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Abstract—There is growing interest in using inertial sensors to 

continuously monitor gait during free-living mobility. Inertial 
sensors can provide many gait measures, but they struggle to 
capture the spatial stability of the center-of-mass due to limitations 
estimating sensor-to-sensor distance. While the margin of stability 
(MoS) is an established outcome describing the instantaneous 
mechanical stability of gait relating to fall-risk, methods to 
estimate the MoS from inertial sensors have been lacking. Here, 
we developed and tested a framework, based on centripetal 
acceleration, to determine a correlate for the lateral MoS using 
inertial sensors during walking with or without turning. Using 
three synchronized sensors located bilaterally on the feet and 
lumbar spine, the average centripetal acceleration over the 
subsequent step can be used as a correlate for lateral MoS. Relying 
only on a single sensor on the lumbar spine yielded similar results 
if the stance foot can be determined from other means. 
Additionally, the centripetal acceleration correlate of lateral MoS 
demonstrates clear differences between walking and turning, 
inside and outside turning limbs, and speed. While limitations and 
assumptions need to be considered when implemented in practice, 
this method presents a novel correlate for the lateral MoS during 
walking and turning using inertial sensors, although further 
validation is required for other activities and populations. 
 

Index Terms—Accelerometers, Balance, Gait, Inertial Sensors, 
Margin of Stability, Turning 

I. INTRODUCTION 
Recent advances in wearable sensors have enabled 

biomechanical analyses of gait outside of the laboratory. 
Continuous monitoring of gait during free-living daily activity 
provides a new window into community ambulation and 
presents a promising avenue for future gait research 
investigating older adults at risk of falls [1], neuropathological 
progression [2], and ecologically valid gait assessments [3-7].  
 Many spatiotemporal gait parameters, including measures of 
pace, rhythm, variability, and asymmetry, can be estimated 
using inertial sensors [4, 8], but spatial stability has been 
difficult to assess using inertial sensors alone. Inertial sensors 
can also assess dynamic, temporal stability, derived from short-
term maximum finite-time Lyapunov exponents or other 
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dynamical systems constructs, that describe the temporal 
stability of a system within a given state space [9]. While 
temporal measures are theoretically valid and predictive metrics 
of the probability of falling [1, 9], they do not describe the 
instantaneous biomechanical stability during locomotion. 
 To describe the mechanical stability of gait, Hof and 
colleagues proposed extending the inverted pendulum model of 
human balance using the velocity of the center of mass (CoM) 
to extrapolate the velocity-adjusted position of the CoM 
(XcoM)[10, 11]. The relationship between the XcoM and the 
base of support (BoS) reveals the instantaneous mechanical 
stability of the system; if the XcoM falls outside the BoS, 
balance cannot be recovered with ankle joint torque alone – a 
stepping response, rotation at superior joints, or external force 
is required[11]. Since the spatial distance between the XcoM 
and the BoS was defined as the margin of stability (MoS) [10, 
11], the MoS has been widely used to assess gait stability [9, 
12-17], and gait controllers have been proposed with objectives 
of maintaining constant MoS through foot placement [18, 19].  

Traditionally, MoS has been assessed using optical motion 
capture, gait carpets, and / or force platforms that give accurate 
spatial information [16, 20-22]. Inertial sensors, comparatively, 
provide accurate acceleration, angular velocity, and orientation 
estimates, but struggle to provide accurate positional distances 
from one sensor to another. To rectify this issue, static 
calibration poses and subject-specific anthropometric 
dimensions have been used to establish initial positions of each 
sensor [23, 24]. However, requiring the subject to hold a neutral 
pose for calibration before every data capture may not be a 
viable solution for continuous monitoring in free-living 
conditions. Recently, a custom combination of inertial sensors 
and pressure-sensitive insoles have been used to estimate the 
position of the CoM [25] and the MoS during walking [26]. 
While this system provides promise for assessments of MoS 
during walking outside the laboratory, it relies on custom shoes 
and may not be feasible for large-scale or long-term monitoring.  

Others have described a method of estimating the MoS using 
a series of inertial sensors on the feet, shank, leg, and hip to 
reconstruct the kinematic chain [27]. This method achieves low 
error (<2 cm), but relies on subject-specific anthropometry and 
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either external reference frames or static and dynamic 
calibration poses for sensor-to-segment calibration. As the 
authors combined inertial sensor data with motion camera data 
to establish a global reference frame, it is unclear if the same 
accuracy can be obtained using inertial sensor data alone [27].  

