Kinetic profiling of metabolic specialists demonstrates stability and consistency of in vivo enzyme turnover numbers

Authors

David Heckmann¹, Anaamika Campeau², Colton J. Lloyd¹, Patrick Phaneuf¹, Ying Hefner¹, Marvic Carrillo-Terrazas², Adam M. Feist^{1,3}, David J. Gonzalez², Bernhard O. Palsson^{1,3*}

¹Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA

²Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, USA

³The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark

Correspondence should be addressed to B.O.P. (email: palsson@ucsd.edu).

Abstract

Enzyme turnover numbers (k_{cat} s) are essential for a quantitative understanding of cells. Because k_{cat} s are traditionally measured in low-throughput assays, they are often noisy, non-physiological, inconsistent, and labor-intensive to obtain.

We use a data-driven approach to estimate in vivo k_{cat} s using metabolic specialist *E. coli* strains that resulted from gene knockouts in central metabolism followed by metabolic optimization via laboratory evolution. By combining absolute proteomics with fluxomics data, we find that *in vivo* k_{cat} s are robust against genetic perturbations, suggesting that metabolic adaptation to gene loss is mostly achieved through other mechanisms, like gene-regulatory changes. Combining machine learning and genome-scale metabolic models, we show that the obtained *in vivo* k_{cat} s predict unseen proteomics data with much higher precision than *in vitro* k_{cat} s. The results demonstrate that *in vivo* k_{cat} s can solve the problem of noisy and inconsistent parameterizations of cellular models.

Introduction

Enzyme catalytic rates are crucial for understanding many properties of living systems like growth, proteome allocation, stress, and dynamic responses to perturbation. The turnover number of an enzyme, k_{cat} , describes the maximal rate at which an enzyme's catalytic site can catalyze a reaction. Knowledge of k_{cat} has traditionally been a bottleneck in the quantitative understanding of cells, mainly because k_{cat} s have historically been obtained in labor-intensive, low-throughput in vitro assays. The substantial effort required for in vitro assays is likely the reason why, even in model organisms, only a small fraction of cellular enzymes has a measured k_{cat}^1 . Furthermore, in vitro k_{cat} estimates are frequently very inconsistent when different literature sources are compared², probably because in vitro conditions do not mimic in vivo conditions,

are affected by post-translational modifications, and can be biased by experimental batch effects.

In order to address the problems of low-throughput acquisition and in vivo-in vitro discrepancies, Davidi et al.³ combined proteomics data and flux predictions to estimate in vivo turnover numbers based on apparent catalytic rate (k_{app}). Davidi et al.³ integrated published *E. coli* proteomics data sets with in silico flux predictions in multiple growth conditions and showed that the resulting maximum apparent catalytic rate ($k_{app,max}$) across growth conditions is significantly correlated with in vitro k_{cats} . Thus, $k_{app.max}$ has the potential to overcome the problem of inconsistencies, in vitro-in vivo discrepancies, and batch effects from which in vitro k_{cal} suffer. However, it is unclear if $k_{app,max}$ is a stable system parameter that is robust to perturbation, and how much experimental procedures bias the estimation of $k_{app,max}$: absolute proteomic quantification techniques are still suffering from high variation and previous estimates of k_{cat} were based on in silico flux predictions rather than ¹³C fluxomics data. Furthermore, k_{cat} is expected to scale with growth rate⁴. As many experimental conditions in the literature data used in Davidi et al.³ resulted in low growth rates, the effective number of data sets contributing to $k_{\text{app,max}}$ is low. Finally, if $k_{\text{app,max}}$ is a useful estimator of in vivo k_{cat} , it should improve the predictive capability of metabolic models on data that was not used to obtain Kapp.max, i.e., the performance on a test set.

Here, we present a new approach for estimating k_{cat} in vivo (Figure 1). We combined proteomic profiling with fluxomics data to estimate in vivo k_{cat} s in *E. coli* strains that have undergone strong physiological perturbations via knockout of metabolic genes. To obtain strains with high growth rates for which k_{app} approaches $k_{app,max}$, adaptive laboratory evolution⁵ was used on the metabolic knockout strains. We profiled 21 strains, representing metabolic specialists with diverse flux profiles that are able to obtain high growth rates^{6–9}. With this data-driven approach, we show that in vivo k_{cat} s are stable and robust to genetic perturbations, and that they can be used in genome-scale models to obtain a high predictive performance for unseen protein abundance data.

Results

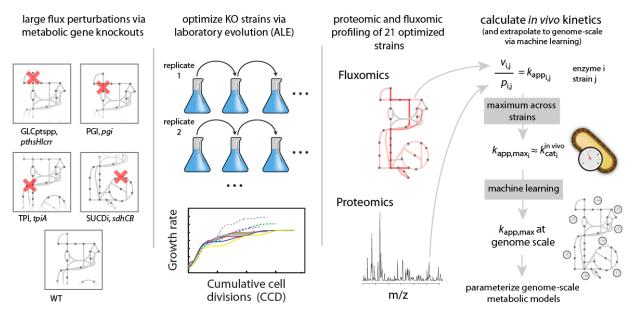


Figure 1: Approach for obtaining k_{cat} in vivo from metabolic specialists: Knock out of enzymes in central metabolism was followed by adaptive laboratory evolution (ALE) to obtain 21 strains that had diverse flux profiles, while achieving high growth rates^{6–9}. Fluxomics and proteomics data was then integrated for the evolved strains to obtain the maximum k_{app} across the 21 strains ($k_{app,max}$) for each enzyme that could be mapped uniquely. The obtained $k_{app,max}$ vector was then extrapolated to genome scale via supervised machine learning and used to parameterize genome-scale metabolic models. The resulting genome-scale models were then validated on unseen proteomics data.

