps ynk

k , the dilation
would lead to a situation in which some elements in the feature map ynk

k are not accounted
for by the convolution’s inner product for one specific position of the convolutional kernel, i. e.
one specific element in the suppression feature maps sl. To consider all those elements in the
inner product computation of the convolution, we introduced a preceding average pooling with
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a 5 px× 5 px pool size (same as the dilation factor) and stride one. Then, all the information is
pooled over and weighted by exactly one weight of the convolutional kernel. In this view, the
pools of neighbouring weights of the dilated kernel have coinciding boundaries. So in addition
to implementing shift invariance (see Section 4.2), the average pooling makes sure that we do
not loose information for the extended DN model. Due to this pooling, a normalization kernel
p of spatial size 3 px × 3 px would spatially cover a normalization pool of size 15 px × 15 px.
We further reduced the number of parameters by a rank-two decomposition separating spatial
integration c and the feature weighting d,

pkluv =
2∑

m=1

cluv,m · dkl,m . (15)

Like before, u, v index space and k indexes the features to pool from. We constrained c and d432

to be non-negative to make sure the denominator in Eq. (14) is strictly non-negative (recall433

that in Eq. (14) 〈ynk
k 〉 ≥ 0). Our motivation to use two normalization pools (indexed by m)434

was to allow for both a localized feature-non-specific normalization pool and a feature-specific435

surround normalization as suggested by the standard model of DN. We investigated models436

with normalization kernel sizes of 1 px × 1 px, 3 px × 3 px, 5 px × 5 px and 7 px × 7 px which437

spatially covered a five times larger normalization pool due to dilation. Those normalization438

pools covered visual angles of 0.49◦, 0.77◦, 1.06◦ and 1.34◦, respectively.439

4.4 Baseline models440

4.4.1 Black-box convolutional neural network441

Since the divisive normalization computation in our model was completely learned from the
data, we wanted to compare to a baseline model that is purely data-driven as well. For this,
the current state-of-the-art model is a black-box convolutional neural network with three layers
(Cadena et al., 2019). Its first convolutional layer consists of a kernel with spatial size of
13 px × 13 px and for the second and third layer of size 3 px × 3 px each. All layers use 32
channels, batch normalization (Ioffe and Szegedy, 2015) and ELU nonlinearity (Clevert et al.,
2015)

ELU(h) =

{
h if h ≥ 0 ,

exp(h)− 1 else .
(16)

Similar to our model’s architecture, the core part of the CNN model results in a nonlinear442

feature space shared by all neurons which is mapped to each neuron’s activity with individual443

readout weights factorized in spatial and feature weightings. Sparseness of both of them is444

achieved by adding an L1-penalty to the according loss function. This readout differs from ours445

in having no constraints on the weights and an additional sophisticated point-wise nonlinearity446

requiring further parameters.447
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4.4.2 Convolutional subunit model448

Our convolutional subunit baseline model is structurally a one-layer convolutional neural
network with multiple filters followed by a readout. It is exactly the same as our divisive
normalization model (Section 4.2) but with the normalization function (Eq. 6) replaced by the
identity function

zl = id(yl) = yl . (17)

Hence, the only difference to our DN model is the lack of normalization. The shared feature449

space zl consists of rectified outputs of linear filters (Eq. 5) which approximate simple cells. The450

subsequent linear readout can sum up those simple cell responses with additional weightings,451

enabling the model to approximate complex cells (Hubel and Wiesel, 1962). We trained the452

model with the same loss function (Eq. 13) as the divisive normalization model.453

4.5 Number of learned parameters454

In our model and the baseline models, parameters belong either to the core part that is shared455

by all neurons (Table 1) or to the readout part in which parameters are specific for each456

individual neuron.457

Our DN model’s first convolution consists of kernels wk of spatial size 13 px × 13 px for 32458

output channels and batch-normalization without re-scaling, adding 32 bias weights. To learn459

the normalization pool, 32 normalization weights pkl were learned for each of the 32 output460

channels l. Additionally, we learned 32 semi-saturation constants σl and 32 exponents nl (one461

for each channel l). Hence, we get 13 · 13 · 32 + 32 + 32 · 32 + 32 + 32 = 6 528 weights for the462

core. The resulting 32 feature maps are of spatial size of 28 px× 28 px due to no padding in the463

convolution. Our linear readout is factorized in spatial and feature weights, thus consisting464

of 28 · 28 + 32 = 816 parameters per neuron. Note additionally that all weights except for465

the convolution kernel and the bias are constrained to be non-negative, halving the according466

weight-space.467

In the nonspecific divisive normalization model (Section 2.3.1) the normalization weights are468

constant for a given feature l, that is pkl = pl. Hence, it requires 32 instead of the 32 · 32469

normalization weights of the full divisive normalization model. The other parts of the core470

remain the same, leading to 6 528− 32 · 32 + 32 = 5 536 weights for the core. The readout and471

the number of 816 readout weights per neuron is the same for both models.472

The spatially extended DN model covering the classical receptive field surround requires more473

parameters. As before, we get from the first convolution, bias weights, exponents and semi-474

saturation constants 13 · 13 · 32 + 32 + 32 + 32 = 5 504 weights. For each normalization pool475

component (indexed by m), the factorized convolution learning the normalization contains476

