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Abstract12

In single-molecule localization based super-resolution microscopy (SMLM), a fluorophore stochastically13

switches between fluorescent- and dark-states, leading to intermittent emission of fluorescence, a phe-14

nomenon known as blinking. Intermittent emissions create multiple localizations belonging to the same15

molecule, resulting in blinking-artifacts within SMLM images. These artifacts are often interpreted as true16

biological assemblies, confounding quantitative analyses and interpretations. Multiple methods have been17

developed to eliminate these artifacts, but they either require additional experiments, arbitrary thresh-18

olds, or specific photo-kinetic models. Here we present a method, termed Distance Distribution Correction19

(DDC), to eliminate blinking-caused repeat localizations without any additional calibrations. The approach20

relies on the finding that the true pairwise distance distribution of different fluorophores in an SMLM image21

can be naturally obtained from the imaging sequence by using distances between localizations separated22

by a time much longer than the average fluorescence survival time. We show that using the true pairwise23

distribution we can define and then maximize the likelihood of obtaining a particular set of localizations24

void of blinking-artifacts, generating an accurate reconstruction of the underlying cellular structure. Using25

both simulated and experimental data, we show that DDC surpasses all previous existing blinking-artifact26

correction methodologies, resulting in drastic improvements in obtaining the closest estimate of the true27

spatial organization and number of fluorescent emitters in a wide range of applications. The simplicity28

and robustness of DDC will allow it to become the field standard in SMLM imaging, enabling the most29

accurate reconstruction and quantification of SMLM images to date.30

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 2, 2020. ; https://doi.org/10.1101/768051doi: bioRxiv preprint 

https://doi.org/10.1101/768051
http://creativecommons.org/licenses/by/4.0/


Bohrer 1

Introduction31

In recent years the development of superresolution fluorescence microscopy has enabled the probing of32

macromolecular assemblies in cells with nanometer resolutions. Amongst different superresolution imaging33

techniques, single-molecule localization superresolution microscopy (SMLM) has gained wide popularity34

due to its relatively simple implementation, which is based on post-imaging analysis of single-molecule35

detection.36

37

SMLM reconstructs a superresolution image by stochastic photo-activation and subsequent post-imaging38

localization of single fluorophores (1–3). One major advantage of SMLM is that due to its single-molecule39

detection nature, one can determine the number of molecules in a macromolecular assembly quantitatively,40

allowing the investigation of both the molecular composition and spatial arrangement at a level unmatched41

by other ensemble imaging-based superresolution imaging techniques. In the past few years SMLM has42

led to novel discoveries and quantitative characterizations of numerous biological assemblies (4, 5) such as43

those composed of RNA polymerase (6–8), membrane proteins (9), bacterial divisome proteins (10–13),44

synaptic proteins (14, 15), the cytoskeleton (16), DNA binding proteins (17, 18), chromosomal DNA (19),45

viral proteins (20), and more.46

47

One critical aspect in realizing the full quantitative potential of SMLM relies on the careful handling of48

the blinking behavior of fluorophores. A photo-switchable fluorophore can switch multiple times between49

activated and dark states before it is permanently photobleached, leading to “repeat localizations” from the50

same molecule. These repeat localizations are often misidentified as multiple molecules, adding additional51

levels of error to the superresolution images. For example, blinking-artifacts often lead to the formation52

of false nanoclusters and errors in quantifying numbers of molecules and the stoichiometry of complexes53

(Fig. 1A) (21–25).54

55

Multiple groups have developed different methods to correct for blinking-caused artifacts in SMLM. These56

methods can be coarsely divided into two categories depending on whether a method provides a corrected57

image void of repeat localizations or a statistical analysis summarizing the properties of the image at the58

ensemble level. Methods in the first category commonly use a variety of threshold values both in time and59

space to group localizations that likely come from the same molecule (1, 2, 21, 23, 25, 26). The advantage60

of using thresholds is that it results in a corrected image, allowing one to observe the spatial distribu-61

tion of fluorophores in cells and apply other quantitative analyses as needed. The disadvantage is that62

a constant threshold value is often insufficient in capturing the stochastic nature of fluorophore blinking63

and heterogeneous molecular assemblies. Furthermore, calibration experiments and/or a priori knowledge64

