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Abstract 
Enzyme turnover numbers (kcats) are essential for a quantitative understanding of cells. 
Because kcats are traditionally measured in low-throughput assays, they are often noisy, non-
physiological, inconsistent, and labor-intensive to obtain.  
We use a data-driven approach to estimate in vivo kcats using metabolic specialist E. coli strains 
that resulted from gene knockouts in central metabolism followed by metabolic optimization via 
laboratory evolution. By combining absolute proteomics with fluxomics data, we find that in vivo 
kcats are robust against genetic perturbations, suggesting that metabolic adaptation to gene loss 
is mostly achieved through other mechanisms, like gene-regulatory changes. Combining 
machine learning and genome-scale metabolic models, we show that the obtained in vivo kcats 
predict unseen proteomics data with much higher precision than in vitro kcats. The results 
demonstrate that in vivo kcats can solve the problem of noisy and inconsistent parameterizations 
of cellular models. 

Introduction 
Enzyme catalytic rates are crucial for understanding many properties of living systems like 
growth, proteome allocation, stress, and dynamic responses to perturbation. The turnover 
number of an enzyme, kcat, describes the maximal rate at which an enzyme’s catalytic site can 
catalyze a reaction. Knowledge of kcat has traditionally been a bottleneck in the quantitative 
understanding of cells, mainly because kcats have historically been obtained in labor-intensive, 
low-throughput in vitro assays. The substantial effort required for in vitro assays is likely the 
reason why, even in model organisms, only a small fraction of cellular enzymes has a measured 
kcat

1. Furthermore, in vitro kcat estimates are frequently very inconsistent when different literature 
sources are compared2, probably because in vitro conditions do not mimic in vivo conditions, 
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are affected by post-translational modifications, and can be biased by experimental batch 
effects.  
 
In order to address the problems of low-throughput acquisition and in vivo-in vitro discrepancies, 
Davidi et al.3 combined proteomics data and flux predictions to estimate in vivo turnover 
numbers based on apparent catalytic rate (kapp). Davidi et al.3 integrated published E. coli 
proteomics data sets with in silico flux predictions in multiple growth conditions and showed that 
the resulting maximum apparent catalytic rate (kapp,max) across growth conditions is significantly 
correlated with in vitro kcats. Thus, kapp,max has the potential to overcome the problem of 
inconsistencies, in vitro-in vivo discrepancies, and batch effects from which in vitro kcats suffer. 
However, it is unclear if kapp,max is a stable system parameter that is robust to perturbation, and 
how much experimental procedures bias the estimation of kapp,max: absolute proteomic 
quantification techniques are still suffering from high variation and previous estimates of kcat 

were based on in silico flux predictions rather than 13C fluxomics data. Furthermore, kcat is 
expected to scale with growth rate4. As many experimental conditions in the literature data used 
in Davidi et al.3 resulted in low growth rates, the effective number of data sets contributing to 
kapp,max is low. Finally, if kapp,max is a useful estimator of in vivo kcat, it should improve the 
predictive capability of metabolic models on data that was not used to obtain kapp,max, i.e., the 
performance on a test set. 
Here, we present a new approach for estimating kcat in vivo (Figure 1). We combined proteomic 
profiling with fluxomics data to estimate in vivo kcats in E. coli strains that have undergone strong 
physiological perturbations via knockout of metabolic genes. To obtain strains with high growth 
rates for which kapp approaches kapp,max, adaptive laboratory evolution5 was used on the 
metabolic knockout strains. We profiled 21 strains, representing metabolic specialists with 
diverse flux profiles that are able to obtain high growth rates6–9. With this data-driven approach, 
we show that in vivo kcats are stable and robust to genetic perturbations, and that they can be 
used in genome-scale models to obtain a high predictive performance for unseen protein 
abundance data. 
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Results 

 
Figure 1: Approach for obtaining kcat in vivo from metabolic specialists: Knock out of enzymes in 
central metabolism was followed by adaptive laboratory evolution (ALE) to obtain 21 strains that 
had diverse flux profiles, while achieving high growth rates6–9. Fluxomics and proteomics data 
was then integrated for the evolved strains to obtain the maximum kapp across the 21 strains 
(kapp,max) for each enzyme that could be mapped uniquely. The obtained kapp,max vector was then 
extrapolated to genome scale via supervised machine learning and used to parameterize 
genome-scale metabolic models. The resulting genome-scale models were then validated on 
unseen proteomics data.  

