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 A B S T R A C T 

Regional brain morphology has a complex genetic architecture, consisting of 
many common polymorphisms with small individual effects, which has limited 
the output of genome-wide association studies to date, despite its high 
heritability1,2. Given shared genetic architecture of brain regions, joint analysis 
of regional morphology measures in a multivariate statistical framework 
provides a way to enhance discovery of genetic variants with current sample 
sizes. While several multivariate approaches to GWAS have been put forward 
over the past years3–5, none are optimally suited for complex, large-scale data. 
Here, we apply the Multivariate Omnibus Statistical Test (MOSTest), with an 
efficient computational design enabling rapid and reliable permutation-based 
inference, to 171 subcortical and cortical brain morphology measures from 
26,502 participants of the UK Biobank (mean age 55.5 years, 52.0% female). At 
the conventional genome-wide significance threshold of a=5x10-8, MOSTest 
identifies 347 genetic loci associated with regional brain morphology, improving 
upon the discovery of established GWAS approaches more than threefold. Our 
findings implicate more than 5% of all protein-coding genes, and provide 
evidence for gene sets involved in neuron development and differentiation. As 
such, MOSTest, made publicly available, enables large steps forward in our 
understanding of the genetic determinants of regional brain morphology. 

 

 
 

 

Regional variations in surface area and thickness of the 
cerebral cortex, together with the volume of underlying 
subcortical structures, have been linked to much of our 
emotion processing and cognitive abilities, as well as the 
onset and course of devastating brain disorders. These 
brain morphological features are known to be highly 
heritable and to have a complex genetic architecture, 
involving many common genetic variants with small 
effect sizes1,2.  

The predominant strategy for identifying genomic loci 
associated with complex traits is through genome-wide 
association study (GWAS), a mass-univariate approach 
whereby the association between a single outcome 
measure and each of millions of genetic variants, in 
isolation, is tested. This is accompanied by a stringent 
multiple comparison correction to control the family-wise 

error rate, necessitating very large sample sizes to identify 
even relatively strong effects. To date, the largest  GWAS 
of regional brain morphological features based on brain 
scans obtained from up to fifty thousand individuals, 
identified almost two hundred genetic variants1, which 
together explained only a fraction of the reported narrow-
sense heritability. These studies primarily investigate each 
region of interest individually, compounding the multiple 
comparisons correction problem.  

In addition to small effect sizes, the genetic architectures 
of sets of regional brain features are likely to strongly 
overlap. Neighboring brain regions have similar functions 
and cytoarchitecture, indicating coordinated 
development6, and thus shared genetic influences. 
Further, while cortical thickness and surface area have 
been reported to be phenotypically and genetically only 
weakly correlated to each other7, many brain-related traits 
share a large proportion of genetic variants, even in the 
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absence of an overall correlation8. The discovery of these 
variants may thereby be boosted through joint analysis of 
these features, in a multivariate framework. This negates 
the application of penalties for studying multiple outcome 
measures, or the use of strategies that reduce phenotypic 
information to a single composite score, which is known 
to cause considerable loss of statistical power9. 
Importantly, a multivariate approach is much more 
consistent with the notion of the brain being an integrated 
unit, with highly interconnected and biologically similar 
brain regions, compared to univariate approaches that 
ignore the information shared across these component 
measures.  

We have developed a Multivariate Omnibus Statistical 
Test (MOSTest), designed to boost the power of imaging 
genetics by capitalizing on the shared signal across related 
measures. MOSTest has a unique combination of 
computational features that sets it apart from other 
multivariate approaches proposed in recent years3–5,10; it 
is capable of combining large-scale genome-wide 
analyses of dozens of traits for tens of thousands of 
individuals within hours while achieving state-of-the-art 
statistical power. Key characteristics of MOSTest include 
1) the use of Mahalanobis norm, as the sum of squared de-
correlated z-values across univariate GWAS summary 
statistics, to integrate effects across measures into a 
multivariate test statistic, 2) a rapid permutation-based 
approach to inference, in  a way that accounts for the 
multivariate correlation structure among phenotypes, and 
3) employment of the gamma cumulative density function 
to fit an analytic form for the null distribution, enabling 
extrapolation to and beyond 5x10-8 significance. This 
avoids the extensive computational burden associated 
with a permutation-based approach which has, until now, 
prohibited its application in GWAS. Please see the 
Extended Data section for a further discussion and 
validation of these features. 