of the fluorophore’s photochemical properties are often needed to determine the appropriate threshold65

values (21, 23, 25, 27, 28). Statistical analyses such as maximum likelihood or Bayesian approaches have66

been developed to take into account the stochastic behavior of blinking but have yet to produce corrected67

superresolution images void of repeat localizations (29–31). Additionally, many of these approaches are68

dependent on specific photokinetic models for the fluorophore, which can be complex and difficult to de-69

termine (27, 28, 32–35).70

71

The second category of methods use statistical methods to characterize mean properties of the organiza-72

tion of molecules at the ensemble level in raw, uncorrected SMLM images. Pair- or auto-correlation-based73

analyses (PCA) have been used extensively in the field (24, 36). The long tail of the correlation function74

can often be fit to a specific model to extract quantitative parameters. This class of methods is prone to75

model-specific errors, especially if the underlying structures of the molecular assemblies are heterogeneous76

and vary throughout the image (37). A recently developed method analyzes the clustering of a protein with77

experimentally varied labeling densities, which was robust in determining whether membrane proteins form78

nanoclusters and was insensitive to many imaging artifacts (22). A post-imaging computational analysis79
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Bohrer 2

capitalizing on the same principle has also been developed (38). Although these methods are powerful80

in determining whether a protein of interest forms clusters or not, they provide a quantification at the81

ensemble level but not a corrected image, which limits their use in analyzing heterogeneously distributed82

molecular assemblies and their spatial arrangement in cells.83

84

Here, we present an algorithm, termed Distance Distribution Correction (DDC), to enable robust recon-85

struction and quantification of SMLM superresolution images free of blinking-caused artifacts without the86

need of setting empirical thresholds or performing calibration experiments. We first validate our approach87

using a diverse set of simulated and experimental data and compare DDC to other existing methods. In88

each situation DDC outperformed the existing methods in obtaining the closest representation of the “true”89

image and in determining the accurate number of fluorophores. We then applied DDC to experimentally90

collected SMLM images of membrane scaffolding proteins (46–48), dynein oligomers (39) and isolated sis-91

ter chromatin fibers (40). Under all the conditions tested, DDC provided SMLM superresolution images92

devoid of repeat localizations caused by fluorophore blinking, allowing identification of membrane protein93

cluster properties, characterizations of dynein in different assembly states, and quantification of DNA con-94

tent between sister chromatin fibers. These results demonstrate the broad application of DDC for SMLM95

imaging. Finally, we discuss critical considerations of how to apply DDC to experiments successfully.96

97

Results98

Principle of DDC99

DDC is based on the principle that the pairwise distance (∆r) distribution, Pd(∆r|∆n), of the localiza-100

tions separated by a frame difference (∆n) much larger than the average number of frames a molecule’s101

fluorescence lasts (N) approximates the true pairwise distance distribution PT (∆r). Note that N does102

not need to be precisely determined as long as it is in the regime where Pd(∆r|∆n) approaches a steady103

state, as we show below. One intuitive way to understand this principle is that, if one collects an imaging104

stream that is long enough so that all the localizations in the first and last frames of the stream come105

from distinct sets of fluorophores, the pairwise distance distribution between the localizations of the two106

frames will then be devoid of repeat localizations and will reflect the true pairwise distance distribution107

(PT (∆r)). A mathematical justification of this principle is provided in the supplemental material with an108

in-depth discussion and illustration (Fig. S1).109

110

To demonstrate the principle of DDC, we used simulated SMLM images of randomly distributed fluo-111

rophores that followed the photokinetic model shown in Fig. S2A. One representative superresolution112

image and the corresponding scatter plot, colored through time, with and without repeat localizations113

are shown in Fig. 1A. Apparent clustering was observed in images when repeat localizations were not114

corrected. Using the uncorrected images, we computed the pairwise distance distributions at all frame115

differences ∆n (Fig. 1B). As shown in Fig. 1C and Fig. S3, at small ∆n there are large peaks at short116

distances, indicating that there were repeat localizations from the same fluorophores closely spaced in time117

and space. When ∆n is large, the pairwise distance distributions approach a steady state converging upon118

the true pairwise distance distribution (Fig. 1C, dotted curve). This behavior supports the principle that119

when ∆n is sufficiently large the pairwise distance distribution represents the true pairwise distance dis-120

tribution. Using simulations, we also show that the pairwise distance distributions converge upon the true121

distributions at large ∆n irrespective of the underlying photokinetics or molecular spatial distributions122

