
Integrative single-cell and bulk RNA-seq analysis in human retina identified cell type-specific 1 

composition and gene expression changes for age-related macular degeneration 2 

 3 

Yafei Lyu1,*, Randy Zauhar2,*, Nico Dana3, Christianne E. Strang4, Kui Wang1, Shanrun Liu5, Zhen Miao1, 4 

Naifei Pan6, Paul Gamlin7, James A. Kimble7, Jeffrey D. Messinger7, Christine A. Curcio7, Dwight 5 

Stambolian3,§, Mingyao Li1,§ 6 

 7 

 8 
1Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman 9 

School of Medicine, Philadelphia, PA 19104, USA; 2Department of Chemistry and Biochemistry, The 10 

University of the Sciences in Philadelphia, Philadelphia, PA 19104, USA; 3Dept of Ophthalmology and 11 

Human Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, 12 

USA; 4Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; 13 
5Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 14 

Birmingham, AL 35294, USA; 6Department of Computer and Information Science, University of 15 

Pennsylvania, PA 19104, USA; 7Department of Ophthalmology and Visual Sciences, University of 16 

Alabama at Birmingham, Birmingham, AL 35294, USA.  17 

 18 
* Equal contribution 19 
§ Correspondence to mingyao@pennmedicine.upenn.edu or stamboli@pennmedicine.upenn.edu 20 

 21 

 22 

Age-related macular degeneration (AMD) preferentially affects distinct cell types and 23 

topographic regions in retina. To characterize the impact of AMD on gene expression changes 24 

across retinal cell types and regions, we generated both single-cell RNA-seq (scRNA-seq) and 25 

bulk RNA-seq data from macular and peripheral retina in postmortem human donors with and 26 

without AMD. The scRNA-seq data revealed 11 major cell types with many previously reported 27 

AMD risk genes showing substantial cell type and region specificity. Cell type proportional 28 

changes with advancing AMD stage were significant for Müller glia, rods, astrocytes, microglia 29 

and endothelium. 30 

 31 

AMD affects over 10 million Americans1, twice the number affected by Alzheimer’s disease and equal 32 

to the total of all cancer patients combined2. While advances in retinal disease diagnostics have 33 

progressed rapidly, specific treatments for AMD directed at underlying genetic or metabolic defects have 34 

progressed slowly due to limited understanding of disease pathways and cell types involved in the 35 

initiation of AMD. The retina lines the inner surface of the eye and neurally connects to the brain via the 36 
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optic nerve (Fig. 1a). Photoreceptors and their support cells form a vertically organized, tightly integrated 37 

physiologic unit (Fig. 1b). AMD is a disease of this unit, with secondary effects including gliosis, cell 38 

death and synaptic circuity corruption in inner retina3–5. Given the complexity of the retinal cell structure, 39 

there is an urgent need to identify cells contributing to the spectrum of AMD pathology.  40 

 41 

Recent technologic breakthroughs in scRNA-seq make it possible to measure gene expression in single 42 

cells, resolve cell types, characterize the signature of gene expression across cells, and improve 43 

understanding of cellular function in health and disease6–9. We performed scRNA-seq on macula and 44 

peripheral retina from two postmortem normal eyes. In total, we obtained 36,959 macular and 55,426 45 

peripheral cells from the retina. Unsupervised deep learning based clustering identified 11 broadly 46 

defined cell types (Fig. 1c). Although some neuronal cell types, such as bipolar, amacrine, and ganglion 47 

cells can be further subdivided, we omitted further sub-clustering and maintained major cell types.   48 

 49 

We assessed the cell-type specificity of 75 AMD GWAS6 and transcriptome-wide association study 50 

(TWAS)10 risk genes (Fig. 1e, Methods and Supplementary Fig. 4). Of 75 AMD risk genes, 23 showed 51 

cell type-specific expression either in macula or peripheral retina in the scRNA-eq data (Methods, 52 