Quantifying in vivo kinetics in metabolic specialists 
In theory, kapp,max will approach kcat in vivo if a condition is found in which the respective enzyme 
is utilized at full efficiency. In order to achieve strong genetic perturbations of enzyme usage, we 
used gene knockout (KO) strains for the PTS system (ptsHIcrr6), the phosphoglucose isomerase 
(pgi8), triosephosphate isomerase (tpiA7), and succinate dehydrogenase (sdhCB9). As kapp 

increases with growth rate4, we used KO strains that were optimized for growth on glucose 
minimal medium via adaptive laboratory evolution (ALE)6–9 experiments. In addition to these KO 
strains, we utilized a wild type MG1655 strain that was subjected to ALE6–10. As evolution is not 
a deterministic process, ALE endpoints differ in genotype, and we included a total of 21 strains 
that resulted from replicates of ALE experiments (i.e., four endpoint strains for ptsHIcrr, eight for 
pgi, four for tpiA, three for sdhCB, and two WT controls) and that were representative for the 
respective endpoint population. We subjected the selected strains to genome sequencing and 
used the resulting sequences as reference proteomes in LC-MS/MS proteomics (see Methods). 
Absolute quantification of biological duplicates was achieved via calibration to the UPS2 
standard and the top3 metric11,12, which estimates protein abundance based on the average 
intensity of the three best ionizing peptides. Measured protein abundances show a median R2 of 
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0.91 between biological replicates, and a median number of 2076 proteins were detected per 
strain (Supplementary Table 1). The obtained protein abundance vectors cluster by the genetic 
background of the strain used for ALE (Supplementary Figure 1), indicating that protein levels 
have adjusted in a specific pattern to compensate for the respective gene KO (see 6–9 for details 
on the transcript level).  

Gene KO and ALE cause diversity in enzyme usage 
We integrated the measured protein abundances with 13C MFA fluxomics data6–9 to calculate 
apparent catalytic rates in the 21 strains as the ratio of flux and protein abundance. Like in 
Davidi et al.3, we only calculated kapp for homomeric enzymes and reactions that are not 
catalyzed by multiple isoenzymes to allow a specific mapping of proteins to reactions. This 
approach resulted in a median number of 258 enzymes per strain for which we were able to 
calculate kapp. The resulting apparent catalytic rates largely cluster by the genotype of the KO 
strain (Figure 2A), confirming that enzyme usage was indeed perturbed by the respective KOs. 
Across the 21 strains, the maximum observed kapp of an enzyme is on average 4.4 times larger 
than the smallest observed kapp (Figure 2B), indicating that considerable variation in enzyme 
usage was caused by the metabolic gene knockout. To exclude the possibility that experimental 
variation causes this apparent diversity in enzyme usage, we compared the standard deviation 
of kapp in biological replicates (mean on log10 scale = 0.07) to the standard deviation measured 
across the 21 strains (mean on log10 scale = 0.18). We found that the variation caused by KOs 
and ALE is significantly larger than that caused by experimental variation (p<2e-16, Wilcoxon 
rank sum test). 
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Figure 2: Apparent catalytic rates cluster by genetic background and exhibit diversity across 
strains. (A) Data on kapp in each of the 21 strains projected onto the first two principal 
components. Only reaction-strain combinations for which kapp was available in all strains were 
used, resulting in 214 reactions used in the analysis. Data was centered and scaled before 
conducting principal component analysis. (B) Distribution of ranges of kapp across reactions. The 
log2 of the ratio between the highest and the lowest kapp per reaction is shown.  
 

In vivo turnover numbers are stable and consistent 
We estimated in vivo kcat for a given enzyme as the maximum of kapp (kapp,max) in the 21 KO 
strains. This was similar to Davidi et al.3, who estimated in vivo kcats as the maximum kapp over 
different growth conditions. Due to incomplete substrate saturation and backward flux, the 
apparent catalytic rate of an enzyme is smaller than the in vivo kcat. It is thus unclear if kapp,max is 
a stable property of the system that can be used in metabolic models to give reliable 
predictions. Furthermore, absolute proteomics data and fluxomics data come with significant 
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experimental uncertainties and biases that could prevent kapp,max from being useful in modeling 
applications. 
 