(Fig. S3, Supporting Material).123

124

Next, we used experimentally obtained SMLM images of three molecular assemblies labeled with dif-125
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ferent fluorophores in E. coli cells, the bacterial transcription elongation factor NusA fused with the126

reversibly switching green fluorescent protein Dronpa (41), E. coli RNA Polymerase fused with the127

photoactivatable red fluorescent protein PAmCherry (42), and precursor ribosomal RNAs (pre-rRNA)128

labeled with organic fluorophore Alexa647-conjugated DNA probes (43) (Fig. S4, Supporting Mate-129

rial). We determined the pairwise distance distribution for each fluorophore and calculated the nor-130

malized, summed differences of the cumulative distributions for each ∆n, relative to that of ∆n = 1,131

(Z(∆n) =
∑
|cdf(Pd(∆r|∆n))− cdf(Pd(∆r|∆n = 1))|). As shown in Fig. 1D, in all cases the correspond-132

ing normalized Z values reach plateaus at large ∆n despite different photokinetics and spatial distributions.133

The rate at which each fluorophore reaches the plateau for the normalized Z reflects the photokinetics of134

the fluorophore — the longer a fluorophore blinks (such as Alexa647 compared to Dronpa), the longer the135

time until Z plateaus. These experimental results further confirm the principle of DDC that the pairwise136

distance distributions converge upon a steady state distribution as ∆n increases.137

138

It is important to note that the determination of PT (∆r) is not dependent upon a particular photokinetic139

model of the fluorophore nor does it require experimental characterizations of the fluorophore. PT (∆r)140

can be determined solely from the SMLM image stream as long as it is long enough so that a steady state141

of Pd(∆r|∆n) can be reached (Fig. 1C, Fig. S3).142

143

Once determined, PT (∆r) can then be used to calculate the likelihood to have a particular subset of true144

localizations (Fig. S5-S9, Supporting Material) using the following equation:145

L({R, T}|r,n) =
∏

i,j∈{T}

PT (∆ri,j)×
∏

i∈{R},j∈{R,T}

PR1(∆ri,j|∆ni,j), (1)

where {R, T} are sets that contain the indices of the localizations that are considered repeats {R} and the146

true localizations {T} given the coordinates r and associated frame numbers n obtained from experiment.147

The first term on the right of the equation is the probability of observing all distances ∆r between every148

pair of true localizations (i & j ∈ {T}). Here the probability distribution PT (∆ri,j) is the true pairwise149

distance distribution. The second term is the probability of observing all distances between pairs of lo-150

calizations with at least one being a repeat (i ∈ {R} and j ∈ {R, T}). Here, the probability distribution151

PR1(∆ri,j|∆ni,j) gives the probability of observing a distance between a pair of localizations with a frame152

difference ∆ni,j if at least one of the localizations is a repeat. This probability distribution can be easily153

determined once PT (∆r) is known (Supporting Material). Here, maximizing the likelihood with respect154

to {R, T} results in a subset of true localizations where the pairwise distance distributions Pd(∆r|∆n)155

are equal to PT (∆r) (Fig. S6). DDC maximizes the likelihood with respect to the two sets ({R, T})156

using a Markov Chain Monte Carlo (MCMC) (44, 45) to reconstruct the corrected image (Fig. S8 and S9,157

Supporting Material).158

159

To validate Equation 1, we performed six simulations of distinct spatial distributions with various fluo-160

rophore photo-kinetic models. We found that only when greater than 97% of the final localizations were161

true localizations did the likelihood reach its maximum (Fig. S7).162

163

DDC outperforms existing methods in both image reconstruction and quan-164

tifications165

To compare the performance of DDC with commonly used blinking-artifact eliminating methods, we sim-166

ulated five systems, random distribution (no clustering), small clusters, dense clusters, parallel filamentous167

structures with low labeling density, and intersecting filamentous structures with high labeling density168

(Fig. 2, Supporting Material). In these simulations the fluorophore had two dark states and followed169
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the photokinetic model shown in Fig. S2A. The raw images without any repeat localizations for each170

simulation are shown in Fig. 2A. We applied DDC, three published thresholding methods (T1 to T3171