Supplementary Data 2). For example, MMP9 is specifically expressed in cones, and PILRA and HLA-53 

DQB1 are preferentially expressed in microglia. Further, 41 AMD risk genes have significant differential 54 

expression (DE) for retinal location (adjusted P <0.05) across 11 cell types. 55 

 56 

To investigate the impact of AMD on cell types, we sequenced total RNA from macula and peripheral 57 

regions of 15 postmortem retinas that included normal, early and advanced AMD stages. Retinas were 58 

phenotyped by ex vivo fundus imaging and fellow-eye histology at The University of Alabama at 59 

Birmingham (UAB). Analysis identified 9,772 and 1,214 differentially expressed genes (DEGs) in macula 60 

and periphery for normal vs late AMD comparison (Supplementary Data 3). Interestingly, the DEG 61 

analysis between normal and early AMD found 169 DEGs in periphery and 21 genes in macula. We 62 

expected to see more DEGs in the macula than periphery and suspect that the larger sample size and 63 

higher sequencing depth in the peripheral retina samples increased the power. Among DEGs identified 64 

in macula from either comparison, 1202 (12.3%) are cell type specific, and 183 (14.6%) DEGs identified 65 

in periphery show cell type specificity (Methods, Supplementary Fig. 5b and Supplementary Note 6). 66 

Interestingly, we also found 17 DEGs for macula that may associate with AMD progression, as indicated 67 

by their increased fold change from early AMD to late AMD when compared to normal (Supplementary 68 

Data 3). Three of the AMD progression-associated DEGs show cell type-specificity, including RAB41 69 

(Cone), ZMYND19 (Rod) and COL4A3 (Müller glia). 70 

 71 
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It is known that AMD also has an impact on cell type composition of the retina, particularly in macula11,12. 72 

To characterize such changes in cell type composition, we estimated cell type proportions for each bulk 73 

RNA-seq sample by cell type deconvolution analysis using MuSiC in which the scRNA-seq data was 74 

used as a reference13. First, we considered a large bulk RNA-seq dataset generated by the EyeGEx 75 

study10, which includes 453 RNA-seq samples generated from peripheral retina in postmortem human 76 

donors. This dataset includes samples at different AMD stages based on the Minnesota Grading System 77 

(MGS) (MGS1: 105; MGS2: 175; MGS3: 112; MGS4: 61). For the normal eyes (MGS1), our 78 

deconvolution analysis revealed a noticeable proportion of rod photoreceptors (mean proportion=0.58) 79 

and Müller glia (mean proportion=0.14), but relatively small proportions (0.01<mean proportion<0.1) of 80 

ganglion cells, cones, amacrine, bipolar, astrocytes and horizontal cells (Fig 2a). As AMD progresses 81 

(from MGS 2 to MGS 4) rods decrease. In contrast, the proportion of astrocytes increase, possibly 82 

reflecting an immune response14 of the peripheral retina to AMD. 83 

 84 

The EyeGEx dataset is based is restricted to peripheral retina. Since AMD preferentially affects macula, 85 

we performed cell type deconvolution in our sample set which includes both macula and peripheral 86 

retina. In our peripheral retina samples, we found a decrease in rods and increase in astrocytes as AMD 87 

progresses, consistent with the EyeGEx data (Fig 2b). In macula, rods show a slightly decrease from 88 

normal to early AMD and a sharp decline from early to advanced AMD (Fig. 2c). Endothelium, astrocytes 89 

and microglia proportions increased in the macula when progressing from normal to advanced AMD. 90 