Quantifying in vivo kinetics in metabolic specialists

In theory, $k_{app,max}$ will approach k_{cat} in vivo if a condition is found in which the respective enzyme is utilized at full efficiency. In order to achieve strong genetic perturbations of enzyme usage, we used gene knockout (KO) strains for the PTS system (*ptsHlcrr*⁶), the phosphoglucose isomerase (*pgi*⁸), triosephosphate isomerase (*tpiA*⁷), and succinate dehydrogenase (sdhCB⁹). As k_{app} increases with growth rate⁴, we used KO strains that were optimized for growth on glucose minimal medium via adaptive laboratory evolution (ALE)⁶⁻⁹ experiments. In addition to these KO strains, we utilized a wild type MG1655 strain that was subjected to ALE⁶⁻¹⁰. As evolution is not a deterministic process, ALE endpoints differ in genotype, and we included a total of 21 strains that resulted from replicates of ALE experiments (i.e., four endpoint strains for *ptsHlcrr*, eight for *pgi*, four for *tpiA*, three for *sdhCB*, and two WT controls) and that were representative for the respective endpoint population. We subjected the selected strains to genome sequencing and used the resulting sequences as reference proteomes in LC-MS/MS proteomics (see Methods). Absolute quantification of biological duplicates was achieved via calibration to the UPS2 standard and the top3 metric^{11,12}, which estimates protein abundance based on the average intensity of the three best ionizing peptides. Measured protein abundances show a median *R*² of 0.91 between biological replicates, and a median number of 2076 proteins were detected per strain (Supplementary Table 1). The obtained protein abundance vectors cluster by the genetic background of the strain used for ALE (Supplementary Figure 1), indicating that protein levels have adjusted in a specific pattern to compensate for the respective gene KO (see $^{6-9}$ for details on the transcript level).

Gene KO and ALE cause diversity in enzyme usage

We integrated the measured protein abundances with ¹³C MFA fluxomics data⁶⁻⁹ to calculate apparent catalytic rates in the 21 strains as the ratio of flux and protein abundance. Like in Davidi et al.³, we only calculated k_{app} for homomeric enzymes and reactions that are not catalyzed by multiple isoenzymes to allow a specific mapping of proteins to reactions. This approach resulted in a median number of 258 enzymes per strain for which we were able to calculate k_{app} . The resulting apparent catalytic rates largely cluster by the genotype of the KO strain (Figure 2A), confirming that enzyme usage was indeed perturbed by the respective KOs. Across the 21 strains, the maximum observed k_{app} of an enzyme is on average 4.4 times larger than the smallest observed k_{app} (Figure 2B), indicating that considerable variation in enzyme usage was caused by the metabolic gene knockout. To exclude the possibility that experimental variation causes this apparent diversity in enzyme usage, we compared the standard deviation of k_{app} in biological replicates (mean on log_{10} scale = 0.07) to the standard deviation measured across the 21 strains (mean on log_{10} scale = 0.18). We found that the variation caused by KOs and ALE is significantly larger than that caused by experimental variation (p<2e-16, Wilcoxon rank sum test).

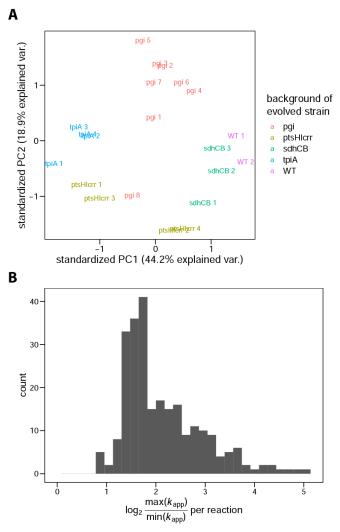


Figure 2: Apparent catalytic rates cluster by genetic background and exhibit diversity across strains. (A) Data on k_{app} in each of the 21 strains projected onto the first two principal components. Only reaction-strain combinations for which k_{app} was available in all strains were used, resulting in 214 reactions used in the analysis. Data was centered and scaled before conducting principal component analysis. (B) Distribution of ranges of k_{app} across reactions. The log₂ of the ratio between the highest and the lowest k_{app} per reaction is shown.

In vivo turnover numbers are stable and consistent

We estimated in vivo k_{cat} for a given enzyme as the maximum of k_{app} ($k_{app,max}$) in the 21 KO strains. This was similar to Davidi et al.³, who estimated in vivo k_{cat} s as the maximum k_{app} over different growth conditions. Due to incomplete substrate saturation and backward flux, the apparent catalytic rate of an enzyme is smaller than the in vivo k_{cat} . It is thus unclear if $k_{app,max}$ is a stable property of the system that can be used in metabolic models to give reliable predictions. Furthermore, absolute proteomics data and fluxomics data come with significant

experimental uncertainties and biases that could prevent $k_{app,max}$ from being useful in modeling applications.

Even though our protocol perturbed enzyme k_{app} via gene KO and ALE, whereas Davidi et al.³ used differences in growth conditions to achieve variation in enzyme usage, we found a very high agreement between $k_{app,max}$ from the two sources ($R^2 = 0.9$, Figure 3A). We used a parametric bootstrap procedure to quantify the uncertainty in our $k_{app,max}$ estimations (see Methods). We found that 42% (88 out of 210) of comparable values estimated by Davidi et al.³ fall into the 95% confidence intervals of the $k_{app,max}$ values obtained in this study. A clear outlier is the reaction FAD reductase (FADRx, Figure 3A). This discrepancy is caused by the different methods of flux estimation: while protein abundances of FAD reductase are relatively similar in the respective conditions for which the maximum k_{app} was measured (protein abundance is two times lower in Davidi et al.³), flux through the FADRx reaction in parsimonious FBA¹³ is one thousand times higher than the flux estimated in ¹³C MFA.

It is worth noting that the mutations observed in the 'ALE strains' are mostly regulatory in nature, with almost no structural changes in the homomeric enzymes examined in this study (see Supplementary Data 1 and ^{6–9,14} for details). One exception is the enzyme isocitrate dehydrogenase, which has shown a very high level of convergence for a coding sequence mutation (R395C) in seven out of the eight evolved *pgi* KO strains. We found no significant difference in $k_{app,max}$ compared to the $k_{app,max}$ of isocitrate dehydrogenase reported by Davidi et al.³ (p=0.28, parametric bootstrap), suggesting that the structural mutation does not increase the in vivo catalytic efficiency.

