Abstract
Reactive oxygen species (ROS) contribute to health and disease. CaMKII is a widely expressed enzyme whose activation by oxidation of regulatory domain methionines (ox-CaMKII) contributes to cardiovascular disease, asthma, and cancer. Here we integrate comparative genomic and experimental data to show that CaMKII activation by ROS arose more than half-a-billion years ago on the vertebrate stem lineage where it constituted a bridge between ROS and increased intracellular Ca2+ release, exercise responsive gene transcription, and improved performance in skeletal muscle. These enhancements to fight-or-flight physiology were likely key in facilitating a well-evidenced shift in the behavioural ecology of our immediate chordate ancestors, and, in turn, the evolutionary success of vertebrates. Still, the ox-CaMKII innovation for augmenting performance must be considered a critical evolutionary trade-off, as it rendered us more susceptible to common and often fatal diseases linked to excessive ROS.
Footnotes
This version only changed the copyright declaration.
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132520