Rods are barely detectable in the macula of advanced AMD  (Fig. 2d and Supplementary Fig. 6), in 91 

agreement with  histological reports11,15.  92 

 93 

As bulk RNA-seq measures the average expression of genes (sum of cell type-specific gene expression 94 

weighted by cell type proportions), DEGs from bulk RNA-seq can result from changes in cell type-95 

specific gene expression, as well as cell type composition. To determine if DE in the bulk RNA-seq 96 

samples were due to cell type-specific DE and not change in cell type composition, we developed a 97 

calibration-based method to detect cell type-specific DEGs (ctDEGs) by calibrating bulk level gene 98 

expression using cell type-specific marker genes from the scRNA-seq data (Methods). Applying this 99 

method to the EyeGEx peripheral retina data, we detected AMD associated ctDEGs for each of the 11 100 

major cell types. Across all cell types we identified 109 ctDEGs for MGS2 vs. MGS1, 201 ctDEGs for 101 

MGS4 vs. MGS1 (Supplementary Data 4), Fifty-one ctDEGs share the same cell type specificity for all 102 

comparisons.  Only three ctDEGs were detected in astrocytes when comparing MGS3 vs. MGS1, 103 

possibly due to phenotype heterogeneity of the MGS3 samples. The largest set of cell type-specific 104 

DEGs were identified for microglia, 32 genes detected in MGS2 vs. MGS1 comparison, 82 genes 105 

detected for the MGS4 vs. MGS1 comparison (Fig. 3a), while 21 genes are in common and sharing the 106 

same directions of DE effect between two comparisons. Noticeably, for these 21 microglia-specific DEGs 107 
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shared by two comparisons, the degree of fold change is generally higher in MGS4 vs. MGS1 than in 108 

MGS2 vs. MGS1, especially for FCGBP and HLA-DME (Fig. 3b and Supplementary Fig. 8). The 109 

increased expression of these genes in MGS4 reflects microglia-specific AMD response with disease 110 

progression. We observed a similar tendency for astrocytes- and endothelium-specific DEGs 111 

(Supplementary Fig. 8). We further performed Gene Ontology (GO) enrichment analysis on cell type-112 

specific DEGs identified between MGS4 vs. MGS1. The results revealed distinct functional enrichment 113 

for up- and down-regulated genes (Supplementary Data 5); for example, microglia-specific up-114 

regulated genes are enriched for immune response (adjusted P  = 5.34×10-17), antigen processing and 115 

presentation of peptide antigen (adjusted P = 8.95×10-14) and innate immune response (adjusted P = 116 

2.11×10-12), while down-regulated genes are enriched for nuclear-transcribed mRNA catabolic process 117 

and nonsense-mediated decay (adjusted P = 5.27×10-14), and establishment of protein localization to 118 

endoplasmic reticulum (adjusted P = 7.65×10-13).  119 

 120 

To investigate the cell type-specific impact of AMD on macular retina, we applied our calibration-based 121 

ctDEG detection method to the UAB data. Due to the limited sample size and moderate alterations in 122 

expression pattern in early AMD, 7 and 13 ctDEGs were identified in macula and periphery, respectively, 123 

when comparing normal and early AMD (Supplementary Data 6). In contrast, a larger number of 124 

ctDEGs were detected when comparing normal and late AMD, with 169 ctDEGs found in periphery and 125 

1,458 ctDEGs in macula (Fig. 3c). Among the 160 ctDEGs detected in periphery, a considerable number 126 

of them are microglia- (n=39) and endothelium-specific (n=30), which replicate the results in the EyeGEx 127 

periphery data. For macular retina, larger numbers (proportions of analyzed genes) of ctDEGs were 128 

identified for amacrine, bipolar, rod, cone and ganglion cells (Fig. 3c). This reflects the focus of AMD 129 

degeneration in the macula. Comparing DE of ctDEGs identified in the two regions we noticed a 130 

coordinated gene expression change between macula and periphery for immune related cell types 131 