While $k_{app,max}$ from KO strains is very consistent with $k_{app,max}$ from different growth conditions, the correlation with k_{cat} in vitro is significantly lower ($R^2 = 0.59$, Figure 3C), and only 26% (32 out of 125) of the in vitro values fall into the 95% confidence intervals of $k_{app,max}$. A similar low correlation with in vitro k_{cat} was found in the $k_{app,max}$ estimates published by Davidi et al.³ ($R^2 = 0.59$, Figure 4D).

In summary, although we obtained $k_{app,max}$ from a genetic perturbation rather than variation in growth conditions, used ¹³C fluxomics data instead of in silico flux, and despite proteomics and flux data being subject to significant noise, we found very high agreement between $k_{app,max}$ from the two sources.

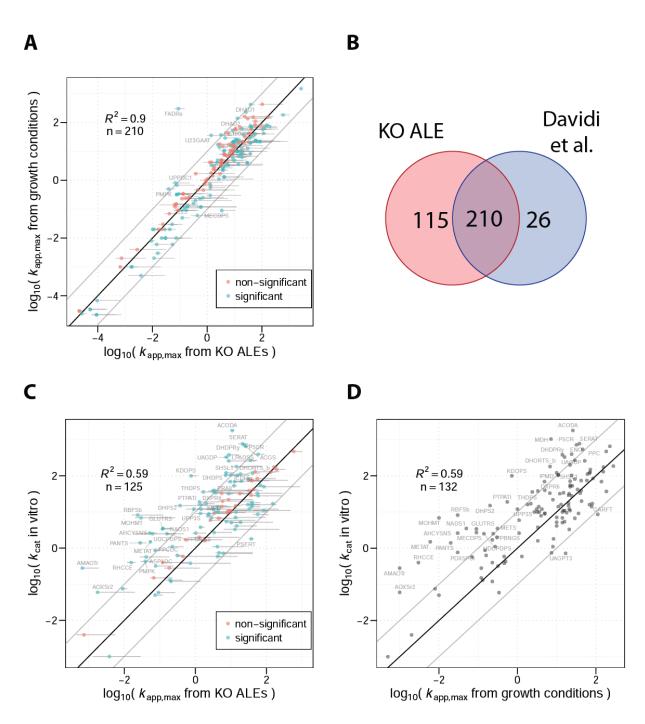


Figure 3: Estimates of in vivo turnover numbers are consistent. (A) Comparison between $k_{app,max}$ obtained from KO strains (this study) and $k_{app,max}$ from growth conditions (Davidi et al.³). (B) Number of reactions for which $k_{app,max}$ was obtained in KO strains (this study) and varying growth conditions (Davidi et al.³). (C) Comparison between $k_{app,max}$ obtained from KO strains and in vitro $k_{cat}s$. (D) Comparison between $k_{app,max}$ obtained from KO strains and in vitro $k_{cat}s^3$. Horizontal lines are 95% confidence intervals determined by 500 parametric bootstrap samples (see Methods). Points are marked red when the compared value falls into the 95% confidence interval of $k_{app,max}$ and are labelled with reaction IDs as given in the *i*JO1366 reconstruction¹⁵ if the values differ by more than one order of magnitude. Data on k_{cat} in vitro shown in panel (C) and (D) was taken from Davidi et al.³ to allow for comparison between the studies.

Using machine learning to extrapolate to the genome scale

The problem of low coverage that is associated with k_{cat} in vitro is also present in $k_{app,max}$: not all protein abundance can be mapped to enzymes uniquely, and proteomics experiments still suffer from coverage issues. The final set of $k_{app,max}$ values includes 325 enzymes (Figure 3B). This coverage is 27% higher than that found in Davidi et al.³, mostly because we used ¹³C fluxomics data that tends to have a higher sensitivity than the in silico method (parsimonious FBA¹³) used by Davidi et al.³. In order to validate the estimated in vivo turnover numbers in a genome-scale model that contains over three thousand direction-specific reactions, we first needed to extrapolate the data to the genome scale. We used supervised machine learning on a diverse enzyme data set¹⁶ that includes data on enzyme network context, enzyme 3D structure, and enzyme biochemistry to achieve this goal. An ensemble model of an elastic net, random forest, and neural network¹⁶ showed good performance in cross-validation for the in vivo turnover numbers, where the highest performance was achieved for $k_{app,max}$ that was obtained from the 21 KO strains (Figure 4). Taking the maximum of $k_{app,max}$ from this study and that of Davidi et al.³

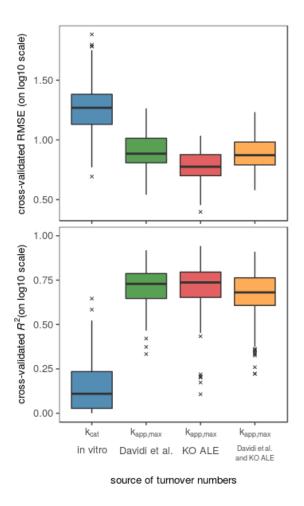


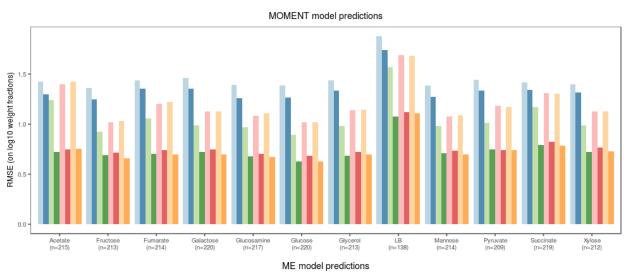
Figure 4: Performance of machine learning models on different sources of turnover numbers. The performance is estimated in five-times repeated five-fold cross-validation in elastic net, random forest, and a neural network¹⁶ (see Methods). Data for k_{cat} in vitro was taken from Heckmann et al.¹⁶.