32·32 = 1 024 feature normalization weights dkl,m and 32u v spatial normalization weights cluv,m.477

For the control experiments, we used 2 normalization pool components. So, the core consists in478

total of 5 504 + 2 · 1 024 + 2 · 32u v = 7 552 + 64u v weights. For the fitted spatial normalization479

kernel sizes u = v = 1, 3, 5, 7 this results in 7 616, 8 128, 9 152 and 10 688 parameters for the core,480
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respectively. The shared feature space for this model is of larger spatial size of 34 px× 34 px.481

Hence, the factorized readout consists of 34 · 34 + 32 = 1 188 parameters per neuron.482

The convolutional subunit model is the same as the divisive normalization model but with483

the divisive normalization function (Eq. 6) replaced by the identity function (Eq. 17). Hence,484

compared to the DN model, it saves 32 · 32 normalization weights pkl, 32 semi-saturation485

constants σl and 32 exponents nl, leading to 6 528− (32 · 32 + 32 + 32) = 5 440 parameters for486

the core. The number of 816 readout parameters per neuron stays the same as for the divisive487

normalization model.488

The black-box CNN was trained on the same data with input stimuli of size 40 px × 40 px489

(Cadena et al., 2019). We summarize the calculations in the following. The black-box CNN’s490

first convolution uses kernels with spatial size of 13 px× 13 px and 32 channels as well as 32491

biases due to batch normalization, leading to 13 · 13 · 32 + 32 = 5440 parameters. The two492

subsequent convolutions use kernels of spatial size 3 px×3 px with 32 input and output channels493

as well as 32 biases each, 3 · 3 · 32 · 32 + 32 = 9248 parameters for each convolution. In total, the494

core consists of 5440 + 2 · 9248 = 23 936 parameters. To map to the neurons activities, a readout495

is used that is factorized in space and features with one additional bias term. The utilized496

nonlinearity is rather sophisticated, adding 50 parameters. In total, the readout consists of497

28 · 28 + 32 + 1 + 50 = 867 parameters per neuron. Since the CNN model uses smaller input498

images than the DN model (Section 4.1), it requires less spatial readout weights.499

4.6 Hyper-parameter optimization500

Our model’s accuracy depends on several hyper-parameters. We set the initial learning-rate to501

10−3 and used an early stopping training scheme: We evaluated the Poisson loss (Eq. 10) every502

100 training steps and after ten iterations of no improvement we decayed the learning-rate by a503

factor of three. We repeated this four times to follow the same procedure used by Cadena et al.504

(2019), because they find best validation set accuracy for this approach. For the filters wk in505

the first convolution, we found that a size of 13 px× 13 px was optimal, the same is true for the506

number of 32 channels.507

The weight λsmooth of the smoothness penalty (Eq. 11) and the weight λsparse of the readout508

sparsity penalty (Eq. 12) in the full loss function (Eq. 13) were extensively cross-validated509

using the validation set of our data (Section 4.1). After a first coarse grid search for the510

divisive normalization model, we narrowed down the relevant parameter-space in which we511

perform a fine-grained search for the divisive normalization, nonspecific divisive normalization512

and convolutional subunit model. We randomly sampled the smooth-weight λsmooth from a513

logarithmic uniform distribution in the interval
[
10−9, 10−3

]
for the subunit and nonspecific514

DN model. For the full DN Model we sampled from a logarithmic uniform distribution in515 [
10−9, 10−4

]
. The readout sparse-weight λsparse was sampled from a logarithmic uniform516

distribution in the interval
[
10−9, 10−4

]
for the subunit and nonspecific DN model, for the full517

DN model we used a smaller interval of
[
10−9, 10−5

]
. For all models, we sampled 1 000 runs.518

For the divisive normalization model (Section 4.2), we achieved the highest accuracy for519

λsparse = 2.25 · 10−7 and λsmooth = 2.31 · 10−9. For the convolutional subunit model, we found520
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the optimal parameters to be λsparse = 2.59 · 10−6 and λsmooth = 4.98 · 10−5. The optimal521

weights of the nonspecific DN model were λsparse = 3.98 · 10−7 and λsmooth = 1.11 · 10−5.522