As a comparison method, we followed an established 
approach recently leveraged by the Enhancing 
NeuroImaging Genetics through Meta-Analysis 
(ENIGMA) consortium1, referred to as the min-P 
approach; min-P takes the smallest p-value of each SNP 
across the univariate GWAS, and corrects this for the 
effective number of traits studied4,11, i.e. shared genetic 
architecture does not directly contribute to a more extreme 
test statistic. This method has highest power when the 
traits under investigation are independent from each other, 
as this results in higher variability of p-values and thus 
greater odds of a low p-value. Conversely, min-P has 
lowest power when traits are strongly correlated, as there 
is limited additional residual variance explained for the 
same degrees of freedom penalty3.  

Here, we applied our novel MOSTest to sets of regional 
brain morphology measures, to significantly improve 
upon previous efforts to discover the genetic loci 
associated with brain structure. Our sample consisted of 
26,502 healthy White European participants of the UK 

Biobank (UKB), with a mean age of 55.5 years (standard 
deviation (SD) 7.4), 52.0% female. We processed T1-
weighted structural MRI scans with the FreeSurfer v5.3 
standard recon-all processing pipeline, producing a subset 
of 35 subcortical volume estimates12, as well as subsets of 
surface area and cortical thickness estimates, both 
consisting of 68 cortical regions following the Desikan-
Killiany parcellation13, for a total set of 171 measures. All 
measures were pre-residualized for age, sex, scanner site, 
a proxy of image quality (Euler number), the first twenty 
genetic principal components to control for population 
stratification, and a global measure specific to each set of 
variables: mean cortical thickness for the regional 
thickness measures, total surface area for the area 
measures, and intracranial volume for the subcortical 
structures. Subsequently, we performed a rank-based 
inverse normal transformation to the residualized 
measures. We made use of the UKB v3 imputed data, 
carrying out standard quality-checks and setting a minor 
allele frequency threshold of .005, leaving 7.4 million 
SNPs. Univariate GWAS of each measure was performed 
with standard tools. The resulting summary statistics were 
then combined through MOSTest. For more details on 
sample composition, processing of the data, and the 
analysis techniques, please see the Online Methods 
section. 

Through the multivariate GWAS, we found hundreds of 
independent loci surpassing the conventional whole-
genome significance threshold of a=5x10-8, improving 
upon the discovery of all previous GWAS of brain 
morphology1,2,14. Overall, MOSTest led to a threefold 
higher discovery than the min-P approach, as shown in 
Figure 1A. The difference in performance is particularly 
pronounced when all features are combined, as also 
evident from the Miami plots shown in Figure 1B through 
E. This is in line with the philosophy behind MOSTest, to 
capitalize most on the combination of features and shared 
signal. As can be seen in Figure 1F, many loci identified 
through MOSTest were shared across the three feature 
subsets.  

Using the MiXeR tool8,15 we fitted a Gaussian mixture 
model of the null and non-null effects, and estimated for 
each feature set the number of SNPs involved, i.e. their 
polygenicity, and their effect size variance, or 
‘discoverability’. The results are summarized in Figure 2, 
depicting the estimated proportion of genetic variance 
explained by discovered SNPs by both approaches as a 
function of sample size. From the horizontal shift of the 
curve, we can gather that the effective sample size of 
MOSTest is about twice as high as min-P for most of the 
discovery trajectory.  
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Figure 1. Highly improved locus discovery through MOSTest. A. Number of independent whole-genome significant loci 
identified (on the y-axis and in the bubbles) for each set of features (on the x-axis), by MOSTest (in darker colored circles) 
and by min-P (in lighter colored squares). B - E. Miami plots, contrasting the observed -log10(p-values), shown on the y-
axis, of each SNP for MOSTest (top half) with min-P (bottom half), for each of the feature sets. The x-axis shows the 
relative genomic location, grouped by chromosome, and the red dashed lines indicate the whole-genome significance 
threshold of 5x10-8. Note, y-axis is clipped at -log10(p-value)=100. F. Venn diagram depicting the number of loci, 
identified through MOSTest, overlapping between the three feature subsets.  
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Cortical maps, depicting the morphological associations 
of the lead SNPs identified through MOSTest on all 
features with regional surface area and thickness 
measures, made clear that these SNPs have widespread 
effects, often with mixed directions, across regions and 
feature sets. As example, Figure 3 shows the maps for the 
top two hits (rs1080066 on chromosome 15, p=1.2*10-305, 
and rs13107325 on chromosome 4, p=3.1*10-124), all 
other maps are available in the Supplementary Material. 
These maps revealed anterior-posterior gradients as well 
as hemisphere-specific effects of some of the lead SNPs, 
in line with previously reported genetic patterns of the 
brain16–18.  