Validation of turnover numbers in mechanistic models

The enzyme turnover number is a major determinant of gene expression levels as it sets a lower limit on the enzyme concentration required to maintain a given flux. Turnover numbers are successfully used in genome-scale metabolic models to constrain metabolic fluxes by a limited cellular protein budget^{17–19} or the balance of translation and dilution of proteins^{20–22}. The $k_{app,max}$ obtained from diverse growth conditions was previously used successfully in genome-scale metabolic models, showing that the performance of protein abundance predictions of models using $k_{app,max}$ was significantly higher than that of models using in vitro $k_{cal}s^{16}$. A major drawback of this analysis lies in the validation of the metabolic model which used data²³ that was also utilized in obtaining $k_{app,max}$ ³, posing the risk of circular reasoning through data leakage. If $k_{app,max}$ is a stable property of in vivo enzyme catalysis, it is expected to yield a high performance in metabolic models on unseen data, i.e., $k_{app,max}$ -based models should generalize well.

To test this hypothesis, we parameterized two genome-scale modeling algorithms of proteomelimited metabolism, a MOMENT¹⁷ and an ME model²⁰, with $k_{app,max}$ obtained from KO strains. We then used the model to predict enzyme abundance data under various growth conditions published by Schmidt et al.²³, a data set that was not used to obtain $k_{app,max}$ in this study. For comparison, we included model parameterization based on k_{cat} in vitro, with $k_{app,max}$ from Davidi et al.³, and the maximum of $k_{app,max}$ obtained in this study and that of Davidi et al.³. We found that the performance of $k_{app,max}$ from KO strains on the Schmidt et al.²³ data is very similar to that of Davidi et al.³: the average median root mean squared error (RMSE) on log₁₀ scale is 4% higher for the MOMENT model and 12% lower for the ME model, even though the Schmidt et al. data²³ was used to obtain $k_{app,max}$ in Davidi et al.³ (Figure 5, Supplementary Figure 2). This good performance on unseen data confirms that in vivo k_{cat} are stable against genetic perturbation and consistent across experimental protocols.

We further found that $k_{app,max}$ outperforms k_{cat} in vitro in MOMENT and ME models across all growth conditions (Figure 5). When comparing median-imputed k_{cat} parameterizations to those using supervised machine learning, we found that machine learning reduces RMSE on log₁₀ scale by 38% for $k_{app,max}$ and 10% for k_{cat} in vitro, confirming the utility of this approach¹⁶.



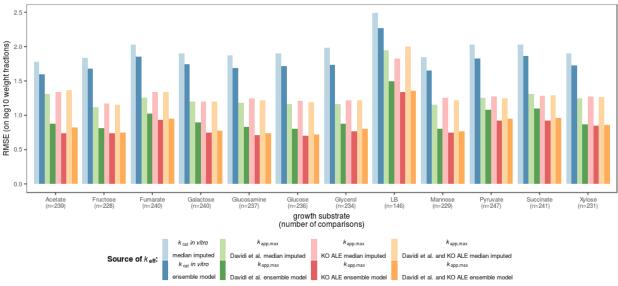


Figure 5: Performance in mechanistic models of proteome allocation. The MOMENT algorithm and a ME model were parameterized with different sources of turnover numbers. Growth on different carbon sources was simulated with the two algorithms and the predicted relative protein weight fractions of metabolic enzymes were compared to proteomics data in the respective growth condition²³ using the root mean squared error (RMSE) on log₁₀ scale.

Discussion

A large-scale characterization of the kinetic parameters that govern metabolism, termed the kinetome¹, has been a major hurdle in our quantitative understanding of cellular behavior^{1,24,25}. Previous efforts to use k_{cat} , which represents a major fraction of the kinetome, at the genome scale either utilized in vitro data^{17,19} or fitted kinetic parameters to physiological data^{4,26,27}. While in vitro k_{cat} s suffer from inconsistencies, low-throughput, high noise, and missing in vivo effects, parameter fitting is frequently under-determined and leads to non-unique solutions that can not be expected to generalize well when used in new conditions. The use of proteomics data and flux predictions on homomeric enzymes³, for which proteome abundances can be assigned

uniquely, is a promising approach that could solve many shortcomings of in vitro data and fitting approaches. While it was shown that this approximation of in vivo k_{cat} , $k_{app,max}$, exhibits a decent correlation with k_{cat} in vitro, it is unclear if $k_{app,max}$ captures an upper bound on enzymatic rate that is stable with respect to genetic perturbations and consistent across experimental procedures. These properties are prerequisites for the application of $k_{app,max}$ in metabolic models.

We found that in vivo turnover numbers that are obtained from KO strains are surprisingly consistent between very different protocols (Figure 3). Specifically, the protocol we used to obtain $k_{app,max}$ shows the following differences compared to that of Davidi et al.³: (1) k_{app} is not perturbed by growth conditions, but by genetic KOs; (2) we used ¹³C MFA fluxomics data instead of in silico data from parsimonious FBA; (3) we utilized proteomics data that was obtained with a single LC-MS/MS protocol, avoiding batch effects; and (4) all data was obtained under batch growth that promotes high growth rates, increasing k_{app}^4 . Given these differences in the two approaches to obtain $k_{app,max}$, the high agreement between the two methods indicates a high stability and consistency of in vivo k_{cat} s.

The high stability of in vivo k_{cat} s indicates that the adaptation of the strains during ALE does not lead to drastic increases in in vivo k_{cat} s. This hypothesis is supported by the relatively low number of convergent mutations in the coding regions of enzymes (Supplementary Data 1). Short term metabolic evolution appears to be governed by changes in gene regulation, rather than changes in enzyme efficiencies, at least in the case of the homomeric enzymes investigated in this study.

Why does $k_{app,max}$ exhibit a high consistency, where, in contrast, in vitro k_{cat} s often show a low agreement between different sources²? One reason might lie in the avoidance of batch effects: in vitro k_{cat} s are typically obtained individually in enzyme-specific assays, whereas $k_{app,max}$ used a small number of proteomics and flux data that were ideally obtained on the same instruments, thus avoiding batch effects. Furthermore, there is some indication that metabolite levels in vivo tend to saturate many enzymes²⁸, allowing for conditions of high enzyme saturation to be found even with a relatively small number of system perturbations.