(astrocytes and microglia) and photoreceptors (cones and rods) which indicate a greater impact on 132 

these cell types in the macula (Supplementary Note 7 and Supplementary Fig 9). Further, GO 133 

enrichment analysis on cell type-specific DEGs revealed that up- and down- regulated genes had 134 

distinct biological functions (Supplementary data 7). For example, microglia-specific up- and down-135 

regulated DEGs between normal vs. late AMD identified in macula show a similar functional enrichment 136 

pattern as in the EyeGEx peripheral retina data (Supplementary Data 5 and 7). In particular, 41 rod 137 

specific up-regulated genes are enriched for negative regulation of cell death (adjusted P = 1.13×10-2) 138 

and negative regulation of apoptotic process (adjusted P = 3.56×10-2), whereas the 85 down-regulated 139 

genes are enriched for visual perception (adjusted P = 2.25×10-40), sensory perception of light stimulus 140 

(adjusted P = 3.65×10-40), and detection of light stimulus (adjusted P = 2.11×10-33) (Fig. 3d). These 141 

results reveal an impact on transcriptional profiles in different cell types that are common between 142 

macula and periphery, as well as transcriptional changes that are specific to each region. 143 
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 144 

In summary, we constructed a high-resolution human retina cell atlas with a particular focus on a 145 

comparison of regional differences. Our results linked GWAS genes for AMD with cell type-specific gene 146 

expression and enabled the use of GWAS data to inform the genetic architecture of AMD. We further 147 

leveraged scRNA-seq and bulk RNA-seq data, and our integrative analysis revealed both cell type-148 

specific composition as well as gene expression changes associated with AMD progression. Our 149 

ongoing studies will aim to increase AMD sample size and add data from the RPE and choroid. Findings 150 

will overall provide novel insights into cell type-specific functions that can power precision therapeutic 151 

targeting of AMD. 152 

 153 
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Figure Legends 167 

 168 

Figure 1. Summary of single-cell analysis from human retina. (a) Schematic cross-section of human 169 

eye (top) showing the retina lining the interior surface. The macula contains the fovea and is responsible 170 

for sharp vision. The periphery is responsible for detecting light and motion. Schematic of dissected 171 

tissue (bottom) shows retina adjoined to support tissues, flattened with relaxing cuts. Areas 8 mm in 172 

diameter were excised for RNA sequencing. (b) Layers of human retina and supporting tissues showing 173 

11 assayed cell types. Five neuronal classes are photoreceptors, bipolar cells, ganglion cells, horizontal 174 

and amacrine cells. Cone photoreceptors are sensitive to color and bright light. Rod photoreceptors are 175 

sensitive to low light. Ganglion cells transmit information to the brain. Horizontal cells and amacrine cells 176 

modulate signal from photoreceptors and bipolar cells, respectively. Müller glia span the retina and are 177 

involved in neurotransmission, fluid balance, and wound repair. Also depicted are microglia (with 178 

phagocytic and immune activity), astrocytes (regulation of metabolism and blood brain barrier, 179 

synaptogenesis, neurotransmission), vascular endothelium (vascular tone and blood flow; coagulation 180 

and fibrinolysis; immune response, inflammation and angiogenesis) and pericytes (integrity of 181 

endothelial cells, trans-regulation of vascular tone, stem cells). The retinal layers include: NFL, nerve 182 

fiber layer; GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer 183 

plexiform layer; ONL, outer nuclear layer; RPE, retinal pigment epithelium; BrM, Bruch’s membrane; 184 

ChC, choriocapillaris. The last three are shown for completeness and were not assayed. (c) 185 

Visualization of single-cell clusters using t-SNE. Cells are colored by cell types. (d) Visualization of 186 

single-cell clusters using t-SNE. Cells are colored by region. Cells from macular and peripheral retina 187 

were randomly mixed, suggesting the absence of batch effect. (e) Heatmap showing expression levels 188 

of AMD risk genes by cell type. Color in the heatmap represents expression intensity with red signifying 189 

higher expression in units of z-score. Left panel: AMD associated genes identified by loss- or gain-of-190 

function mutations or by GWAS6.  Right panel: target genes based on TWAS analysis listed10. 191 