Gene-level analyses, using Multi-marker Analysis of 
GenoMic Annotation (MAGMA)19,20, indicated that 1034 
out of all 18,775 protein coding genes (i.e. 5.5%) were 
significant, with a p-value below a Bonferroni corrected 
threshold of a=.05/18,775. Figure 4A shows the number 
of significant genes for each (sub)set of features. Through 
competitive gene-set analyses we identified 136 
significant Gene Ontology sets for MOSTest applied to all 
features, the vast majority of which related to (regulation 
of) neuronal development and differentiation, with Figure 
4B listing the top fifteen. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. MOSTest increases effective sample size. Estimated percent of genetic variance explained by SNPs surpassing 
the genome-wide significance threshold, on the y-axis, as a function of sample size, depicted on the x-axis on a log10 
scale, for each of the feature sets and for both approaches. Percentages of genetic variance explained by discovered 
SNPs with current sample size (N=26,502) are shown in parentheses. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. The genetic variants identified through 
MOSTest have distributed effects across the cortex. Z-
values from the univariate GWAS for each cortical region 
for the two most significant lead SNPs from MOSTest 
applied to all features combined (left two columns for 
rs1080066 on chromosome 15, and right two columns for 
rs13107325 on chromosome 4). The top two rows show the 
effects of the SNPs on regional surface area, and the bottom 
two on cortical thickness. Positive effects of carrying the 
minor allele are shown in red, and negative in blue. Note: 
the absolute Z-value scaling is clipped at 8 (p=1.2*10-15), 
RH=right hemisphere, LH=left hemisphere. 
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Here, using our novel MOSTest approach to GWAS, we 
identified an unprecedented number of loci and genes 
associated with regional brain morphology. The success 
of this approach is indicative of the presence of extensive 
shared genetic architecture across brain regions and across 
morphological measures, attesting to the importance of 
estimating levels of genetic overlap beyond those 
indicated by simple correlations8 and pleading for 
techniques that boost discovery of genetic determinants 
by making use of shared signal between traits21. Indeed, 
overlapping genetic determinants are to be expected given 
the intricacy of brain development, with myriad molecular 
mechanisms operating across regional borders defined by 
gross morphological features. This is in accordance with 
high levels of pleiotropy across many brain-related traits 
and disorders22. Therefore, our multivariate strategy is 
better tailored to the complex biological processes we aim 
to understand than conventional univariate approaches, as 
confirmed by our identification of highly significant links 
to gene sets of neuronal development and differentiation. 
We estimate that, with the large gain of power and 
consequently lower required sample sizes of MOSTest, 
we will be able to uncover the majority of SNPs 
determining brain morphology in the upcoming years; the 
UK Biobank initiative, for instance, is set to release 
neuroimaging data of a 100,000 individuals by 202223, 
which we predict will enable MOSTest to uncover about 
40% of SNPs associated with regional brain morphology. 
Its output is ideally suited for secondary analyses and 
follow-up studies to investigate the relation between the 
set of loci discovered and individual features, with a much 
decreased multiple-comparisons burden. We have 
therefore made the MOSTest code publicly available, see 
Online Methods. As such, this approach may provide a  

 
highly fruitful strategy to uncover the genetic 
determinants of brain structure and function and other 
complex human phenotypes consisting of correlated 
component measures, such as mental, cognitive or 
cardiometabolic phenotypes, by taking advantage of the 
rich multivariate datasets now available. 
 
Author contributions 
A.M.D., O.F., D.v.d.M and O.A.A. conceived the study; D.v.d.M., O.F., 
T.K. and A.M.D. pre-processed the data. D.v.d.M., O.F. and A.M.D. 
performed all analyses, with conceptual input from O.A.A.; All authors 
contributed to interpretation of results; D.v.d.M. drafted the manuscript 
and all authors contributed to and approved the final manuscript. 
 
Materials & Correspondence. 
The data incorporated in this work were gathered from public 
resources. The code is available via 
https://github.com/precimed/mostest (GPLv3 license). 
Correspondence and requests for materials should be addressed 
to d.v.d.meer@medisin.uio.no 
 
References 
1. Grasby, K. L. et al. The genetic architecture of the human 

cerebral cortex. bioRxiv 399402 (2018). 
doi:10.1101/399402 

2. Satizabal, C. L. et al. Genetic Architecture of Subcortical 
Brain Structures in Over 40,000 Individuals Worldwide. 
bioRxiv 173831 (2017). 