Recently, the lateral MoS was estimated in individuals with 
dementia within a community-dwelling setting using camera-
based systems [15]. While other spatiotemporal gait outcomes 
were assessed, the estimated lateral MoS was the only gait 
measure associated with prospective falls [15]. These results 
support quantifying the lateral MoS in community settings to 
assess fall-risk. Yet, the novel, low-cost camera system relies 
on line of sight and cannot assess MoS in every environment. 
In contrast, inertial sensors are wearable, capable of 
continuously quantifying ambulation in diverse environments, 
and becoming a predominant method for community-based 
assessments. Yet, there are few methods that can quantify MoS 
without cameras, and there are no established method to 
estimate MoS using only a single inertial sensor. 
 Because inertial sensors struggle to provide inter-sensor 
positional data, we sought to create a framework by which 
lateral MoS could be easily inferred from acceleration data. 
Thus, our aim was to develop and validate a correlate for lateral 
MoS during walking and turning using inertial sensors, with the 
eventual goal of using a single inertial sensor. As a number of 
studies and publicly available datasets have utilized a single 
inertial sensor on the lumbar spine [7, 28], and this location is 
in close proximity to the whole-body center-of-mass, we 
focused on using this lumbar-spine location. We compared our 
correlate of MoS using the inertial sensor to the true MoS based 
on optical motion capture. To extend the comparison to include 
a variety of daily ambulatory tasks, we included steps during 
straight gait and a variety of different turning angles.  

II. METHODS 

A. Model Framework 
Based on Hof et al. [10], dynamic balance can be achieved by 
placing the foot, and the CoP by extension, some offset outside 
of the XcoM to generate a corrective torque. The instantaneous 
mediolateral MoSz is the difference between CoP, uz, and the 
XcoM based on 

𝑴𝑴𝑴𝑴𝑺𝑺𝑧𝑧 = 𝒖𝒖𝑧𝑧 − 𝑿𝑿𝑿𝑿𝑴𝑴𝑴𝑴      (1) 
where the XcoM is defined by the lateral position of the CoM, 
z, the lateral velocity of the CoM, vz, and the eigenfrequency of 
the inverted pendulum 𝜔𝜔0 = �𝑔𝑔/𝑙𝑙   by  

𝑿𝑿𝑿𝑿𝑴𝑴𝑴𝑴 = 𝒛𝒛 + 𝒗𝒗𝑧𝑧
𝜔𝜔0

 .        (2) 
Based on this model and assuming the minimum occurs at or 
near initial contact [10], several simple controllers can be 
derived for control of forward and lateral foot placement based 
on maintaining a minimum MoS at each step, MoSzn [10, 19]. 
For lateral controllers with constant step time, a change in 
lateral CoM velocity, Δvz, occurring over the previous step n-1 
can be corrected through a change in foot position of the current 
step n equal to ∆𝒗𝒗/𝜔𝜔0 [10]. The corrected foot position, uzn’, is  

𝒖𝒖𝑧𝑧𝑧𝑧′ = (−1)𝑧𝑧 �𝒖𝒖𝑧𝑧𝑧𝑧 + 𝒗𝒗𝑧𝑧𝑧𝑧−𝒗𝒗𝑧𝑧𝑧𝑧−1
𝜔𝜔0

�      (3) 
where Δvz = vzn – vzn-1, and the new MoS at step n, MoS’zn, is 

𝑴𝑴𝑴𝑴𝑺𝑺𝑧𝑧𝑧𝑧′ = 𝒖𝒖𝑧𝑧𝑧𝑧′ − 𝑿𝑿𝑿𝑿𝑴𝑴𝑴𝑴𝑧𝑧𝑧𝑧 .       (4) 

By altering the foot placement, the MoSn+1, and by extension 
vz+1, are corrected such that vzn-1 = vzn+1. Therefore, (3) could be 
written as  