 192 

Figure 2. Cell type deconvolution analysis from bulk RNA-seq data. Cell type proportions for each bulk 193 

RNA-seq sample were estimated using MuSiC with the scRNA-seq data as reference. (a) Estimated 194 

cell type proportions for the EyeGEx peripheral retina bulk RNA-samples with four stages of AMD (MGS1: 195 

105; MGS2: 175; MGS3: 112; MGS4: 61). (b) Estimated cell type proportions for the UAB peripheral 196 

retina bulk RNA-seq samples (normal: 8; early AMD: 4; late AMD: 3). (c) Estimated cell type proportions 197 

for the UAB macular retina bulk RNA-seq samples (normal: 6; early AMD: 4; late AMD: 3). Note the 198 

similarity in (a) and (b) with respect to cell proportion increase in astrocytes and decrease in rods in 199 

peripheral retina as AMD progresses. Larger differences are noted in both cell types in macula along 200 
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with additional increases in Mϋller glia, microglia and vascular endothelium as AMD progresses. (d) Cell 201 

type proportion changes in the UAB macula retina samples for highlighted cell types. 202 

 203 

Figure 3. Cell type-specific differential expression analysis. (a) Proportions of up- and down-regulated 204 

ctDEGs detected identified in the EyeGEx peripheral retina data. Colors show different test conditions 205 

used in the DE analysis; red: MGS2 vs. MGS1, green: MGS4 vs. MGS1. (b) Volcano plots and effect 206 

size comparison of microglia-specific DEGs identified using EyeGEx peripheral retina data. Left/Mid: 207 

Volcano plots of microglia-specific DEGs identified from two different tests. Significant ctDEGs are 208 

highlighted using red color and ctDEGs with large effect size are annotated. Right: effect size 209 

comparison of microglia specific DEGs. X-axis: effect size of ctDEGs identified between MGS2 vs. 210 

MGS1; y-axis: effect size of ctDEGs identified between MGS4 vs. MGS1. ctDEGs with increased effect 211 

size are annotated. (c) Proportions of up- and down-regulated ctDEGs between normal vs. late AMD 212 

identified in UAB retina data. Colors show different retina regions in the DE analysis; red: periphery, 213 

green: macula. (d) Representative GO terms of up- and down- regulated ctDEGs genes identified 214 

between normal vs. late AMD using UAB data. The complete table of GO analysis result can be found 215 

in Supplementary Data 5 and 7. 216 

  217 
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Methods 218 

 219 

Study subjects, scRNA-seq and bulk RNA-seq for the UAB data 220 

The scRNA-seq data were generated from macular and peripheral retina taken from two healthy adult 221 

donors using the 10X Genomics ChromiumTM system. The bulk RNA-data were generated from 13 222 

macula samples (6 normal, 4 early AMD, and 3 late AMD) and 15 periphery samples (8 normal, 4 early 223 

AMD, and 3 late AMD) taken from the retina of 15 adult donors. All donor eyes were collected and 224 

characterized within 6 hours postmortem for presence of AMD and other pathology by author C.A.C. 225 

and a consulting medical retina specialist. Detailed sample preprocessing, donor characteristics, 226 

scRNA-seq and bulk RNA-seq data generation can be found in Supplementary Note 1.  227 

 228 

EyeGEx bulk RNA-seq data 229 

The Eye Genotype Expression (EyeGEx) study was designed to explore genetic landscape and post-230 