Some sources of uncertainty remain in the $k_{app,max}$ values presented in this study. The ¹³C MFA data that we used was obtained for the endpoint populations of the respective ALE experiments^{6–9}, whereas we used clonal samples for proteomics experiments. While we chose clones that represented the most dominant mutations found in the endpoint populations, flux distributions could be affected by uncommon mutations. Furthermore, ¹³C MFA data can yield high coverage²⁹, but it still relies heavily on the quality of the underlying network model, which could bias analyses.

Because not all enzymes can be mapped to reaction uniquely and proteomics data still suffers from incomplete coverage, $k_{app,max}$ has a low coverage of the metabolic network and can not be readily used in genome-scale models. Based on mechanistic knowledge of factors that shape enzyme turnover numbers^{2,30,31}, supervised machine learning was previously used successfully

to extrapolate in vivo k_{cat} s to the genome scale¹⁶. We find a slightly lower error in cross validation on $k_{app,max}$ obtained from KO strains compared to $k_{app,max}$ from varying growth conditions³; this slight increase in performance may lie in the increased size of the training set, as we were able to obtain 38% more $k_{app,max}$ values due to the use of ¹³C MFA data. This finding is consistent with previously computed learning curves of $k_{app,max}$ on the Davidi et al. data set³ that showed that a domain of diminishing returns in model performance is reached with respect to the size of the training set¹⁶.

We find that metabolic models that are parameterized with the $k_{app,max}$ values we obtained from KO strains lead to very good predictive performance on unseen proteomics data. This performance in mechanistic models supports the hypothesis that $k_{app,max}$ indeed represents a stable property of the system, i.e. k_{cat} in vivo. Thus, $k_{app,max}$ can enable genome-scale metabolic models that generalize well to unseen conditions.

While kinetic parameters remain difficult to obtain, the stable and consistent properties of in vivo k_{cat} s support the notion that these parameters can improve the predictive capabilities of metabolic models significantly, and thus enable better quantitative understanding of the cell. Finally, the high stability of in vivo k_{cat} s suggests that short-term metabolic evolution is governed by changes in gene expression, rather than adaptation at the level of enzyme kinetics.

Methods

Strain genomic sequencing

Genomic DNA of ALE endpoint clones was isolated using bead agitation in 96-well plates as outlined previously³². Paired-end whole genome DNA sequencing libraries were generated with a Kapa HyperPlus library prep kit (Kapa Biosystems) and run on an Illumina HiSeq 4000 platform with a HiSeq SBS kit, 150 bp reads. The generated DNA sequencing fastq files were processed with the breseq computational pipeline (version 0.32.0)³³ and aligned to an *E. coli* K12 MG1655 reference genome³⁴ to identify mutations. DNA-seq quality control was accomplished using the software AfterQC (version 0.9.7)³⁵.

Clones were chosen in order to represent the high-frequency alleles found in the end-point populations of the respective ALE experiments. DNA sequences were used to create reference proteomes for proteomics experiments described below.

Sample preparation

For each strain, 3 ml of culture was grown overnight at 37°C with shaking in M9 medium³⁶ (4g Glucose I⁻¹) with trace elements³⁷, and then passed twice the following days in 15ml of media at 37°C from OD 0.05-0.1 to OD 1.0-1.5. For the experiment, 100 mL of culture with initial OD600 = 0.1 was grown in flasks with stirring in a water bath at 37°C. When cultures reached OD600 = 0.6, 40mL of culture was collected and immediately put on ice. The cells were pelleted by centrifuge at 5000 rpm at 4°C for 20 minutes. Cell pellets were then washed with 20 mL of cold PBS buffer three times and centrifuged at 5000 rpm for 20min at 4°C. Pellets were transferred

into 1.5 mL micro centrifuge tubes and centrifuged at 8000rpm at 4°C for 10 minutes. Remaining PBS buffer was removed and pellets of proteomic samples were frozen at -80C.

Sample lysis for proteomics

Frozen samples were immersed in a lysis buffer comprised by 75 mM NaCl (Sigma Aldrich), 3% sodium dodecyl sulfate (SDS) (Fisher Scientific), 1 mM sodium fluoride (VWR International, LLC), 1 mM β -glycerophosphate (Sigma Aldrich), 1 mM sodium orthovanadate, 10 mM sodium pyrophosphate (VWR International, LLC), 1 mM phenylmethylsulfonyl fluoride (Fisher Scientific), 50 mM HEPES (Fisher Scientific) pH 8.5, and 1X cOmplete EDTA-free protease inhibitor cocktail. Samples were subjected to rapid mixing and probe sonication using a Q500 QSonica sonicator (Qsonica) equipped with 1.6 mm microtip at amplitude 20%. Samples were subjected to three cycles of 10 seconds of sonication followed by 10 seconds of rest, with a total sonication time of 50 seconds.

Protein Abundance Quantitation

Total protein abundance was determined using a BCA Protein Assay Kit (Pierce) as recommended by the manufacturer.

Peptide Isolation

6 mg of protein was aliguoted for each sample. Sample volume was brought up to 20 mL in a solution of 4M Urea+50mM HEPES, pH=8.5. Disulfide bonds were reduced in 5mM dithiothreitol (DTT) for 30 minutes at 56°C. Reduced disulfide bonds were alkylated in 15mM of iodoacetamide (IAA) in a darkened room temperature environment for 20 minutes. The alkylation reaction was guenched via the addition of the original volume of DTT for 15 minutes in a darkened environment at room temperature. Proteins were next precipitated from solution via the addition of 5 µL of 100% w/v trichloroacetic acid (TCA). Samples were mixed and incubated on ice for 10 minutes. Samples were subjected to centrifugation at 16,000 x g for 5 minutes at 4°C. The supernatant was removed and sample pellets were gently washed in 50 µL of ice-cold acetone. Following the wash step, samples were subjected to centrifugation at 16,000 x g at 4°C. The acetone wash was repeated, and the final supernatant was removed. Protein pellets were dried on a heating block at 56°C for 15 minutes, and pellets were resuspended in a solution of 1M Urea+50mM HEPES, pH=8.5. The UPS2 standard (Sigma) was reconstituted as follows. 20 mL of a solution of 4M Urea+50mM HEPES, pH=8.5 was added to the tube. The sample tube was subjected to vortexing and water bath sonication for 5 minutes each. The standard was subjected to reduction and alkylation using methods described above. The sample was next diluted in a solution of 50mM HEPES, pH=8.5 such that the final concentration of Urea was 1M. 0.88 mg of the protein standard was spiked into each experimental sample, and samples were subjected to a two-step digestion process. First, samples were digested using 6.6µg of LysC at room temperature overnight, shaking. Next, protein was digested in 1.65 µg of sequencing-grade trypsin (Promega) for 6 hours at 37°C. Digestion reactions were terminated via the addition of 3.3 µL of 10% trifluoroacetic acid (TFA), and were brought up to a sample volume of 300 µL of 0.1% TFA. Samples were subjected to centrifugation at 16,000 x g

for 5 minutes and desalted with in-house-packed desalting columns using methods adapted from previously-published studies^{38,39}. Following desalting, samples were lyophilized, and then stored at -80°C until further use.