(21, 23, 25))(Supporting Material, Fig. S10 and S11) and a customized thresholding method (T4, Sup-172

porting Material) to all the images.173

174

Method T1 links together localizations using a time threshold that is determined by an empirical es-175

timation of the photokinetics of the fluorophore (21) (Fig. S10, Supporting Material). Method T2 uses176

experimentally quantified photo-kinetics of the fluorophore to set extreme thresholds so that the possibility177

of overcounting is extremely low (25). Method T3 uses the experimentally determined number of repeats178

per fluorophore to choose thresholds that result in the correct number of localizations within each image179

(23)(Fig. S11, Supporting Material). T2 and T3, but not T1, require additional experiments to charac-180

terize fluorophore photo properties. Method T4 is a customized, ideal thresholding method that scans all181

possible thresholds and uses the threshold that results in the least Image Error for each system (Support-182

ing Material). T4 cannot be applied in real experiments since the true, repeat localization-free image is183

unknown — we included it here to illustrate the best scenario of what a thresholding method could achieve.184

185

To quantitatively compare the ability of these methods in producing a repeat localization-corrected image186

we calculated two metrics, the Image Error and Counting Error (Fig. 2B, Supporting Material). The187

Image Error was calculated by first summing the squared difference of each pixel’s normalized intensity188

between the corrected and the true images, and then dividing this squared difference by the error between189

the uncorrected and the true images (Supporting Material). The Image Error quantifies the amount of190

error in determining the distribution of localizations without being penalized for the error in the number of191

localizations. The Counting Error was calculated as the difference between the true number of fluorophores192

and that determined from the corrected image divided by the actual number of fluorophores (Supporting193

Material).194

195

As shown in Fig. 2B, DDC outperforms all four methods by having the lowest Image Errors and lowest196

(or close-to-lowest) Counting Errors. Interestingly, even with the best possible thresholds (T4), DDC still197

outperforms T4 in determining the correct spatial distribution and numbers of localizations. This result198

suggests that thresholds cannot adequately account for the stochastic nature of blinking. Similar results199

are shown in Fig. S12 for a fluorophore with one dark state (Fig. S2B). When counting the number200

of localizations is the main concern, T3 performs equally or slightly better than DDC because T3 was201

applied with an experimental calibration that provides the average number of blinks per fluorophore (Fig.202

2, Supporting Material). Nonetheless, DDC outperforms T3 by having lower Image Errors across all five203

simulation systems of different spatial organization patterns. In particular, for the dense cluster and the204

intersecting filament systems, two scenarios commonly encountered in biology for the spatial organizations205

of membrane and cytoskeletal proteins, the average Image Errors of T3 are more than four times that of206

DDC (Fig. 2B). The significant advantage of DDC over other methods for these two systems particularly207

highlights the unique superiority of DDC in handling heterogeneously distributed proteins with uneven208

densities due to clustering or overlapping structures. In conclusion, these results demonstrate that DDC209

can be used to obtain the correct number of true localizations and at the same time produce the most210

accurate SMLM images.211

212

DDC identifies differential clustering properties of membrane microdomain213

proteins AKAP79 and AKAP150214

Membrane microdomains formed by membrane proteins have been commonly observed in super-resolution215

imaging studies and have raised significant interest in their molecular compositions and associated bio-216
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logical functions (9). However, concerns remain as of whether the characterizations of these microdomain217

protein clusters were impacted by blinking-caused artifacts (22). Here we used DDC to investigate a218

membrane scaffolding protein, A-Kinase Anchoring Protein (AKAP), which plays an important role in219

the formation of membrane microdomains (46–48). The two orthologs AKAP79 (human) and AKAP150220

(rodent) were previously shown to form dense membrane clusters, which are likely important for regulating221

anchored kinase signaling.222

223

We performed SMLM imaging on AKAP150 in murine pancreatic beta cells using an anti-AKAP150 anti-224

body and analyzed the resulting SMLM data using DDC (Supporting Material). For AKAP79, we applied225

DDC to previously acquired SMLM data from HeLa cells (46). For comparison, we also applied the T1226

method to both scaffolding proteins as it was used in the previous study of the AKAP79 (21, 46) (Fig.227