3. Porter, H. F. & O’Reilly, P. F. Multivariate simulation 
framework reveals performance of multi-trait GWAS 
methods. Sci. Rep. 7, 38837 (2017). 

4. O’Reilly, P. F. et al. MultiPhen: joint model of multiple 
phenotypes can increase discovery in GWAS. PLoS One 7, 
e34861 (2012). 

5. Ferreira, M. A. R. & Purcell, S. M. A multivariate test of 
association. Bioinformatics 25, 132–133 (2008). 

6. Alexander-Bloch, A., Giedd, J. N. & Bullmore, E. Imaging 
structural co-variance between human brain regions. Nat. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Functional mapping and annotation indicates high neurobiological relevance of our findings. A. Number of 
whole-genome significant genes identified (on the y-axis and in the bubbles) for each set of features (on the x-axis), by 
MOSTest (in darker colored circles) and by min-P (in lighter colored squares). B. Results from the gene-set analyses 
following the application of the multivariate GWAS on all brain features. The fifteen most significant Gene Ontology sets 
for MOSTest are listed on the y-axis and -log10(p-values) are shown on the x-axis. MOSTest Bonferroni corrected p-
values are indicated by black circles, min-P in grey squares.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 14, 2019. ; https://doi.org/10.1101/767905doi: bioRxiv preprint 

https://doi.org/10.1101/767905
http://creativecommons.org/licenses/by-nc-nd/4.0/


VAN DER MEER, FREI ET AL.                                                                                                                   6 
 

Rev. Neurosci. 14, 322 (2013). 
7. Panizzon, M. S. et al. Distinct genetic influences on 

cortical surface area and cortical thickness. Cereb. Cortex 
bhp026 (2009). 

8. Frei, O. et al. Bivariate causal mixture model quantifies 
polygenic overlap between complex traits beyond genetic 
correlation. Nat. Commun. 10, 2417 (2019). 

9. Van Der Sluis, S., Verhage, M., Posthuma, D. & Dolan, C. 
V. Phenotypic complexity, measurement bias, and poor 
phenotypic resolution contribute to the missing heritability 
problem in genetic association studies. PLoS One 5, 
e13929 (2010). 

10. Wu, C. Multi-trait genome-wide analyses of the brain 
imaging phenotypes in UK Biobank. bioRxiv 758326 
(2019). doi:10.1101/758326 

11. Van der Sluis, S., Posthuma, D. & Dolan, C. V. TATES: 
efficient multivariate genotype-phenotype analysis for 
genome-wide association studies. PLoS Genet. 9, e1003235 
(2013). 

12. Fischl, B. et al. Whole brain segmentation: automated 
labeling of neuroanatomical structures in the human brain. 
Neuron 33, 341–355 (2002). 

13. Desikan, R. S. et al. An automated labeling system for 
subdividing the human cerebral cortex on MRI scans into 
gyral based regions of interest. Neuroimage 31, 968–980 
(2006). 

14. Elliott, L. T. et al. Genome-wide association studies of 
brain imaging phenotypes in UK Biobank. Nature 562, 210 
(2018). 

15. Holland, D. et al. Beyond SNP Heritability: Polygenicity 
and Discoverability of Phenotypes Estimated with a 
Univariate Gaussian Mixture Model. bioRxiv 498550 
(2019). doi:10.1101/498550 

16. Chen, C.-H. et al. Hierarchical genetic organization of 
human cortical surface area. Science 335, 1634–1636 
(2012). 

17. Chen, C.-H. et al. Genetic topography of brain 
morphology. Proc. Natl. Acad. Sci. 110, 17089 LP – 17094 
(2013). 

18. Kong, X.-Z. et al. Mapping cortical brain asymmetry in 
17,141 healthy individuals worldwide via the ENIGMA 
Consortium. Proc. Natl. Acad. Sci. 115, E5154–E5163 
(2018). 

19. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. 
MAGMA: generalized gene-set analysis of GWAS data. 
PLoS Comput. Biol. 11, e1004219 (2015). 

20. Watanabe, K., Taskesen, E., Bochoven, A. & Posthuma, D. 
Functional mapping and annotation of genetic associations 
with FUMA. Nat. Commun. 8, 1826 (2017). 