LC-MS/MS

Samples were resuspended in a solution of 5% acetonitrile (ACN) and 5% formic acid (FA). Samples were subjected to vigorous vortexing and water bath sonication. Samples were analyzed on an Orbitrap Fusion Mass Spectrometer with in-line Easy NanoLC (Thermo) in technical triplicate. Samples were run on an increasing gradient from 6%-25% ACN+0.125% FA for 70 minutes, then 100% ACN+0.125% FA for 10 minutes. 1µg of each sample was loaded onto an in-house-pulled and -packed glass capillary column heated to 60°C. The column measured 30 cm in length, with outer diameter of 360 mm and inner diameter of 100 mm. The tip was packed with C4 resin with diameter of 5 mm to 0.5 cm, then with C18 resin with diameter of 3 mm an additional 0.5 cm. The remainder of the column up to 30 cm was packed with C18 resin with diameter of 1.8 mm. Electrospray ionization was achieved via the application of 2000 V to a T-junction connecting sample, waste, and column capillary termini. The mass spectrometer was run in positive polarity mode. MS1 scans were performed in the Orbitrap, with a scan range of 375-1500 m/z with resolution of 120,000. Automatic gain control (AGC) was set to 5 x 10⁵, with maximum ion inject time of 100 ms. Dynamic exclusion was performed at 30 second duration. Top n was used for fragment ion isolation, with n=10. The decision tree option was used for fragment ion analysis. Ions with charge state of 2 were isolated between 375-1500 m/z, and ions with charge state 3-6 were isolated between 600-1500 m/z. Precursor ions were fragmented using fixed Collision-Induced Dissociation (CID). Fragment ion detection occurred in the linear ion trap, and data were collected in profile mode. Target AGC was set to 1x10⁴. Technical triplicate spectral data was searched against a customized reference proteome comprised by the reference proteome of the respective strain (see above) appended to the UPS2 fasta sequences (Sigma) using Proteome Discoverer 2.1 (Thermo). Spectral matching and *in silico* decoy database construction was performed using the SEQUEST algorithm⁴⁰. Precursor ion mass tolerance was set to 50 ppm. Fragment ion mass tolerance was set to 0.6 Da. Trypsin was specified as the digesting enzyme, and two missed cleavages were allowed. Peptide length tolerated was set to 6-144 amino acids. Dynamic modification included oxidation of methionine (+15.995 Da), and static modification included carbamidomethylation of cysteine residues (+57.021 Da). A false-discovery rate of 1% was applied during spectral searches.

Protein abundance estimation

In order to estimate absolute protein abundance, the top3 metric was calculated for each protein as the average of the three highest peptide areas^{11,12}. Robust linear regression (as implemented in the MASS package⁴¹) was used to calibrate top3 with the UPS2 standard according to the following model to obtain the amount of loaded protein A:

$$log_{10}(A) = a + b \ log_{10}(top3)$$

In order to obtain abundance relative to cell dry weight (C), we use a constant ratio γ = 13.94 µmol gDW^{-1 42}:

$$C_i = \gamma \frac{A_i}{\sum_j A_j}$$

Calculation of kapp,max

For each biological replicate, apparent catalytic rates k_{app} were calculated as the ratio of protein abundance and measured flux if (1) the protein abundance surpassed 50 pmol gDW⁻¹ and (2) the estimated flux was at least four times larger than the range of the 95% confidence interval, flux was larger than 100 fmol gDW-1 h-1, and the 95% confidence interval did not include zero, as defined in McCloskey et al.²⁹.

For each of the two biological replicates per strain, $k_{app,max}$ was calculated as the maximum $k_{app,max}$ across the 21 strains. Finally the average $k_{app,max}$ over the two replicates was calculated and used in the presented analyses.

Parametric bootstrap for $k_{app,max}$

We used a parametric bootstrap approach to estimate how experimental variability in proteomics and fluxomics data affects $k_{app,max}$. We assumed protein abundance to be normally distributed with mean and standard deviation estimated from biological replicates. Variability in flux data was also assumed to take a normal distribution, where we used the standard deviation of the MFA procedure that resulted from multiple model reruns on biological triplicates^{6–9}. For each reaction, 500 bootstrap samples were simulated, and these samples were used to calculate 95% confidence intervals for $k_{app,max}$.

Machine learning

Turnover numbers were extrapolated to the genome scale using the machine learning approach published previously¹⁶. The enzyme features used in Heckmann et al.¹⁶ were labelled with the $k_{app,max}$ values estimated in this study, and an ensemble model of elastic net, random forest, and neural network was trained using the caret package⁴³ and h2o⁴⁴. Model hyperparameters were chosen in five times repeated cross-validation (one repetition in the case of neural networks) based on the RMSE metric, as reported in Heckmann et al.¹⁶. For the neural networks, random discrete search was used for optimization of hyperparameters¹⁶.

MOMENT modeling

Validation of different turnover number vectors in the MOMENT model was conducted as described in Heckmann et al.¹⁶. The genome-scale metabolic model *i*ML1515⁴⁵ was used in the R⁴⁶ packages sybil⁴⁷ and sybilccFBA⁴⁸ to construct linear programming problems that were solved in IBM CPLEX version 12.7.