Even though our protocol perturbed enzyme kapp via gene KO and ALE, whereas Davidi et al.3 
used differences in growth conditions to achieve variation in enzyme usage, we found a very 
high agreement between kapp,max from the two sources (R2 = 0.9, Figure 3A). We used a 
parametric bootstrap procedure to quantify the uncertainty in our kapp,max estimations (see 
Methods). We found that 42% (88 out of 210) of comparable values estimated by Davidi et al.3 
fall into the 95% confidence intervals of the kapp,max values obtained in this study. A clear outlier 
is the reaction FAD reductase (FADRx, Figure 3A). This discrepancy is caused by the different 
methods of flux estimation: while protein abundances of FAD reductase are relatively similar in 
the respective conditions for which the maximum kapp was measured (protein abundance is two 
times lower in Davidi et al.3), flux through the FADRx reaction in parsimonious FBA13 is one 
thousand times higher than the flux estimated in 13C MFA.  
 
It is worth noting that the mutations observed in the ‘ALE strains’ are mostly regulatory in nature, 
with almost no structural changes in the homomeric enzymes examined in this study (see 
Supplementary Data 1 and 6–9,14 for details). One exception is the enzyme isocitrate 
dehydrogenase, which has shown a very high level of convergence for a coding sequence 
mutation (R395C) in seven out of the eight evolved pgi KO strains. We found no significant 
difference in kapp,max compared to the kapp,max of isocitrate dehydrogenase reported by Davidi et 
al.3 (p=0.28, parametric bootstrap), suggesting that the structural mutation does not increase the 
in vivo catalytic efficiency. 
 
While kapp,max from KO strains is very consistent with kapp,max from different growth conditions, the 
correlation with kcat in vitro is significantly lower (R2 = 0.59, Figure 3C), and only 26% (32 out of 
125) of the in vitro values fall into the 95% confidence intervals of kapp,max. A similar low 
correlation with in vitro kcat was found in the kapp,max estimates published by Davidi et al.3 (R2 = 
0.59, Figure 4D).  
 
In summary, although we obtained kapp,max from a genetic perturbation rather than variation in 
growth conditions, used 13C fluxomics data instead of in silico flux, and despite proteomics and 
flux data being subject to significant noise, we found very high agreement between kapp,max from 
the two sources. 
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Figure 3: Estimates of in vivo turnover numbers are consistent. (A) Comparison between kapp,max 
obtained from KO strains (this study) and kapp,max from growth conditions (Davidi et al.3). (B) 
Number of reactions for which kapp,max was obtained in KO strains (this study) and varying 
growth conditions (Davidi et al.3). (C) Comparison between kapp,max obtained from KO strains and 
in vitro kcats. (D) Comparison between kapp,max obtained from KO strains and in vitro kcats3. 
Horizontal lines are 95% confidence intervals determined by 500 parametric bootstrap samples 
(see Methods). Points are marked red when the compared value falls into the 95% confidence 
interval of kapp,max and are labelled with reaction IDs as given in the iJO1366 reconstruction15 if 
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the values differ by more than one order of magnitude. Data on kcat in vitro shown in panel (C) 
and (D) was taken from Davidi et al.3 to allow for comparison between the studies.  

Using machine learning to extrapolate to the genome scale 
The problem of low coverage that is associated with kcat in vitro is also present in kapp,max: not all 
protein abundance can be mapped to enzymes uniquely, and proteomics experiments still suffer 
from coverage issues. The final set of kapp,max values includes 325 enzymes (Figure 3B). This 
coverage is 27% higher than that found in Davidi et al.3, mostly because we used 13C fluxomics 
data that tends to have a higher sensitivity than the in silico method (parsimonious FBA13) used 
by Davidi et al.3. In order to validate the estimated in vivo turnover numbers in a genome-scale 
model that contains over three thousand direction-specific reactions, we first needed to 
extrapolate the data to the genome scale. We used supervised machine learning on a diverse 
enzyme data set16 that includes data on enzyme network context, enzyme 3D structure, and 
enzyme biochemistry to achieve this goal. An ensemble model of an elastic net, random forest, 
and neural network16 showed good performance in cross-validation for the in vivo turnover 
numbers, where the highest performance was achieved for kapp,max that was obtained from the 
21 KO strains (Figure 4). Taking the maximum of kapp,max from this study and that of Davidi et al.3 
did not improve model performance, even though it resulted in the largest training set.  
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Figure 4: Performance of machine learning models on different sources of turnover numbers. 
The performance is estimated in five-times repeated five-fold cross-validation in elastic net, 
random forest, and a neural network16 (see Methods). Data for kcat in vitro was taken from 
Heckmann et al.16.  