21. Andreassen, O. A. et al. Improved detection of common 
variants associated with schizophrenia and bipolar disorder 
using pleiotropy-informed conditional false discovery rate. 
PLoS Genet. 9, e1003455 (2013). 

22. Watanabe, K. et al. A global overview of pleiotropy and 
genetic architecture in complex traits. Nat. Genet. 1–10 
(2019). 

23. Miller, K. L. et al. Multimodal population brain imaging in 
the UK Biobank prospective epidemiological study. Nat. 
Neurosci. 19, 1523–1536 (2016). 

24. Sudlow, C. et al. UK biobank: an open access resource for 
identifying the causes of a wide range of complex diseases 
of middle and old age. PLoS Med. 12, e1001779 (2015). 

25. Bycroft, C. et al. The UK Biobank resource with deep 
phenotyping and genomic data. Nature 562, 203–209 
(2018). 

26. Bensimhoun, M. N-dimensional cumulative function, and 
other useful facts about gaussians and normal densities. 
Jerusalem, Isr. Tech. Rep 1–8 (2009). 

27. Finucane, H. K. et al. Partitioning heritability by functional 
annotation using genome-wide association summary 
statistics. Nat. Genet. 47, 1228 (2015). 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 14, 2019. ; https://doi.org/10.1101/767905doi: bioRxiv preprint 

https://doi.org/10.1101/767905
http://creativecommons.org/licenses/by-nc-nd/4.0/


VAN DER MEER, FREI ET AL.                                                                                                                   7 
 

Acknowledgements 

The authors were funded by the Research Council of Norway (276082, 213837, 223273, 204966/F20, 229129, 249795/F20, 
225989, 248778, 249795), the South-Eastern Norway Regional Health Authority (2013-123, 2014-097, 2015-073, 2016-064, 
2017-004), Stiftelsen Kristian Gerhard Jebsen (SKGJ-Med-008), The European Research Council (ERC) under the European 
Union’s Horizon 2020 research and innovation programme (ERC Starting Grant, Grant agreement No. 802998) and National 
Institutes of Health (R01MH100351, R01GM104400). This work was partly performed on the TSD (Tjeneste for Sensitive 
Data) facilities, owned by the University of Oslo, operated and developed by the TSD service group at the University of Oslo, 
IT-Department (USIT). (tsd-drift@usit.uio.no). Computations were also performed on resources provided by UNINETT 
Sigma2 - the National Infrastructure for High Performance Computing and Data Storage in Norway. 

Competing financial interests.  

Dr. Andreassen has received speaker’s honorarium from Lundbeck, and is a consultant to HealthLytix. Dr. Dale is a Founder 
of and holds equity in CorTechs Labs, Inc, and serves on its Scientific Advisory Board. He is a member of the Scientific 
Advisory Board of Human Longevity, Inc. and receives funding through research agreements with General Electric 
Healthcare and Medtronic, Inc. The terms of these arrangements have been reviewed and approved by UCSD in accordance 
with its conflict of interest policies. The other authors declare no competing financial interests. 

Online Methods 

Sample 
We made use of data from participants of the UKB population cohort, fetched from the data repository under accession 
number 27412. The composition, set-up, and data gathering protocols of the UKB have been extensively described 
elsewhere24. For this study, we selected White Europeans that had undergone the neuroimaging protocol. We excluded 1094 
individuals with a primary or secondary ICD10 diagnosis of a neurological or mental disorder, as well as 594 individuals 
with bad structural scan quality as indicated by an age and sex-adjusted Euler number more than three standard deviations 
lower than the scanner site mean. Our final sample size was n=26502, with a mean age of 55.5 years (SD=7.4). 52.0% of the 
sample was female.    

Data preprocessing 
T1 scans were collected from three scanning sites throughout the United Kingdom, all on identical Siemens Skyra 3T scanners 
with a 32-channel receive head coil. The UKB core neuroimaging team has published extensive information on the applied 
scanning protocols and procedures, which we refer to for more details23. The T1 scans were fetched from the UKB data 
repositories and stored locally at the secure computing cluster of the University of Oslo. We applied the standard recon-all -
all processing pipeline of Freesurfer v5.3, performing automated surface-based morphometry and subcortical 
segmentation12,13. From the output, we extracted the sets of regional subcortical and cortical morphology measures, as well 
as estimated intracranial volume (eICV). Extended Data Table 1 contains all the regional morphology measures, per subset, 
included in the current study. For each of these, we included both the left and right hemisphere measure, if applicable.  
We subsequently regressed out age, sex, scanner site, Euler number, and the first twenty genetic principal components from 
each measure. We further regressed out a global measure specific to each of the feature subsets: eICV for the subcortical 
volumes, mean thickness for the regional thickness measures, and total surface area for the regional surface area measures. 
This was done to ensure we are studying the genetic determinants of regional brain morphology rather than global effects. 
Following this, we applied rank-based inverse normal transformation to the residuals of each measure, leading to normally 
distributed input into the univariate GWAS. See the Extended Data section for a more in-depth discussion of the importance 
of this normalization procedure.  