ME modeling

To complement the MOMENT-based validation of the computed turnover numbers, a similar validation approach was employed with the *i*JL1678b-ME genome-scale model of *E. coli* metabolism and gene expression⁴⁹. The k_{app} s were mapped to *i*JL1678b-ME as previously

described¹⁶. However the ME-model k_{app} s were adjusted due to a key difference that lies in the way that the MOMENT and ME-model resource allocation models apply enzyme constraints. MOMENT accounts for each unique protein contained within a catalytic enzyme whereas the ME-model formulation accounts for the complete number of protein subunits in an enzyme. As a result, the macromolecular "cost" of catalyzing a reaction in the ME-model is often notably higher than in MOMENT. To account for this, the k_{app} s in the ME-model were adjusted by scaling each k_{app} by the number of protein subunits divided by the number of unique proteins.

The ME-model was solved in quad precision using the qMINOS solver⁵⁰ and a bisection algorithm⁵¹ to determine the maximum feasible model growth rate, within a tolerance of of 10^{-12} . All proteins in a solution with a computed synthesis greater than zero copies per cell were compared to experimentally measured protein abundances. Since the ME-model accounts for the activity of many proteins outside of the scope of the k_{app} prediction method, only those that overlap with predicted k_{app} s were considered.

Data Availability

Results of genome sequencing and mutation calling were deposited to ALEdb (aledb.org) as part of the "Central Carbon Knockout (CCK) project". Mass spectrometry-based proteomic data can be found on the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) with the dataset identifier "PXD015344".

References

- Nilsson, A., Nielsen, J. & Palsson, B. O. Metabolic Models of Protein Allocation Call for the Kinetome. *Cell Syst* 5, 538–541 (2017). doi:10.1016/j.cels.2017.11.013
- Bar-Even, A. *et al.* The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters. *Biochemistry* 50, 4402–4410 (2011).
- Davidi, D. *et al.* Global characterization of in vivo enzyme catalytic rates and their correspondence to in vitro kcat measurements. *Proceedings of the National Academy of Sciences* 113, 3401–3406 (2016).
- Goelzer, A. *et al.* Quantitative prediction of genome-wide resource allocation in bacteria. *Metab. Eng.* **32**, 232–243 (2015).
- 5. Sandberg, T. E., Salazar, M. J., Weng, L. L., Palsson, B. O. & Feist, A. M. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial

biotechnology. *Metab. Eng.* 56, 1–16 (2019). doi:10.1016/j.ymben.2019.08.004

- McCloskey, D. *et al.* Adaptive laboratory evolution resolves energy depletion to maintain high aromatic metabolite phenotypes in Escherichia coli strains lacking the Phosphotransferase System. *Metab. Eng.* 48, 233–242 (2018). doi:10.1016/j.ymben.2018.06.005
- McCloskey, D. *et al.* Adaptation to the coupling of glycolysis to toxic methylglyoxal production in tpiA deletion strains of Escherichia coli requires synchronized and counterintuitive genetic changes. *Metabolic Engineering* 48, 82–93 (2018). doi:10.1016/j.ymben.2018.05.012
- McCloskey, D. *et al.* Multiple Optimal Phenotypes Overcome Redox and Glycolytic Intermediate Metabolite Imbalances in Escherichia coli pgi Knockout Evolutions. *Appl. Environ. Microbiol.* 84, (2018). doi:10.1128/AEM.00823-18
- McCloskey, D. *et al.* Growth Adaptation of gnd and sdhCB Escherichia coli Deletion Strains Diverges From a Similar Initial Perturbation of the Transcriptome. *Front. Microbiol.* 9, 1793 (2018). doi:10.3389/fmicb.2018.01793
- LaCroix, R. A. *et al.* Use of adaptive laboratory evolution to discover key mutations enabling rapid growth of Escherichia coli K-12 MG1655 on glucose minimal medium. *Appl. Environ. Microbiol.* 81, 17–30 (2015).
- Silva, J. C., Gorenstein, M. V., Li, G.-Z., Vissers, J. P. C. & Geromanos, S. J. Absolute Quantification of Proteins by LCMSE : A Virtue of Parallel ms Acquisition. *Mol. Cell. Proteomics* 5, 144–156 (2006).
- Ahrné, E., Molzahn, L., Glatter, T. & Schmidt, A. Critical assessment of proteome-wide label-free absolute abundance estimation strategies. *Proteomics* 13, 2567–2578 (2013).
- Holzhütter, H.-G. The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks. *Eur. J. Biochem.* 271, 2905–2922 (2004). doi:10.1111/j.1432-1033.2004.04213.x

- McCloskey, D. *et al.* Evolution of gene knockout strains of E. coli reveal regulatory architectures governed by metabolism. *Nat. Commun.* 9, 3796 (2018). doi:10.1038/s41467-018-06219-9
- Orth, J. D. *et al.* A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011. *Mol. Syst. Biol.* 7, (2011).
- Heckmann, D. *et al.* Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models. *Nat. Commun.* 9, 5252 (2018). doi:10.1038/s41467-018-07652-6
- Adadi, R., Volkmer, B., Milo, R., Heinemann, M. & Shlomi, T. Prediction of Microbial Growth Rate versus Biomass Yield by a Metabolic Network with Kinetic Parameters. *PLoS Comput. Biol.* 8, e1002575–e1002575 (2012). doi:10.1371/journal.pcbi.1002575
- Beg, Q. K. *et al.* Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity. *Proceedings of the National Academy of Sciences* **104**, 12663–12668 (2007).
- 19. Sánchez, B. J. *et al.* Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints. *Mol. Syst. Biol.* **13**, (2017).
- 20. Lerman, J. A. *et al.* In silico method for modelling metabolism and gene product expression at genome scale. *Nat. Commun.* **3**, 929–929 (2012).
- OBrien, E. J., Lerman, J. A., Chang, R. L., Hyduke, D. R. & Palsson, B. Ø. Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction. *Mol. Syst. Biol.* 9, (2013).
- Yang, L., Yurkovich, J. T., King, Z. A. & Palsson, B. O. Modeling the multi-scale mechanisms of macromolecular resource allocation. *Curr. Opin. Microbiol.* 45, 8–15 (2018). doi:10.1016/j.mib.2018.01.002
- Schmidt, A. *et al.* The quantitative and condition-dependent Escherichia coli proteome. *Nat. Biotechnol.* 34, 104–110 (2016).