S13, S14). We found that DDC-corrected images still showed significant deviations from simulated random228

distributions, indicating the presence of clustering. However, the degree of clustering was significantly re-229

duced when compared to the uncorrected and T1-corrected images for both proteins (Fig. 3A). We further230

confirmed these results at the ensemble level by computationally varying the labeling density of these two231

proteins using a previously published method (Fig. S15, Supporting Material) (38).232

233

To quantitatively compare these images, we used a tree-clustering algorithm (Supporting Material) to234

group localizations in individual clusters and plotted the corresponding cumulative distributions in Fig.235

3B. The cumulative distributions show that interestingly, AKAP150 has a higher degree of clustering when236

compared to AKAP79, with more than 50% of the localizations within clusters containing greater than 15237

localizations, twice that of AKAP79. These results suggest that the clustering of the AKAP scaffolds are238

differentially regulated and the context dependence is likely important in considering the microdomain-239

specific signaling functions of the clusters. These accurate, quantitative comparisons of cluster properties240

would be difficult to achieve by other threshold-based methods.241

DDC identifies both subcellular locations and oligomeric states of dynein242

The single molecule nature of SMLM allows one to identify both the subcellular location and copy num-243

ber of individual molecular components in complexes. However, errors due to repeat localizations lead244

to misassignment of individual complexes of differential assembly states to incorrect subcellular locations,245

confounding possible biological interpretations. Previously, using a well-defined DNA origami structure246

as a calibration standard, SMLM studies showed that dynein, a cytoskeletal motor protein responsible247

for retrograde transport on microtubules, can exist in monomeric, dimeric, and multimeric states (39).248

Monomeric dynein was found randomly in the cytoplasm, most likely corresponding to subunits not incor-249

porated into fully assembled motors, which are dimers. Multimeric dynein motors containing two or more250

dimers were found to arrange into nanoclusters mostly along microtubules, likely involved in coordinated251

and fine-tuned transport of organelles in the crowded cytoplasm (39). Understanding how dynein motors252

are arranged inside cells with their respective assembly states provide insight into the function and reg-253

ulation of dynein in organelle transport. This system also provides a previously quantified experimental254

system to investigate how blinking-caused artifacts can influence the assignment of individual molecular255

assemblies.256

257

We performed SMLM imaging on anti-GFP antibody-labeled HeLa IC74 cells that stably express GFP-258

fused dynein intermediate chain (Fig. 4A, Supporting Material) (39). We then applied the Thresholding259

method (T1) and DDC to the resulting raw images, with zoomed-in sections shown (white box i) in Fig.260

4B. We observed that both the Threshold method and DDC had a lower amount of signal when com-261

pared to that from Raw localizations (Fig. 4B, white box i), demonstrating that a significant number262

of Raw localizations were repeat localizations. Importantly, we also observed that the difference between263

the threshold- and DDC-corrected images was not constant throughout the images (Fig. 4B, last row),264
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suggesting different assignments of multimeric state for individual dynein assemblies between different265

methodologies.266

267

To investigate this difference further, we assigned oligomeric states to individual assemblies from each268

methodology so that the fractions of each oligomeric state matched what was calibrated in the work of269

Zanacchi et al. (39) (Supporting Material). We then compared the assignment of individual assemblies270

between the different methodologies by calculating the probability of assigning the same oligomeric state271

to the same individual complex using two different methods. In Fig. 4C we show that for single dynein272

monomers both the Raw and Threshold methodologies are in relative agreement with the assignment of273

DDC (probability > 90%). However, we observed that the higher oligomeric states assigned by both the274

Raw and Threshold methods had considerable deviations from that of DDC, resulting in different spatial275

distribution of oligomeric dynein motors in cells. These results demonstrate the importance of using the276

correct method to obtain both subcellular locations and the quantitative properties of molecular assemblies.277

278

DDC minimizes measurement noise in labeled symmetric sister chromatin279

fibers280

In addition to quantifying the number of molecules in molecular assemblies and the corresponding sub-281

cellular locations, DDC can also be applied to minimize noise in the measurement of cellular structural282

features such as shape and symmetry. To demonstrate such an application, we examined the symmetric283

structure of sister chromatin fibers. Previous studies have shown that during stem cell differentiation,284