Univariate GWAS procedure  
We made use of the UKB v3 imputed data, which has undergone extensive quality control procedures as described by the 
UKB genetics team25. After converting the BGEN format to PLINK binary format, we additionally carried out standard 
quality check procedures, including filtering out individuals with more than 10% missingness, SNPs with more than 5% 
missingness, and SNPs failing the Hardy-Weinberg equilibrium test at p=1*10-9. We further set a minor allele frequency 
threshold of 0.005, leaving 7,428,630 SNPs. 
The univariate GWAS on each of the 171 pre-residualized and normalized regional brain morphology measures were carried 
out using the standard additive model of linear association between genotype vector, 𝑔", and phenotype vector, 𝑦. To speed 
up calculations we implemented the association test directly in MOSTest software. Since we are dealing with pre-residualized 
measures, statistical significance was assessed from Pearson’s correlation coefficient 𝑟" = 𝑐𝑜𝑟𝑟(𝑦, 𝑔⋅"), as implemented in 
MATLAB’s corr function. This is equivalent to testing significance of the regression slope, 𝛽-", as both 𝛽-" and 𝑟"  are assumed 
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to be 𝑡-distributed and have the same 𝑡-value: 𝑡" = 𝛽"/𝑠𝑒2𝛽"3 = 𝑟"/𝑠𝑒(𝑟") = 𝑟"	√𝑁 − 2/91− 𝑟";	, and therefore the same p-
value, equal to Student’s t cumulative distribution function (cdf) with 𝑁− 2 degrees of freedom: 𝑃=>?," = 2	𝑡𝑐𝑑𝑓(−B𝑡"B, 𝑁 −
2), where N is the sample size. Further, we validated that the above procedure produces the same results as the association 
test implemented in the commonly used PLINK’s additive model. 

The MOSTest procedure 
The MOSTest test statistic for a given SNP is calculated as Mahalanobis norm tMOST = z' R-1 z from the multivariate vector 
of z scores, comprised of N univariate GWAS summary statistics for that SNP, where matrix R gives the correlation structure 
of z scores, estimated from the permuted data.  The null hypothesis of the MOSTest is that z vector is distributed as a 
multivariate normal random variable with zero mean and known variance-covariance matrix, given by R. To compute the 
theoretical p-value of the MOSTest test statistic, we need to calculate the multivariate normal probability of an event that 
tMOST = z' R-1 z exceeds a certain threshold. It is known that this probability is given by chi-square distribution with N degrees 
of freedom, or, equivalently, a gamma distribution, Gamma(N/2,0.5)26. Instead of using theoretical values, we fit the two free 
parameters of the Gamma(a,b) distribution to the observed distribution of tMOST under permutation, as this resulted in different 
scale parameter (b=0.434, instead of the theoretical b=0.5). The p-value of the MOSTest test statistic is then simply obtained 
from a cumulated distribution function of the gamma distribution, i.e. pMOST=CDFgamma(a,b)(z' R-1 z).  
The distribution of the MOSTest test statistic under the null is estimated empirically using permutations. For each SNP, we 
randomly permute the genotype vector, and then calculate the association statistic zperm between the permuted genotype vector 
and each of the measures. Permutation is done in a way that preserves the multivariate correlation structure, ensuring correct 
p-values, even when including measures that correlate nearly perfectly with each other. Note that for a given SNP we perform 
just one permutation, and thus runtime of MOSTest is just twice the time of running a standard GWAS on all measures. 
Controlling for covariates, such as genetic principal components, is done through pre-residualization of all input measures, 
i.e. we replace the measure with corresponding residual after multiple linear regression of the measure on the covariates. 
Additionally, we perform a rank-based inverse normal transformation of the residualized measures, to ensure that z-scores 
forming the input to MOSTest are normally distributed. 
MOSTest code is made publicly available through GitHub, https://github.com/precimed/mostest. 