𝒖𝒖𝑧𝑧𝑧𝑧′ = (−1)𝑧𝑧 �𝒖𝒖𝑧𝑧𝑧𝑧 + 𝒗𝒗𝑧𝑧𝑧𝑧−𝒗𝒗𝑧𝑧𝑧𝑧+1
𝜔𝜔0

�      (5) 
indicating a change in foot placement at step n can induce a 
change in velocity at step n+1. Notably, (5) is very similar to 
the velocity correction from (3) derived by Hof [10]. In (3) the 
change in foot placement should occur in the same direction as 
the change in velocity over the previous step. In (5), the change 
in foot placement should occur in the opposite direction of the 
intended change in velocity. From (1), (4), and (5), the change 
in MoS is proportional to the intended change in velocity 

𝑴𝑴𝑴𝑴𝑺𝑺𝑧𝑧𝑧𝑧′ − 𝑴𝑴𝑴𝑴𝑺𝑺𝑧𝑧𝑧𝑧 ∝ − (𝒗𝒗𝑧𝑧𝑧𝑧+1−𝒗𝒗𝑧𝑧𝑧𝑧)
𝜔𝜔0

 .      (6) 
The above assumes MoSzn is the constant objective of the 
controller at each step and thus an arbitrary input. We can 
remove the constant and maintain proportionality 

𝑴𝑴𝑴𝑴𝑺𝑺𝑧𝑧𝑧𝑧′ ∝ − (𝒗𝒗𝑧𝑧𝑧𝑧+1−𝒗𝒗𝑧𝑧𝑧𝑧)
𝜔𝜔0

 .       (7) 
 Next, we can define the centripetal acceleration of the CoM, 
ac, as the lateral acceleration orthogonal to gravity and the 
direction of travel. In the lateral direction, the change in the 
lateral velocity of the CoM over step n is given by the integral  

𝒗𝒗𝑧𝑧𝑧𝑧+1 − 𝒗𝒗𝑧𝑧𝑧𝑧 =  ∫ 𝒂𝒂𝑐𝑐(𝑡𝑡) 𝑑𝑑𝑡𝑡𝑧𝑧+1 
𝑧𝑧   .    (8) 

The variation in lateral MoS at heel contact can therefore be 
estimated using the integral of the centripetal acceleration over 
the following step  

𝑴𝑴𝑴𝑴𝑺𝑺′𝑧𝑧𝑧𝑧  ∝ −∫ 𝒂𝒂𝑐𝑐(𝑡𝑡) 𝑑𝑑𝑡𝑡𝑧𝑧+1 
𝑧𝑧

𝜔𝜔0
 .      (9) 

If all individuals are of relatively average stature and walking 
on earth, small variations in pendulum length l are negligible, 
and we can assume 𝜔𝜔0 is a constant, and (7) can be reduced to  

𝑴𝑴𝑴𝑴𝑺𝑺′𝑧𝑧𝑧𝑧 ∝ −∫ 𝒂𝒂𝑐𝑐(𝑡𝑡) 𝑑𝑑𝑡𝑡𝑧𝑧+1 
𝑧𝑧  .     (10) 

Finally, if the step time and sampling frequency are constant, 
as assumed for (3) by Hof [10], (9) can be reduced to the 
average of the acceleration over each step 

𝑴𝑴𝑴𝑴𝑺𝑺′𝑧𝑧𝑧𝑧 ∝ −𝒂𝒂𝑐𝑐(𝑡𝑡)������� for = [𝐼𝐼𝐶𝐶𝑧𝑧, 𝐼𝐼𝐶𝐶𝑧𝑧+1] .  (11) 

B. Participants 
Ten neurologically healthy older adults (5 Female / 5 Male) 

were recruited for this study. All participants provided informed 
written consent to participate, and all protocols were conducted 
in accordance with the Declaration of Helsinki and approved by 
the Oregon Health & Science University Institutional Review 
Board (IRB#15632). The study participants were an average 
(SD) of 72 (5.8) years of age, 169.1 (10.5) cm, and 71.5 (17.8) 
kg. All participants reported to be free of orthopedic and 
neurological impairments and medications that might affect 
mobility. One participant was excluded from the analysis due 
to a malfunctioning magnetometer throughout data collection. 