Drosophila melanogaster male germline stem cells undergo asymmetric division to produce a self-renewing285

stem cell and a differentiating daughter cell (49). The asymmetric division is likely directed by unidirec-286

tional replication fork movement and biased histone incorporation between two sister chromatids (40, 50).287

288

To provide a quantitative comparison standard for analyzing DNA and protein contents in sister chro-289

matids, we performed SMLM imaging on YOYO-1 stained chromatin fibers isolated from Drosophila290

melanogaster embryos (Supporting Material, Fig. 5A). For this system the chromatin fibers isolated from291

embryonic, non-stem cells should exhibit homogenous and symmetric labeling on both sisters. We then292

applied the threshold (T1) and DDC methods to the raw SMLM images (Fig. 5A). In many fibers we293

could resolve two parallel sister chromatins; the apparent width of each sister was ≈140 nm (Full width294

at half maximum, FWHM) and the separation between sisters was ≈ 200 nm. These characteristics were295

measured from the projected localizations along the length of fibers. Additionally, DDC-corrected images296

had a more homogenously distributed signal along the length of chromatin fibers compared to the raw or297

threshold-corrected images. This scenario is similar to the intersecting filamentous structures with high298

labeling density presented in Fig. 2.299

300

Next, to determine whether the two sister chromatin fibers have a similar amount of DNA, we quantified301

the ratio of YOYO-1 signal (number of localizations) between the two using segments of different lengths302

(≈ 1µm was used in the original work of Wooten et al. (40) (Supporting Material). Two sisters having303

identical replicated DNA content would have a ratio of 1 irrespective of the average length of segment used.304

As shown in Fig. S16, while the ratios of signal between the two sisters for all three methodologies (Raw,305

Threshold (T1), and DDC) are approximately centered around 1.0, the degree of the ratios’ spread vary306

considerably, suggesting that while repeat localizations may not affect the accuracy of these measurements,307

they may instead affect the precision.308

309

To investigate this variation further, we calculated the standard error of the mean (SEM) for the different310

segment lengths (Fig. 5B). We observed that the SEMs from raw images were the greatest across different311

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 2, 2020. ; https://doi.org/10.1101/768051doi: bioRxiv preprint 

https://doi.org/10.1101/768051
http://creativecommons.org/licenses/by/4.0/


Bohrer 7

segment lengths, and that obtained from DDC were consistently the lowest for segments greater than 300312

nm. When the segment lengths became too short, the level of variations became indistinguishable between313

DDC and the thresholding method due to the intrinsic stochastic labeling density in this experiment. Nev-314

ertheless, the apparent SEMs in raw and threshold-corrected images at length scales of chromatin fibers315

(300 nm to 1 µm) could mask asymmetries in labeled sister chromatin fibers isolated from germ line stem316

cells (previously quantified with this technique (40)), making it difficult to identify corresponding molecu-317

lar mechanisms contributing to asymmetry. In summary, this example illustrates how the mishandling of318

repeat localizations lowers precision and demonstrates the need of DDC when measuring cellular structural319

features with SMLM.320

321

Considerations in the application of DDC322

As with any method, successful application of DDC to SMLM images requires an understanding of critical323

factors that could influence the performance of DDC. In this section, we evaluate the impact of localization324

density and activation rate on the performance of DDC using simulations. We also demonstrate that the325

commonly used practice of ramping the UV activation power in SMLM imaging should be avoided when326

applying DDC.327

328

To quantify the influence of localization density on the performance of DDC, we simulated random distri-329

butions of fluorophores with different densities ranging from 1000 raw localizations to 15000 localizations330

per 1µm2. Note that a density greater than 5000 localizations/µm2 corresponds to a Nyquist resolution of331

30 nm or better. As shown in Fig. 6A, the Image Error increases as the localization density increases and332

reaches a plateau at ∼ .35. We found that the increase in Image Error at high localization densities was333

mostly due to the decreased raw Image Error of the uncorrected images at high localization densities (Fig.334

S17A). The decreasing improvement of DDC at increasing sampling rate suggests that a high sampling rate335

of the underlying structure reduces the image distortion caused by repeats, although very high labeling336

densities (> 10,000 localizations/µm2) is usually difficult to achieve for protein assemblies.337