Gene-set analyses 
We made use of the Functional Mapping and Annotation of GWAS (FUMA) online platform (https://fuma.ctglab.nl/) to 
further process the output from MOSTest and min-P. Through FUMA, we carried out MAGMA-based gene analyses using 
default settings, which entail the application of a SNP-wide mean model and use of the 1000 Genomes Phase 3 EUR reference 
panel. Gene-set analyses were done in a similar manner, restricting the sets under investigation to those part of the Gene 
Ontology biological processes subset (n=4436), as listed in MsigdB v5.2. 
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Extended Data 
Morphological features included 
Please see Extended Data Table 1 for an overview of all regional morphological features included in the analyses. We 
included all features outputted by the default Freesurfer subcortical and cortical processing streams, except for the range of 
global measures, CSF, surface holes, vessels, optic chiasm and hypointensities, as we did not consider these measures of 
regional brain morphology. 

 
  

Extended Data Table 1. Regional brain morphology outcome measures, per subset, included in the study. 
 

Subcortical Volumes Surface Area Thickness 
Lateral Ventricle Bankssts Bankssts 
Inferior Lateral Ventricle Caudalanteriorcingulate Caudalanteriorcingulate 
Cerebellum White Matter Caudalmiddlefrontal Caudalmiddlefrontal 
Cerebellum Cortex Cuneus Cuneus 
Thalamus Proper Entorhinal Entorhinal 
Caudate Fusiform Fusiform 
Putamen Inferiorparietal Inferiorparietal 
Pallidum Inferiortemporal Inferiortemporal 
3rd Ventricle* Isthmuscingulate Isthmuscingulate 
4th Ventricle* Lateraloccipital Lateraloccipital 
Brain Stem Lateralorbitofrontal Lateralorbitofrontal 
Hippocampus Lingual Lingual 
Amygdala Medialorbitofrontal Medialorbitofrontal 
Accumbens Area Middletemporal Middletemporal 
Ventral Diencephalon Parahippocampal Parahippocampal 
Choroid Plexus Paracentral Paracentral 
5th Ventricle* Parsopercularis Parsopercularis 
CC Posterior* Parsorbitalis Parsorbitalis 
CC Mid Posterior* Parstriangularis Parstriangularis 
CC Central* Pericalcarine Pericalcarine 
CC Mid Anterior* Postcentral Postcentral 
CC Anterior* Posteriorcingulate Posteriorcingulate 
 Precentral Precentral 
 Precuneus Precuneus 
 Rostralanteriorcingulate Rostralanteriorcingulate 
 Rostralmiddlefrontal Rostralmiddlefrontal 
 Superiorfrontal Superiorfrontal 
 Superiorparietal Superiorparietal 
 Superiortemporal Superiortemporal 
 Supramarginal Supramarginal 
 Frontalpole Frontalpole 
 Temporalpole Temporalpole 
 Transversetemporal Transversetemporal 
 Insula Insula 

Note: * not bilateral 
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Validation and formal comparison between MOSTest and other tools 
Current multivariate approaches, such as canonical correlation analysis as implemented in MV-PLINK5 and ordinal 
regression as implemented in MultiPhen4, perform a multiple regression in an opposite direction: the genotype vector is used 
as an outcome variable, while each phenotype is turned into an explanatory variable. The p-value is then calculated from an 
F-test, which tests for an association between the genotype vector and the most predictive linear combination of phenotypes 
at each SNP. Extended Data Figure 1 compares the -log10(p-value), calculated by MV-PLINK and MOSTest. MV-PLINK 
takes 10,000x longer to run (requiring approximately 250K CPU hours, instead of 24 CPU hours with MOSTest), it was 
therefore infeasible to run the analysis on the entire set of 7.4M SNPs. Instead we tested a set of 356 LD-independent SNPs 
(clumped at LD r2=0.6) with a p-value from min-P below the genome-wide significance threshold. The results show very 
high correlation (r=0.9976) between MV-PLINK and MOSTest -log10(p-values), with median of 14.16 (MOSTest) versus 
14.40 (MV-PLINK). 

Another recently developed multivariate test, aMAT10, uses the same test statistic as MOSTest, but after applying 
regularization (spectral filtering) to the correlation matrix R. In our data regularization wasn’t necessary, as the conditioning 
number was reasonably low, see Extended Data Table 2, leading to a well-defined matrix R-1. 