Validation of turnover numbers in mechanistic models 
The enzyme turnover number is a major determinant of gene expression levels as it sets a 
lower limit on the enzyme concentration required to maintain a given flux. Turnover numbers are 
successfully used in genome-scale metabolic models to constrain metabolic fluxes by a limited 
cellular protein budget17–19 or the balance of translation and dilution of proteins20–22. The kapp,max 
obtained from diverse growth conditions was previously used successfully in genome-scale 
metabolic models, showing that the performance of protein abundance predictions of models 
using kapp,max was significantly higher than that of models using in vitro kcats16. A major drawback 
of this analysis lies in the validation of the metabolic model which used data23 that was also 
utilized in obtaining kapp,max

3, posing the risk of circular reasoning through data leakage. If kapp,max 
is a stable property of in vivo enzyme catalysis, it is expected to yield a high performance in 
metabolic models on unseen data, i.e., kapp,max-based models should generalize well.  
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To test this hypothesis, we parameterized two genome-scale modeling algorithms of proteome-
limited metabolism, a MOMENT17 and an ME model20, with kapp,max obtained from KO strains. 
We then used the model to predict enzyme abundance data under various growth conditions 
published by Schmidt et al.23, a data set that was not used to obtain kapp,max in this study. For 
comparison, we included model parameterization based on kcat in vitro, with kapp,max from Davidi 
et al.3, and the maximum of kapp,max obtained in this study and that of Davidi et al.3. We found 
that the performance of kapp,max from KO strains on the Schmidt et al.23 data is very similar to that 
of Davidi et al.3: the average median root mean squared error (RMSE) on log10 scale is 4% 
higher for the MOMENT model and 12% lower for the ME model, even though the Schmidt et al. 
data23 was used to obtain kapp,max in Davidi et al.3 (Figure 5, Supplementary Figure 2). This good 
performance on unseen data confirms that in vivo kcat are stable against genetic perturbation 
and consistent across experimental protocols.  
 
We further found that kapp,max outperforms kcat in vitro in MOMENT and ME models across all 
growth conditions (Figure 5). When comparing median-imputed kcat parameterizations to those 
using supervised machine learning, we found that machine learning reduces RMSE on log10 
scale by 38% for kapp,max and 10% for kcat in vitro, confirming the utility of this approach16.  
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Figure 5: Performance in mechanistic models of proteome allocation. The MOMENT algorithm 
and a ME model were parameterized with different sources of turnover numbers. Growth on 
different carbon sources was simulated with the two algorithms and the predicted relative 
protein weight fractions of metabolic enzymes were compared to proteomics data in the 
respective growth condition23 using the root mean squared error (RMSE) on log10 scale. 

Discussion 
A large-scale characterization of the kinetic parameters that govern metabolism, termed the 
kinetome1, has been a major hurdle in our quantitative understanding of cellular behavior1,24,25. 
Previous efforts to use kcat, which represents a major fraction of the kinetome, at the genome 
scale either utilized in vitro data17,19 or fitted kinetic parameters to physiological data4,26,27. While 
in vitro kcats suffer from inconsistencies, low-throughput, high noise, and missing in vivo effects, 
parameter fitting is frequently under-determined and leads to non-unique solutions that can not 
be expected to generalize well when used in new conditions. The use of proteomics data and 
flux predictions on homomeric enzymes3, for which proteome abundances can be assigned 
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uniquely, is a promising approach that could solve many shortcomings of in vitro data and fitting 
approaches. While it was shown that this approximation of in vivo kcat, kapp,max, exhibits a decent 
correlation with kcat in vitro, it is unclear if kapp,max captures an upper bound on enzymatic rate 
that is stable with respect to genetic perturbations and consistent across experimental 
procedures. These properties are prerequisites for the application of kapp,max in metabolic 
models.  
 