4.7 Accuracy evaluation523

4.7.1 Average correlation524

For architecture search, hyper-parameter optimization and the selection of specific models for525

analysis we evaluated models’ accuracies on the validation set with the Pearson correlation526

coefficient between the measured spike counts and our models’ predictions, averaged over527

neurons. If the prediction for one neuron is constant, the according standard deviation is zero.528

Hence, the correlation coefficient was not computable due to division by zero. For those neurons,529

we set the correlation coefficient to zero before averaging. This average correlation measure530

does not consider observational noise (Eq. 3).531

4.7.2 Fraction of explainable variance explained532

For reporting accuracy values in this paper, we used the data’s test set to compute the fraction
of explainable variance explained (FEV)

FEV = 1− Varres[r]

Varexp[r]
(18)

which utilizes the variance that is explainable in principle, Varexp[r] (Eq. 2), and the variance
of the residuals corrected by the observation noise,

Varres[r] =
N∑
i

(ri − r̂i)2/N − σ2noise . (19)

This measure corrects for observation noise, which variance σ2noise we estimated with Eq. (3).533

4.8 Evaluation of orientation-specific normalization534

To analyse how the preferred orientation of the features being normalized depend on that of the
features providing normalizing inputs (Fig. 4–6), we determined for each feature map whether
it extracts oriented features and – if so – its preferred orientation. To do so, we windowed each
convolutional kernel with a Gaussian window (SD: 3 px), normalized it and then computed
its 2D power spectrum (using the discrete Fourier transform with 64× 64 samples). We then
quantified how power spectral density is distributed across orientations by computing a mean
resultant vector m given by:

m =
∑
u,v∈R

Fuve
2iφ, (20)
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where Fuv is the Fourier transformed kernel, R = {(u, v) : 0.3 <
√
u2 + v2 < 0.7} contains all535

frequencies between 0.3 and 0.7 (with 1.0 being the Nyquist frequency), φ = atan2(v, u) is536

the orientation, i the imaginary unit and the factor 2 in the complex exponential accounts for537

the fact that we are interested in orientation, which is periodic in 180◦ or π. If all power in a538

kernel is concentrated in one orientation, the mean resultant vector will be long, whereas an539

unoriented kernel will have a mean resultant vector near zero. Based on visual inspection of the540

kernels in one model fit, we found m = 0.4 to be a reasonable threshold for separating oriented541

from unoriented features and used it as a heuristic for further analyses. We did not explore542

other thresholds to avoid issues with multiple comparisons and post-hoc statistical testing.543

To quantitify how strong a feature l is normalized by other features k, we computed the average544

normalizing input, which is given as the expected value (over images) of the product pkl ·ykuv(x)545

in Eq. (1). Since this normalization input depends on the stimulus, we computed its expected546

value of all images in the validation set. We removed the dependence on space by averaging547

over all locations within the feature map.548

4.9 Control: All channels contribute to our model’s prediction549

To verify that all features contribute to normalization, we analyzed the readout feature weights550

for the best ten models (assessed in terms of performance on the validation set). However,551

there are two issues that prevent a direct comparison across models and neurons of the feature552

weightings. First, the factorization of the readout into spatial and feature weightings is not553

unique: scaling the spatial weights (a in Eq. (7)) by a factor β whilst scaling the feature weights554

(b in Eq. (7)) by 1/β yields the same output limiting comparisons across neurons. Second, a555

similar exercise between the normalization weights p and the semi-saturation constant σ (Eq. 6)556

impedes comparison across models. To solve these issues, we normalized the feature readout557

weights across channels for this control analysis so that the resulting vectors for each neuron558

and model convey how much a certain channel contributes to predict a neuron’s response559

compared to the other channels, making the feature readout weights comparable across neurons.560

Next, we averaged these weights across neurons to assess the importance of the channels in a561

model. Since these normalized feature readout weights were comparable across both neurons562

and models, we calculated a collective distribution of the averaged feature readout weights563

from the best ten models. To make sense of this distribution’s absolute values, we evaluated its564

width in terms of the coefficient of variation, which is the standard deviation in units of the565

mean.566

4.10 Implementation details567

We used Tensorflow (Abadi et al., 2015) to implement models as well as Python, which we568

additionally used for data analysis. We optimized models with the Adam optimizer (Kingma and569

Ba, 2014) using mini-batches of size 256. In addition, we used the Python packages Numpy/Scipy570

(Walt et al., 2011), Pandas (McKinney, 2010), Matplotlib (Hunter, 2007), Seaborn (Waskom571

et al., 2017) and the tools Jupyter(Kluyver et al., 2016) and Docker (Merkel, 2014).572
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