338

Next, to quantify the influence of the activation rate, we varied the activation probability of each simulated339

fluorophore from .025 to .15 per frame, with 1000 fluorophores randomly distributed throughout a 1µm2
340

area. Fig. 6B shows that the Image Error of DDC steadily increases with the activation rate. This increase341

was because at high activation rates, the temporal overlaps of individual fluorophores that were spatially342

close to each other increased, which made it difficult to distinguish the repeat localizations from different343

fluorophores. This trend holds true for all other blinking-artifact correction methodologies. Therefore, as344

with others, DDC obtains the best images when the activation rate is slow.345

346

Finally, we illustrate one critical requirement for the successful application of DDC, that is, the photoki-347

netics (blinking behavior) of the fluorophore, must be kept constant throughout the acquisition of the348

SMLM imaging stream (Supporting Material). Note that this requirement is also needed for all other349

blinking-artifact correction methods (21, 23, 25). One common practice in SMLM imaging is to ramp the350

activation power gradually throughout the SMLM imaging sequence in order to speed up the acquisition351

at later times when the number of fluorophores in the view field gradually deplete. The assumption is that352

activation power only changes the activation rate of a fluorophore (i.e. the probability of a fluorophore353

being activated per frame), but not the photokinetics of its blinking behavior (i.e. number of blinks, dark354

time and fluorescence-on time). Such a scenario indeed was shown for the photoactivatable fluorescent355

protein Dendra (28), but there are also reports showing that the photokinetics of mEos2 and PAmCherry356

are sensitive to the activation intensity (27, 28).357

358

To illustrate the activation power-dependence of the blinking behaviors of commonly used fluorophores359
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in SMLM, we investigated the photoactivatable fluorescent protein mEos3.2 and the organic fluorophore360

Alexa647 with different activation (405nm) intensities. We quantified three parameters, number of blinks,361

off-times (Toff ) and on-times (Ton), and reported the mean value for each parameter as a function of ac-362

tivation intensity (Fig. 6C). We define one blink event as one continuous emission event that could span363

multiple fluorescence on-frames, the number of blinks as the number of repeated emissions separated by364

dark frames from the same fluorophore, Toff as the time between each blink and Ton as the time that the365

fluorophore remained fluorescent at each blink-on event (Fig. 6C). We observed that both fluorophores366

had a similar dependence of Ton with UV intensity, where Ton initially increased and then decreased at367

higher UV intensities (Fig. 6D, top), suggesting that UV also participates in the fluorescence emission368

cycle of the fluorophores. Next, we found that Toff decreased non-linearly as the UV intensity increased for369

both fluorophores (Fig. 6D, middle). Finally, we observed that the average number of blinks for Alexa647370

increased dramatically with UV intensity while that of mEos3.2 remained largely constant (Fig. 6D, bot-371

tom), suggesting a differential influence of UV in changing the photokinetics of different fluorophores.372

Thus, varying the activation intensity during the acquisition of a SMLM image can indeed change the373

blinking characteristics of the fluorophores, which would affect the performance of DDC. These results374

suggest that changing the activation intensity should only be done when a quantitative approach is not375

needed, or the proper controls have been performed to show that the fluorophore is insensitive to variations376

in the activation intensity.377

378

Discussion379

In this work we provided a blinking-artifact correction methodology, DDC, that does not depend upon380

exact thresholds, additional experiments, or a specific photo-kinetic model of the fluorophore to obtain an381

accurate reconstruction and quantification of SMLM superresolution images. DDC works by determining a382

“ground truth” about the underlying organization of fluorophores, the true pairwise distance distribution.383