We found that in vivo turnover numbers that are obtained from KO strains are surprisingly 
consistent between very different protocols (Figure 3). Specifically, the protocol we used to 
obtain kapp,max shows the following differences compared to that of Davidi et al.3: (1) kapp is not 
perturbed by growth conditions, but by genetic KOs; (2) we used 13C MFA fluxomics data 
instead of in silico data from parsimonious FBA; (3) we utilized proteomics data that was 
obtained with a single LC-MS/MS protocol, avoiding batch effects; and (4) all data was obtained 
under batch growth that promotes high growth rates, increasing kapp

4. Given these differences in 
the two approaches to obtain kapp,max, the high agreement between the two methods indicates a 
high stability and consistency of in vivo kcats.  
 
The high stability of in vivo kcats indicates that the adaptation of the strains during ALE does not 
lead to drastic increases in in vivo kcats. This hypothesis is supported by the relatively low 
number of convergent mutations in the coding regions of enzymes (Supplementary Data 1). 
Short term metabolic evolution appears to be governed by changes in gene regulation, rather 
than changes in enzyme efficiencies, at least in the case of the homomeric enzymes 
investigated in this study. 
 
Why does kapp,max exhibit a high consistency, where, in contrast, in vitro kcats often show a low 
agreement between different sources2? One reason might lie in the avoidance of batch effects: 
in vitro kcats are typically obtained individually in enzyme-specific assays, whereas kapp,max used 
a small number of proteomics and flux data that were ideally obtained on the same instruments, 
thus avoiding batch effects. Furthermore, there is some indication that metabolite levels in vivo 
tend to saturate many enzymes28, allowing for conditions of high enzyme saturation to be found 
even with a relatively small number of system perturbations. 
 
Some sources of uncertainty remain in the kapp,max values presented in this study. The 13C MFA 
data that we used was obtained for the endpoint populations of the respective ALE 
experiments6–9, whereas we used clonal samples for proteomics experiments. While we chose 
clones that represented the most dominant mutations found in the endpoint populations, flux 
distributions could be affected by uncommon mutations. Furthermore, 13C MFA data can yield 
high coverage29, but it still relies heavily on the quality of the underlying network model, which 
could bias analyses.  
 
Because not all enzymes can be mapped to reaction uniquely and proteomics data still suffers 
from incomplete coverage, kapp,max has a low coverage of the metabolic network and can not be 
readily used in genome-scale models. Based on mechanistic knowledge of factors that shape 
enzyme turnover numbers2,30,31, supervised machine learning was previously used successfully 
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to extrapolate in vivo kcats to the genome scale16. We find a slightly lower error in cross 
validation on kapp,max obtained from KO strains compared to kapp,max from varying growth 
conditions3; this slight increase in performance may lie in the increased size of the training set, 
as we were able to obtain 38% more kapp,max values due to the use of 13C MFA data. This finding 
is consistent with previously computed learning curves of kapp,max on the Davidi et al. data set3 
that showed that a domain of diminishing returns in model performance is reached with respect 
to the size of the training set16. 
 
We find that metabolic models that are parameterized with the kapp,max values we obtained from 
KO strains lead to very good predictive performance on unseen proteomics data. This 
performance in mechanistic models supports the hypothesis that kapp,max indeed represents a 
stable property of the system, i.e. kcat in vivo. Thus, kapp,max can enable genome-scale metabolic 
models that generalize well to unseen conditions.  
 
While kinetic parameters remain difficult to obtain, the stable and consistent properties of in vivo 
kcats support the notion that these parameters can improve the predictive capabilities of 
metabolic models significantly, and thus enable better quantitative understanding of the cell. 
Finally, the high stability of in vivo kcats suggests that short-term metabolic evolution is governed 
by changes in gene expression, rather than adaptation at the level of enzyme kinetics. 