- Davidi, D. & Milo, R. Lessons on enzyme kinetics from quantitative proteomics. *Curr. Opin. Biotechnol.* 46, 81–89 (2017).
- 25. van Eunen, K. & Bakker, B. M. The importance and challenges of in vivo-like enzyme kinetics. *Perspectives in Science* **1**, 126–130 (2014). doi:10.1016/j.pisc.2014.02.011
- 26. Ebrahim, A. *et al.* Multi-omic data integration enables discovery of hidden biological regularities. *Nat. Commun.* **7**, 13091 (2016). doi:10.1038/ncomms13091
- Khodayari, A. & Maranas, C. D. A genome-scale Escherichia coli kinetic metabolic model kecoli457 satisfying flux data for multiple mutant strains. *Nat. Commun.* 7, 13806–13806 (2016).
- Bennett, B. D. *et al.* Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. *Nat. Chem. Biol.* 5, 593–599 (2009).
- McCloskey, D., Young, J. D., Xu, S., Palsson, B. O. & Feist, A. M. Modeling Method for Increased Precision and Scope of Directly Measurable Fluxes at a Genome-Scale. *Anal. Chem.* 88, 3844–3852 (2016). doi:10.1021/acs.analchem.5b04914
- Heckmann, D., Zielinski, D. C. & Palsson, B. O. Modeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates. *Nat. Commun.* 9, 5270 (2018). doi:10.1038/s41467-018-07649-1
- Davidi, D., Longo, L. M., Jabłońska, J., Milo, R. & Tawfik, D. S. A Bird's-Eye View of Enzyme Evolution: Chemical, Physicochemical, and Physiological Considerations. *Chem. Rev.* (2018). doi:10.1021/acs.chemrev.8b00039
- Marotz, C. *et al.* DNA extraction for streamlined metagenomics of diverse environmental samples. *Biotechniques* 62, 290–293 (2017). doi:10.2144/000114559
- Deatherage, D. E. & Barrick, J. E. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. *Methods Mol. Biol.* **1151**, 165–188 (2014). doi:10.1007/978-1-4939-0554-6 12
- 34. Phaneuf, P. SBRG/bop27refseq: Zenodo DOI release. (2018).

doi:10.5281/zenodo.1301237

- 35. Chen, S. *et al.* AfterQC: automatic filtering, trimming, error removing and quality control for fastq data. *BMC Bioinformatics* **18**, 80 (2017). doi:10.1186/s12859-017-1469-3
- Sambrook, J. & Russell, D. W. Molecular cloning: a laboratory manual. (Cold Spring Harbor Laboratory Press, 2001).
- Fong, S. S. et al. In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol. Bioeng. 91, 643–648 (2005). doi:10.1002/bit.20542
- Lapek, J. D., Jr, Lewinski, M. K., Wozniak, J. M., Guatelli, J. & Gonzalez, D. J. Quantitative Temporal Viromics of an Inducible HIV-1 Model Yields Insight to Global Host Targets and Phospho-Dynamics Associated with Protein Vpr. Mol. Cell. Proteomics 16, 1447–1461 (2017). doi:10.1074/mcp.M116.066019
- Rappsilber, J., Ishihama, Y. & Mann, M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal. Chem. 75, 663–670 (2003). doi:10.1021/ac026117i
- Eng, J. K., McCormack, A. L. & Yates, J. R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994). doi:10.1016/1044-0305(94)80016-2
- 41. Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. (Springer, 2002).
- 42. Escherichia coli and Salmonella: cellular and molecular biology. (ASM Press, 1996).
- 43. Kuhn, M. & Others. Caret package. J. Stat. Softw. 28, 1–26 (2008).
- 44. Candel, A., Parmar, V., LeDell, E. & Arora, A. Deep learning with H2O. H2O. ai Inc (2016).
- Monk, J. M. *et al.* iML1515, a knowledgebase that computes Escherichia coli traits. *Nat. Biotechnol.* 35, 904–908 (2017). doi:10.1038/nbt.3956
- 46. R Core Team. *R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.* 2016. (2017).
- 47. Gelius-Dietrich, G., Desouki, A. A., Fritzemeier, C. J. & Lercher, M. J. sybil -- Efficient

constraint-based modelling in R. BMC Syst. Biol. 7, 125-125 (2013).

- Desouki, A. A. sybilccFBA: Cost Constrained FLux Balance Analysis: MetabOlic Modeling with ENzyme kineTics (MOMENT). (2015).
- Lloyd, C. J. *et al.* COBRAme: A computational framework for genome-scale models of metabolism and gene expression. *PLoS Comput. Biol.* 14, e1006302 (2018). doi:10.1371/journal.pcbi.1006302
- 50. Ma, D. *et al.* Reliable and efficient solution of genome-scale models of Metabolism and macromolecular Expression. *Sci. Rep.* **7**, 40863 (2017). doi:10.1038/srep40863
- 51. Yang, L. et al. solveME: fast and reliable solution of nonlinear ME models. BMC

Bioinformatics 17, 391 (2016). doi:10.1186/s12859-016-1240-1

Acknowledgements

This work was supported by the Novo Nordisk Foundation Grant Number NNF10CC1016517. The authors would like to thank Dan Davidi and Douglas McCloskey for insightful discussions, and Marc Abrams for proofreading the manuscript.

Author contributions

DH and BOP designed the study. DH, PP, and AMF conducted strain genotyping and strain selection. YH, AC, and MCT prepared samples for proteomics experiments. AC, DH, and DJG designed proteomics experiments. AC conducted LC-MS/MS experiments. CJL conducted ME modeling. DH conducted data analysis, data integration, training of machine learning models, and MOMENT modeling.

Competing interests

The authors declare no competing interests.

Additional Information

Supplementary Information 1: Supplementary Table 1 and Supplementary Figures (pdf). Supplementary Data 1: Table of mutations that occurred during ALE (csv).