GWAS interpretation of multifactorial ocular traits10. This study generated bulk RNA-seq data of 523 231 

peripheral retinal samples from postmortem human donors. We obtained the EyeGEx bulk RNA-seq 232 

data from the Gene Expression Omnibus (accession number GSE115828). This dataset includes gene 233 

expression measures for 523 samples and 58,051 genes. 453 of the samples with AMD phenotype 234 

information (MGS1: 105; MGS2: 175; MGS3: 112; MGS4: 61) were included in the analysis16. Genes 235 

that were expressed in less than 20% of the samples were eliminated, resulting in 14,709 genes in 236 

downstream analyses. 237 

 238 

scRNA-seq data clustering and cell type identification 239 

To identify cell types in the scRNA-seq data, we clustered cells into distinct cell types using DESC, a 240 

deep learning based clustering algorithm that is robust to batch effect17. To prepare the data for DESC 241 

clustering, the original gene count matrix obtained from CellRanger was normalized in which the UMI 242 

count for each gene in each cell was divided by the total number of UMIs in the cell. The normalized 243 

UMI count data were then multiplied by 10,000 and transformed to a natural log scale. We further 244 

standardize the log-transformed expression value for each gene by calculating a Z-score across cells 245 

within each batch. Lastly, 2,000 highly variable genes selected using filter_genes_dispersion function 246 

from the Scanpy package18 were used as input for DESC clustering. In DESC analysis, we used a 2-247 

layer autoencoder with 64 nodes on the first layer and 32 nodes on the second layer. The DESC 248 

clustering was performed using a grid of resolutions, and resolution = 0.4 was selected because it yields 249 

high maximum cluster assignment probability for most of the cells. DESC initially identified 18 cell 250 

clusters and 16 of them that contain more than 50 cells were kept for downstream analyses. We 251 

annotated these 16 cell clusters with cell type labels by examining expression patterns of known retina 252 

cell type markers (Supplementary Data 8). We further performed pairwise differential expression 253 
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analysis among cell clusters, and cell clusters with the same cell type annotation and very few 254 

differentially expressed genes were merged (Supplementary Note 2 and Supplementary Fig. 2). This 255 

procedure resulted in 11 major neuronal cell types, including cone photoreceptors, rod photoreceptors, 256 

bipolar cells, horizontal cells, amacrine cells, and ganglion cells; support cells (microglia, Mϋller glia, 257 

astrocytes), and vascular cells (endothelium, pericytes). 258 

 259 

We are aware of that some of the cell types we identified, such as cone, rod and ganglion, are commonly 260 

called cell classes,19 since each of them includes multiple (sub) types of cells with different expression 261 

patterns. However, to simplify the analysis of neural and non-neural cells, we use cell type to signify 262 

both cell types and cell classes in our data. 263 

 264 

 265 

t-SNE visualization for single-cell clustering 266 

To visualize cell type clusters from the scRNA-seq data, we generated a two-dimensional non-linear 267 

embedding of the cells using t-distributed Stochastic Neighbor Embedding (t-SNE)20. The low 268 

denominational representation of the original data from DESC were used as input. The algorithm was 269 

implemented using the mTSNE function from python package MulticoreTSNE21. We set perplexity = 50 270 

and learning rate = 500 and used the default values for all other parameters.     271 

 272 

Cell type- and region-specific expression of AMD risk genes 273 

We obtained AMD risk genes from previous studies, which include 51 AMD associated GWAS genes 274 

from Peng et al. 20196 and 26 target genes identified from TWAS analysis by Ratnapriya et al. 201910. 275 

A gene that meets the following criteria was included for downstream analysis: 1) expressed in at least 276 

1% of the cells; 2) expressed in at least 10 cells for at least one cell type in the scRNA-seq data. In total, 277 

46 AMD associated genes and 22 TWAS target genes met these criteria. For these 68 genes, we tested 278 

whether they have significant high expression levels in a particular retina region and cell type(s). To test 279 

the region specificity, for each cell type, we tested whether these genes are differentially expressed 280 

between two retina regions. The analysis was conducted using the FindAllMarkers function in the R 281 

Seurat package22 with the Wilcoxon test. Benjamini-Hochberg (BH)23 adjusted p-value < 0.05 was used 282 

as threshold.  To examine the cell type specificity, for each region, we compared AMD risk gene list to 283 

the identified cell type-specific genes and counted the overlap (Supplementary Note 3 and 284 