Methods 

Strain genomic sequencing 
Genomic DNA of ALE endpoint clones was isolated using bead agitation in 96-well plates as 
outlined previously32. Paired-end whole genome DNA sequencing libraries were generated with 
a Kapa HyperPlus library prep kit (Kapa Biosystems) and run on an Illumina HiSeq 4000 
platform with a HiSeq SBS kit, 150 bp reads. The generated DNA sequencing fastq files were 
processed with the breseq computational pipeline (version 0.32.0)33 and aligned to an E. coli 
K12 MG1655 reference genome34 to identify mutations. DNA-seq quality control was 
accomplished using the software AfterQC (version 0.9.7)35. 
Clones were chosen in order to represent the high-frequency alleles found in the end-point 
populations of the respective ALE experiments. DNA sequences were used to create reference 
proteomes for proteomics experiments described below. 

Sample preparation 
For each strain, 3 ml of culture was grown overnight at 37°C with shaking in M9 medium36 (4g 
Glucose l-1) with trace elements37,  and then passed twice the following days in 15ml of media at 
37°C from OD 0.05-0.1 to OD 1.0-1.5. For the experiment, 100 mL of culture with initial OD600 
= 0.1 was grown in flasks with stirring in a water bath at 37°C.  When cultures reached OD600 = 
0.6, 40mL of culture was collected and immediately put on ice. The cells were pelleted by 
centrifuge at 5000 rpm at 4°C for 20 minutes. Cell pellets were then washed with 20 mL of cold 
PBS buffer three times and centrifuged at 5000 rpm for 20min at 4°C. Pellets were transferred 
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into 1.5 mL micro centrifuge tubes and centrifuged at 8000rpm at 4°C for 10 minutes. 
Remaining PBS buffer was removed and pellets of proteomic samples were frozen at -80C. 

Sample lysis for proteomics 
Frozen samples were immersed in a lysis buffer comprised by 75 mM NaCl (Sigma Aldrich), 3% 
sodium dodecyl sulfate (SDS) (Fisher Scientific), 1 mM sodium fluoride (VWR International, 
LLC), 1 mM β-glycerophosphate (Sigma Aldrich), 1 mM sodium orthovanadate, 10 mM sodium 
pyrophosphate (VWR International, LLC), 1 mM phenylmethylsulfonyl fluoride (Fisher Scientific), 
50 mM HEPES (Fisher Scientific) pH 8.5, and 1X cOmplete EDTA-free protease inhibitor 
cocktail. Samples were subjected to rapid mixing and probe sonication using a Q500 QSonica 
sonicator (Qsonica) equipped with 1.6 mm microtip at amplitude 20%. Samples were subjected 
to three cycles of 10 seconds of sonication followed by 10 seconds of rest, with a total 
sonication time of 50 seconds.    

Protein Abundance Quantitation 
Total protein abundance was determined using a BCA Protein Assay Kit (Pierce) as 
recommended by the manufacturer. 

Peptide Isolation 
6 mg of protein was aliquoted for each sample. Sample volume was brought up to 20 mL in a 
solution of 4M Urea+50mM HEPES, pH=8.5. Disulfide bonds were reduced in 5mM dithiothreitol 
(DTT) for 30 minutes at 56°C. Reduced disulfide bonds were alkylated in 15mM of 
iodoacetamide (IAA) in a darkened room temperature environment for 20 minutes. The 
alkylation reaction was quenched via the addition of the original volume of DTT for 15 minutes in 
a darkened environment at room temperature.  Proteins were next precipitated from solution via 
the addition of 5 µL of 100% w/v trichloroacetic acid (TCA). Samples were mixed and incubated 
on ice for 10 minutes. Samples were subjected to centrifugation at 16,000 x g for 5 minutes at 
4°C. The supernatant was removed and sample pellets were gently washed in 50 µL of ice-cold 
acetone. Following the wash step, samples were subjected to centrifugation at 16,000 x g at 
4°C. The acetone wash was repeated, and the final supernatant was removed. Protein pellets 
were dried on a heating block at 56°C for 15 minutes, and pellets were resuspended in a 
solution of 1M Urea+50mM HEPES, pH=8.5. The UPS2 standard (Sigma) was reconstituted as 
follows. 20 mL of a solution of 4M Urea+50mM HEPES, pH=8.5 was added to the tube. The 
sample tube was subjected to vortexing and water bath sonication for 5 minutes each. The 
standard was subjected to reduction and alkylation using methods described above. The 
sample was next diluted in a solution of 50mM HEPES, pH=8.5 such that the final concentration 
of Urea was 1M. 0.88 mg of the protein standard was spiked into each experimental sample, 
and samples were subjected to a two-step digestion process. First, samples were digested 
using 6.6µg of LysC at room temperature overnight, shaking. Next, protein was digested in 1.65 
µg of sequencing-grade trypsin (Promega) for 6 hours at 37°C. Digestion reactions were 
terminated via the addition of 3.3 µL of 10% trifluoroacetic acid (TFA), and were brought up to a 
sample volume of 300 µL of 0.1% TFA. Samples were subjected to centrifugation at 16,000 x g 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2019. ; https://doi.org/10.1101/767996doi: bioRxiv preprint 