We verified by simulations and experiments that such a true pairwise distance distribution can be obtained384

by taking the distances between localizations that are separated by a frame difference much longer than the385

average lifetime of the fluorophore. Using the true pairwise distribution, the likelihood can be calculated,386

where upon maximization of the likelihood one obtains an accurate representation of the true underlying387

structure.388

389

We compared the performance of DDC with four different thresholding methods using simulated data with390

various spatial distributions and on fluorophores with different photokinetic models. DDC outperformed391

these methods by providing the “best” corrected images as well as excellent estimates of the number of392

molecules in each image. We then experimentally demonstrated that blinking-caused repeat localizations393

can lead to artificial clustering of membrane scaffolding proteins, misassignment of oligomeric state of394

dynein at different subcellular locations, and misidentification of DNA content in symmetric sister chro-395

matin fibers. DDC was able to alleviate these artifacts by providing SMLM images devoid of repeat396

localizations, allowing accurate, quantitative analyses.397

398

Finally, we demonstrated that the higher the activation rate and the density of fluorophores are, the399

smaller the relative improvement of DDC will be. Note that this applies to all other methods used to400

eliminate repeat localizations in SMLM imaging. We also showed that in order to use DDC, the com-401

mon practice of ramping the UV should be avoided in certain cases (depending upon the particular402

fluorophore), as we verified that mEos3.2 and Alexa647 exhibited activation power-dependent photoki-403

netics. In essence, DDC is best suited for SMLM imaging when quantitative characterizations of het-404

erogenous cellular structures are required. The complete package of DDC is available for download at405

https://github.com/XiaoLabJHU/DDC. Because of the simplicity and robustness of DDC, we expect it406

become a field standard in SMLM imaging for the most accurate reconstruction and quantification of407
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SMLM images to date.408
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Figure 1: A. Simulated SMLM superresolution images (top panel) of randomly distributed molecules
without repeats (Truth) and with repeats (No correction). The corresponding scatter plots (colored through
time) are displayed in the bottom panel. B. Schematics of how the pairwise distance distributions at
different frame differences (∆n) were calculated. C. Pairwise distance distributions at different ∆n (black
to gray curves) converge to the true pairwise distribution (black dots) when ∆n is large. D. Normalized
Z values measured for three commonly used fluorophores and a simulated fluorophore as that used in A.
All Z values reach plateaus at large ∆n, indicating that at large ∆n, the pairwise distance distributions
converge to a steady state. The normalized Z value was calculated by taking the difference between the
cumulative pairwise distance distribution at a ∆n and that at ∆n = 1: (Z(∆n) =

∑
|cdf(Pd(∆r|∆n))−

cdf(Pd(∆r|∆n = 1))| ).
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Figure 2: Comparison of four different thresholding methods with DDC on five spatial distributions (ran-
domly distributed, small clusters, dense clusters and parallel filaments and intersecting filaments). A.
True, uncorrected and DDC-corrected images for each spatial distribution. B. Image Error and Counting
Error calculated from T1 to T4 and DDC for each spatial distribution. The whiskers extend to the most
extreme data points not considered outliers, and the red pluses are the outliers (greater than 2.7 std).
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Figure 3: Application of DDC to experimentally measured spatial distributions of AKAP79 and AKAP150.
A. SMLM images of the two scaffold proteins without correction, corrected using the thresholding method
T1 and DDC, and that of a simulated random distribution using the same number of localizations of
DDC-corrected images. B. Cumulative distributions for the number of localizations within each cluster for
each protein. (Scale bar, 1µm)
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Figure 4: Application of DDC to experimentally measured spatial distributions of dynein. A. SMLM
images of dynein for a whole cell with all three method and the difference between the DDC and threshold
images (10µm scale bar). B. Zoomed in images showing the Raw, Threshold (T1) DDC corrected images
and DDC minus Threshold images (1µm scale bar). C. The probability of an individual assembly being
assigned the same oligomerization state as assigned with DDC for the Raw (top) and Threshold (T1,
bottom) methodology (Supporting Material). Note: because a functional dynein motor is homodimeric we
only included even number complexes and the monomeric state as previously done in Zanacchi et al. (39).
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Figure 5: A. Sister chromatids analyzed with DDC and zoom in images showing the resulting images for
each of the methodologies (scale bar 1µm). B. The standard errors of mean vs. region size for the different
methodologies (error bars SEM determined from bootstrapping).
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Figure 6: Image Error at different densities of localizations (A) and activation probability per frame (B).
The raw data points are shown as gray points and the moving average is shown in black (Supporting
Material). C. An intensity trajectory of a single mEos3.2 molecule with labels showing the definitions of
Ton and Toff . D. The average Ton, Toff , and number of blinks for Alexa647 and mEos3.2 at different UV
activation intensities (405 Power, error bars are standard deviation of mean using two repeats).
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