Supplementary Data 1).  285 

 286 

To visualize cell type and region-specific expression, for each AMD risk gene, we calculated the mean 287 

expression across cells for each of the 11 major cell types for macular and peripheral retina separately. 288 

If a gene is expressed in less than 1% or 15 cells in a particular cell type, the mean expression of this 289 
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gene in this cell type will be set as 0. Genes that have 0 mean expression across all cell types will be 290 

removed from further analysis. To make cell type-wise mean expressions comparable across genes, we 291 

calculated z-score of cell type mean expressions for each gene, and visualized the z-scores using 292 

heatmap (Fig. 1e). 293 

 294 

DEG detection in bulk RNA-seq data 295 

Differential expression analysis for bulk RNA-seq data was performed using DEseq2 (v1.22.2)24. For 296 

the EyeGEx data, the filtered RSEM count matrix (14,709 genes by 453 samples) was used as input. 297 

Differential expression analysis was performed between normal vs. AMD samples defined by three 298 

different MGS levels. Also, sex was included as a covariate in the analysis. For the UAB data, we 299 

detected DEGs for macula and periphery separately. Genes that were expressed in less than 20% of 300 

the samples were eliminated, resulting in 19,313 genes in downstream analyses. The filtered read count 301 

matrices (19,313 genes by 13 samples for macula; 19,313 genes by 15 samples for periphery) were 302 

used as input. For each retina region, we detected DEGs between normal vs. early and normal vs. late 303 

AMD. All parameters for DESeq2 were set as default. We used BH adjusted p-value < 0.05 as 304 

significance threshold to correct for multiple testing. The significant DEGs are reported in 305 

Supplementary Data 3. 306 

 307 

Further, we also examined whether these DEGs are cell type specific. For each retina region, we 308 

counted the overlap between identified DEGs and cell type-specific genes. Then we reported the 309 

proportions of cell type specific ones in AMD associated DEGs. 310 

 311 

Cell type deconvolution in bulk RNA-seq data  312 

We performed cell type deconvolution analysis for both the EyeGEx and UAB bulk RNA-seq data using 313 

the UAB scRNA-seq data as the reference. For the scRNA-seq data, we only kept genes that were 314 

expressed in at least 5% of cells and more than 10 cells in at least one cell type. Cell type deconvolution 315 

analysis was conducted using MuSiC13 by setting eps = 0.0001, iter.max = 1,000 and default values for 316 

all other parameters. Also, we used the collection of 1,701 cell type-specific marker genes as reference 317 

genes in the deconvolution (Supplementary Note 3 and Supplementary Data 1).  318 

 319 

Detection of cell type-specific DEGs using calibrated gene expression   320 

Our analysis shows AMD may have specific impact on particular cell types. We are interested in 321 

detecting differential expression between normal and AMD eyes for different cell types separately. 322 

However, the bulk RNA-seq data with both normal and AMD subjects lack cell type level information. To 323 

bypass such limitation, we developed a procedure to detect cell type-specific DEGs using bulk RNA-324 

seq data calibrated by cell type proportion, which can be obtained from scRNA-seq data. 325 
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 326 

Consider a scenario in which we aim to calculate fold change of gene expression between two conditions 327 

for a particular cell type. Let 𝑌  denote the bulk RNA-seq expression for gene 𝑔 in sample 𝑖. 𝑌  is a 328 

weighted sum of cell type level gene expression, 329 

 330 

𝑌 = ∑ 𝑝 𝑋              𝑖 ∈ 𝑆                            (1)  

 

where 𝑝  is the proportion of cell type 𝑗 (𝑗 = 1,2, … , 𝐶) under condition 𝑘 (𝑘 = 1, 2), 𝑋  is expression 331 

level of gene 𝑔  in sample 𝑖  for cell type 𝑗 , and 𝑆   is the set of samples under condition 𝑘 . Here we 332 

assume that if gene 𝑔 is cell type 𝑐 specific, it is only expressed in that cell type so that 333 