https://doi.org/10.1101/767996
http://creativecommons.org/licenses/by-nd/4.0/


for 5 minutes and desalted with in-house-packed desalting columns using methods adapted 
from previously-published studies38,39. Following desalting, samples were lyophilized, and then 
stored at -80°C until further use. 

LC-MS/MS 
Samples were resuspended in a solution of 5% acetonitrile (ACN) and 5% formic acid (FA). 
Samples were subjected to vigorous vortexing and water bath sonication. Samples were 
analyzed on an Orbitrap Fusion Mass Spectrometer with in-line Easy NanoLC (Thermo) in 
technical triplicate. Samples were run on an increasing gradient from 6%-25% ACN+0.125% FA 
for 70 minutes, then 100% ACN+0.125% FA for 10 minutes. 1µg of each sample was loaded 
onto an in-house-pulled and -packed glass capillary column heated to 60°C. The column 
measured 30 cm in length, with outer diameter of 360 mm and inner diameter of 100 mm. The 
tip was packed with C4 resin with diameter of 5 mm to 0.5 cm, then with C18 resin with diameter 
of 3 mm an additional 0.5 cm. The remainder of the column up to 30 cm was packed with C18 
resin with diameter of 1.8 mm. Electrospray ionization was achieved via the application of 2000 
V to a T-junction connecting sample, waste, and column capillary termini.  The mass 
spectrometer was run in positive polarity mode. MS1 scans were performed in the Orbitrap, with 
a scan range of 375-1500 m/z with resolution of 120,000.  Automatic gain control (AGC) was set 
to 5 x 105, with maximum ion inject time of 100 ms. Dynamic exclusion was performed at 30 
second duration. Top n was used for fragment ion isolation, with n=10. The decision tree option 
was used for fragment ion analysis. Ions with charge state of 2 were isolated between 375-1500 
m/z, and ions with charge state 3-6 were isolated between 600-1500 m/z. Precursor ions were 
fragmented using fixed Collision-Induced Dissociation (CID). Fragment ion detection occurred in 
the linear ion trap, and data were collected in profile mode.  Target AGC was set to 1x104. 
Technical triplicate spectral data was searched against a customized reference proteome  
comprised by the reference proteome of the respective strain (see above) appended to the 
UPS2 fasta sequences (Sigma) using Proteome Discoverer 2.1 (Thermo). Spectral matching 
and in silico decoy database construction was performed using the SEQUEST algorithm40. 
Precursor ion mass tolerance was set to 50 ppm. Fragment ion mass tolerance was set to 0.6 
Da.  Trypsin was specified as the digesting enzyme, and two missed cleavages were allowed. 
Peptide length tolerated was set to 6-144 amino acids. Dynamic modification included oxidation 
of methionine (+15.995 Da), and static modification included carbamidomethylation of cysteine 
residues (+57.021 Da). A false-discovery rate of 1% was applied during spectral searches. 