C. Experimental Protocol 
All walking trials took place within a 2.5 m radius circle, 

marked in 45° increments around the outside (Fig 1). Within 
each trial, participants were instructed to pass through the 
center of the circle (marked in red), and then walk towards a 
specific colored line on the outside of the circle. For example, 
participants may have been given the following cue: “At your 
normal speed, make a slight left turn to the red line.” Thus, 
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changing the destination color changed the turn angle. Walking 
trials were recorded in blocks of 10 with two trials at each turn 
angle (one left, one right for each of 45°, 90°, 135°, and 180°), 
and two straight trials per block. Three blocks were completed 
at a self-selected normal walking speed and three blocks 
performed at a self-selected fast walking speed for a total of 60 
walking trials per participant. 

Nine inertial sensors (Opal v1, APDM Inc., Portland, OR) 
were placed on the following segments: forehead, sternum, 
lumbar spine around L3-L4, bilateral wrist, bilateral shank, and 
bilateral dorsum of each foot. Nine sensors were used to address 
other aims within the study; only three sensors, the lumbar and 
feet sensors, were used in this analysis. Synchronized inertial 
sensor data were collected at 128 Hz continuously over each 
block. Each block started with at least three seconds of static 
stance to ensure a quiet period for the sensors, but no neutral 
pose or specific calibration pose was collected. Additionally, all 
subjects were outfitted with 30 retroreflective markers in a 
modified Helen Hayes marker configuration (see Supplemental 
Figure). Markers were placed on the head (front, back, and 
lateral), thorax and arms (acromion, sternum, offset, lateral 
epicondyle of humerus, and distal radius), pelvis (sacrum, 
anterior superior iliac spine (ASIS)), legs (thigh, lateral 
epicondyle of the femur, shank, lateral and medial malleolus), 
and feet (1st and 5th metatarsal head, and posterior calcaneus). 
Optical motion capture data were collected at 120Hz (Raptor-H 
(8) and Osprey (4), Motion Analysis Inc., Santa Rosa, CA). 

D. Calculation of Margin of Stability 
The optical motion capture data was used to calculate MoS 

values to validate the inertial sensor-based measures. All 
markers were tracked and gaps were filled using spline 
interpolation. All marker data were low-pass filtered using a 4th 
order phaseless 6 Hz Butterworth filter. The instantaneous 
position and velocity of the whole-body CoM was estimated as 
the weighted average of 15 segment using kinematic data and 
anthropometric tables [29]. To account for the constant change 
in coordination frame, all data were transformed to a CoM path-
of-progression reference frame aligned with gravity and the 
projection of the instantaneous velocity of the CoM in the 
transverse plane [30]. The walking speed of each trial was 
determined from the mean of the instantaneous CoM speed 
across the entire trial (including gait initiation and termination). 
The position of the XcoM was determined using (2), and the 
MoS at each point in time was determined from (1), where the 
lateral position of the CoP was estimated using the average of 
the first metatarsal and posterior calcaneus of the foot. Initial 
contact was defined as the maximal distance between the heel 
and sacrum marker in fore direction [31], and the MoS at initial 
contact was extracted for each step as the primary outcome. 
Only the MoS at initial contact was considered as previous 

reports have indicated the significance of this event in 
locomotor control [19] and fall-risk assessments [15]. All 
XcoM, BoS, and MoS values were oriented relative to the 
position of the CoM based on the vector notation in the Model 
Framework and the notation originally described by Hof [10]; 
positive MoS occured when the BoS was to the right of the 
XcoM, and negative MoS when the BoS was to the left of the 
XcoM, regardless of stance limb. 

E. Inertial Sensor Analysis 
Raw inertial sensor data, including accelerometer, 

gyroscope, and magnetometer data were imported into 
MATLAB (r2018b, The Mathworks Inc., Natick, MA). 
Additionally, orientation estimates automatically calculated 
from the APDM Mobility Lab software were imported. These 
orientation estimates are based on Kalman filters that fuse 
acceleration, angular velocity, and magnetic field data to 
resolve quaternions between the sensor-axis and the global 
reference frame. For each block, the acceleration vectors at the 
lumbar spine were rotated to align with the global axis frame 
using the quaternion orientation estimates.  