 334 

𝑋 = 0           𝑓𝑜𝑟  𝑎𝑙𝑙 𝑗 ≠ 𝑐             (2) 335 

 336 

Combine (1) and (2), then for genes that are cell type 𝑐 specific, we have: 337 

 338 

𝑌 = 𝑝 𝑋         𝑔 ∈ 𝐺            (3)     339 

 340 

where 𝐺   is the set of genes that are cell type 𝑐  specific. Let 𝑍   denote the fold change of gene 𝑔 341 

between two conditions in cell type 𝑐. Then 342 

 343 

𝑍 =
∑ ∈ /

∑ ∈ /
=

∑ ∈ /

∑ ∈ /
=

∑ ∈ /

∑ ∈ /
            𝑔 ∈ 𝐺                   (4) 344 

 345 

where 𝑝 =   
 

 
 is the proportion change of cell type 𝑐 between the two conditions, 𝑛  (𝑘 = 1,2) is the 346 

number of samples in condition 𝑘. Thus, for cell type 𝑐 specific gene 𝑔, the cell type level fold change 347 

𝑍  can be calculated using bulk level expression 𝑌  calibrated by 𝑝 , which is the proportion change 348 

of cell type 𝑐. 349 

 350 

For each of the 11 cell types, we aim to identify ctDEGs. Firstly, we calibrate bulk expression levels for 351 

identified cell type-specific markers (Supplementary Note 3 and Supplementary Data 1) according to 352 

(4), and then performed differential expression analysis for these genes using DEseq224. All parameters 353 

in DESeq2 were set at default and genes with Benjamini-Hochberg (BH)23 adjusted p-value < 0.05 was 354 
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declared to be significant. The detected cell type specific DEGs are reported in Supplementary Data 4 355 

and 6. 356 

 357 

Alternative way to calculate cell type proportion change 358 

Although we are able to estimate proportion change by averaging the between-condition difference of 359 

cell type proportion the from the deconvolution results, the proportion change obtained this way is 360 

subject to sample variation, prone to outliers, and it may result in larger number of false positives in the 361 

detected cell type specific DEGs. Therefore, we propose an alternative way to estimate cell type 362 

proportion change which can increase the robustness of cell type specific DEGs detection. 363 

 364 

We assume that for a given cell type, only few cell type specific markers are differentially expressed 365 

between conditions for the cell type, and the average fold change across genes specific to the cell type 366 

is 1, that is, 367 

 368 

∑
∈

= 1                      (5) 369 

 370 

where 𝑚  is the number of cell type specific genes for cell type 𝑗. Combine (4) and (5) we have: 371 

 372 

𝑝 = ∑
∑ ∈

∑ ∈
∈

/𝑚               (6) 373 

 374 

Thus, we are able to calculate between-condition proportion change 𝑝  for cell type 𝑗 directly using bulk 375 

level expression for cell type specific markers. Under our assumption, this method is a more direct way 376 

to estimate cell type proportion change between conditions. By avoiding the sample variation and 377 

complexity introduced in the deconvolution analysis, the calculation is more robust. The method was 378 

applied in the procedure of cell type specific DEGs detection (Supplementary Fig.7). 379 

 380 

GO enrichment analysis for ctDEGs 381 

We preformed GO-enrichment analysis using ToppGene Suite (https://toppgene.cchmc.org/)25 for up- 382 

and down-regulated genes specific to each cell type. The analysis was perfomed only if there are at 383 

least 10 ctEGDs in the list. We used Bonferroni corrected P-value < 0.05 as the threshold for the 384 

significant GO-terms. The results are reported in Supplementary data 5 and 7. Representative GO 385 

terms for rod, bipolar, endothelium, astrocytes and microglia are shown in Fig. 3d. 386 

387 
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