Protein abundance estimation 
In order to estimate absolute protein abundance, the top3 metric was calculated for each protein 
as the average of the three highest peptide areas11,12. Robust linear regression (as implemented 
in the MASS package41) was used to calibrate top3 with the UPS2 standard according to the 
following model to obtain the amount of loaded protein A: 

𝑙𝑙𝑙𝑙𝑙𝑙10(𝐴𝐴) = 𝑎𝑎 + 𝑏𝑏 𝑙𝑙𝑙𝑙𝑙𝑙10(𝑡𝑡𝑡𝑡𝑡𝑡3) 
In order to obtain abundance relative to cell dry weight (C), we use a constant ratio γ 
= 13.94 µmol gDW-1 42: 
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𝐶𝐶𝑖𝑖 = 𝛾𝛾
𝐴𝐴𝑖𝑖
∑ 𝐴𝐴𝑗𝑗𝑗𝑗

 

Calculation of kapp,max  

For each biological replicate, apparent catalytic rates kapp were calculated as the ratio of protein 
abundance and measured flux if (1) the protein abundance surpassed 50 pmol gDW-1 and (2) 
the estimated flux was at least four times larger than the range of the 95% confidence interval, 
flux was larger than 100 fmol gDW-1 h-1, and the 95% confidence interval did not include zero, 
as defined in McCloskey et al.29. 
For each of the two biological replicates per strain, kapp,max was calculated as the maximum 
kapp,max across the 21 strains. Finally the average kapp,max over the two replicates was calculated 
and used in the presented analyses. 

Parametric bootstrap for kapp,max 

We used a parametric bootstrap approach to estimate how experimental variability in 
proteomics and fluxomics data affects kapp,max. We assumed protein abundance to be normally 
distributed with mean and standard deviation estimated from biological replicates. Variability in 
flux data was also assumed to take a normal distribution, where we used the standard deviation 
of the MFA procedure that resulted from multiple model reruns on biological triplicates6–9. For 
each reaction, 500 bootstrap samples were simulated, and these samples were used to 
calculate 95% confidence intervals for kapp,max. 

Machine learning 
Turnover numbers were extrapolated to the genome scale using the machine learning approach 
published previously16. The enzyme features used in Heckmann et al.16 were labelled with the 
kapp,max values estimated in this study, and an ensemble model of elastic net, random forest, and 
neural network was trained using the caret package43 and h2o44. Model hyperparameters were 
chosen in five times repeated cross-validation (one repetition in the case of neural networks) 
based on the RMSE metric, as reported in Heckmann et al.16. For the neural networks, random 
discrete search was used for optimization of hyperparameters16. 

MOMENT modeling 
Validation of different turnover number vectors in the MOMENT model was conducted as 
described in Heckmann et al.16. The genome-scale metabolic model iML151545 was used in the 
R46 packages sybil47 and sybilccFBA48 to construct linear programming problems that were 
solved in IBM CPLEX version 12.7. 

ME modeling 
To complement the MOMENT-based validation of the computed turnover numbers, a similar 
validation approach was employed with the iJL1678b-ME genome-scale model of E. coli 
metabolism and gene expression49. The kapps were mapped to iJL1678b-ME as previously 
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described16. However the ME-model kapps were adjusted due to a key difference that lies in the 
way that the MOMENT and ME-model resource allocation models apply enzyme constraints. 
MOMENT accounts for each unique protein contained within a catalytic enzyme whereas the 
ME-model formulation accounts for the complete number of protein subunits in an enzyme. As a 
result, the macromolecular “cost” of catalyzing a reaction in the ME-model is often notably 
higher than in MOMENT. To account for this, the kapps in the ME-model were adjusted by 
scaling each kapp by the number of protein subunits divided by the number of unique proteins. 
 
The ME-model was solved in quad precision using the qMINOS solver50 and a bisection 
algorithm51 to determine the maximum feasible model growth rate, within a tolerance of of 10-12. 
All proteins in a solution with a computed synthesis greater than zero copies per cell were 
compared to experimentally measured protein abundances. Since the ME-model accounts for 
the activity of many proteins outside of the scope of the kapp prediction method, only those that 
overlap with predicted kapps were considered.  

Data Availability 
Results of genome sequencing and mutation calling were deposited to ALEdb (aledb.org) as 
part of the "Central Carbon Knockout (CCK) project". Mass spectrometry-based proteomic data 
can be found on the ProteomeXchange Consortium 
(http://proteomecentral.proteomexchange.org) with the dataset identifier “PXD015344”. 
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