 
 
  

Extended Data Table 2. The conditioning number of the variance-covariance matrix (R), parameters of the Beta 
distribution (in Min-P test) and Gamma distribution (in MOSTest). 

 
#features cond(R) Beta_a Beta_b Gamma_a Gamma_b 

All 171 2237.48 0.936 134.872 85.755 0.433 

Area 68 1025.877 0.953 57.583 33.935 0.435 

Thickness 68 191.599 0.938 53.641 34.049 0.434 

Subcortical 35 132.63 0.913 20.977 17.484 0.435 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Extended Data Figure 1. Comparison between MV-PLINK and MOSTest for a selected set of 356 SNPs, showing high 
correlation (r=0.9976) between MV-PLINK and MOSTest -log10(p-values). 
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Rank-based inverse normal transformation 
It is important to carry out a rank-based inverse normal transformation of the measures, in order to have normally distributed 
z-scores as input for MOSTest. Without it, non-normally distributed measures can inflate p-values and thus elevate type-I 
error. Extended Data Figure 2 show the empirical distribution of MOSTest and min-P test statistics under the null (calculated 
via permutations), along with p-value calculated from the test, with the rank-based INT, showing correct behaviour. Figure 
3 shows the distributions after running MOSTest without the transformation, leading to deviations, highlighting that this 
transformation is important for maintaining correct type-I error. 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Extended Data Figure 2. Each subplot shows an empirical distribution of the min-P (top row) and MOSTest (bottom 
row) test statistics under null (calculated via permutations), along with p-value calculated from the test. Columns 
correspond to different sets of phenotypes included in the analysis. OX axis show the actual value of the test statistic: -
log10(min-P), for the min-P test, and z' R-1 z for MOSTest. The “Observed” plot shows empirical distribution of the test 
statistic; “Fitted” plot shows p-values calculated from Gamma(a,b) distribution (MOSTest) and Beta(a,b) distribution 
(min-P) after fitting the two parameters to the observed data. 
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Simulations for validation of correct type-I error in the presence of polygenic signal 
We performed simulations on synthetic data to validate that MOSTest has correct type-I also in the presence of polygenic 
signal. We used the real genotype matrix of 26,502 individuals from our main analysis to simulate 171 phenotypes using 
simple additive genetic model 𝑦 = 𝐺𝛽 + 𝜖, with the same phenotypic correlation as we observed in our combined set of 
feature (cortical area, cortical thickness and subcortical volumes). We randomly chose a set of 10K “causal” SNPs, but 
constrained them to odd chromosomes only, leaving even chromosomes free of genetic signal. 10K “causal” SNPs were 
shared across the 171 phenotypes, but each phenotype has its own randomly generated 𝛽	vector of genetic effects. SNP 
heritability of each phenotype was h2=0.3. Applying MOSTest to test data, we observe the resulting signal was completely 
flat for even chromosomes, showing that regions that are not in LD with causal variants aren’t picked by MOSTest. 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Extended Data Figure 3. Distribution of min-P and MOSTest p-values under permutation, without applying rank-
based inverse normal transformation, showing large deflection in the tails of the distribution. Appearance as in the 
previous figure. 
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Extended Data Figure 4, showing Manhattan and per-chromosome QQ plots for a synthetic dataset of 175 simulated 
phenotypes, with h=0.3 heritability, with 10K causal variants randomly assigned to odd chromosomes. No signal is 
observed for even chromosomes (as expected). 
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Extended Data Figure 5. Quantile-Quantile plots for the p-values derived from MOSTest (A) and min-P (B). 

Genomic inflation 
We applied LD score regression27 to test for genomic inflation in MOSTest and min-P results. The results, listed in 
Extended Data Table 3, show no genomic inflation. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Extended Data Table 3. Genomic inflation analysis with LD Score Regression intercept (from partitioned LDSC 1kG 
phase3 reference), confirming no confounding effects (stratification, cryptic relatedness) in MOSTest p-values. 
 

Feature set Test LambdaGC Intercept from LDSC 
All min-P 1.6524 0.9864 (0.0096) 
All MOSTest 2.0217 0.9247 (0.015) 
Subcortical min-P 1.5511 1.0062 (0.0086) 
Subcortical MOSTest 1.7179 0.9742 (0.0106) 
Area min-P 1.453 0.9913 (0.0093) 
Area MOSTest 1.5733 0.9748 (0.0112) 
Thickness min-P 1.4034 1.0085 (0.0068) 
Thickness MOSTest 1.5254 0.9952 (0.0085) 
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