Subsequent analysis was completed using two different 
sensor alignments:  
1) Vertically Aligned Frame (VAF): The sensor-based local 
frame was rotated to align with the global vertical axis. The 
sensor axes were allowed to rotate about the vertical axis such 
that the x-axis always aligned with the direction of travel, and 
the z-axis aligned with the orthogonal direction. In this way, the 
x-z plane was always horizontal, and only yaw about the y-axis 
was allowed.  
2) Body-Fixed Frame (BFF): The sensor-based coordinate 
frame was fixed to the body. While initially aligned with the 
global frame, there was no requirement for axes to be aligned 
with the global frame at every instant in time throughout the 
trial. Sensor-based x- and z- axes may include vertical 
components through pitch or roll, respectively. 
 Practically, these two alignments were obtained through 
either a time-varying rotation matrix (VAF) or a constant 
rotation matrix based on the initial alignment (BFF) between 
the body and global frames.  
 Walking trials were identified and segmented into separate 
trials from within each block. For each walking trial, heel 
contacts were identified using two methods: 1) identifying 
peaks in the normalized frequency content above 20 Hz of the 
left and right foot sensors [32], and 2) using a Gaussian 
continuous wavelet transform of the lumbar vertical 
acceleration [33]. These methods use 3 sensors and 1 sensor, 
respectively. All steps identified using both methods were 
matched with steps detected from motion capture. Turns were 
identified within each trial using a threshold-based angular 
velocity algorithm (30°/s). Lumbar acceleration data were low-
pass filtered using a 4th order phaseless 4 Hz Butterworth filter.  

Centripetal acceleration at the lumbar sensor was extracted 
for each step (Fig 2). The acceleration was integrated between 
successive heel contacts based on (7). Additionally, the average 
acceleration between successive heel contacts was calculated 
based on (8). All processing steps to obtain the centripetal 
acceleration outcomes are shown in the Fig 3. Each of these 
outcomes (Integrated and Mean centripetal acceleration) were 
compared to the MoS at initial contact from motion capture.  

 
Fig 1. Schematic of the marked lines at 45 degree increments and center dot. 
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F. Comparison Between MoS and Sensor-Based Centripetal 
Acceleration 

To compare the level of agreement between each method of 
determining inertial sensor-based centripetal acceleration and 
the motion-capture-based MoS, linear regression models were 
fit using all steps from all subjects. No within-subject correction 
was applied, as the primary objective was to examine how well 
centripetal acceleration correlated with MoS regardless of 
subject; allowing random intercepts or slopes would not serve 
the intended purpose. To ensure the models were robust, a 
bootstrapping procedure with 10000 iterations was performed. 
For each model, the mean and 95% confidence interval for 
coefficient of determination (R2) was calculated from the 
bootstrapping. Linear regression models were also fit for each 

subject individually, and the range of R2 values was extracted 
to compare the between-subject performance of each method. 
To determine how the relationship between centripetal 
acceleration and MoS may change based on speed or turning 
angle, trials were also stratified by speed and angle, and R2 
values were extracted from corresponding regression models. 

G. Exploring Meaningful Differences 
To help guide the implementation of centripetal acceleration 

in future studies, we explored whether centripetal acceleration, 
calculated from inertial sensors, is sensitive to expected, 
meaningful differences. We descriptively compared the 
distribution of centripetal acceleration values between steps 
taken during straight gait and steps taken during turning. 
Additionally, we examined the distributions of centripetal 
acceleration between the inside and outside limbs during a turn, 
between the different turning angles, and between the different 
speeds. For all comparisons, centripetal acceleration values 
were stratified by foot to clearly illustrate the unimodal 
distribution per foot, and bimodal distribution when values 
from both feet are combined, in each condition. No statistical 
tests were performed; characteristics were descriptively 
presented to guide future metric selection and use.  

III.             RESULTS 
Overall, 2609 steps were included in our analyses. On 

average, 290 steps were included per subject (range 202-383 
steps per subject) for an average of five steps per trial. The 
remaining steps in each trial occurred outside the volume of the 
motion capture cameras and therefore could not be analyzed. 
The average (SD) walking speeds were 1.02 (0.12) and 1.30 
(0.17) m/s for normal and fast speeds, respectively. 

A. Agreement between Sensor-Based Centripetal Acceleration 
and Margin of Stability 

Using the VAF resulted in good to excellent agreement 
between the sensor-based centripetal acceleration and the 
motion-capture based MoS (Table 1). The average centripetal 
acceleration over each step agreed with the MoS better than the 
integrated centripetal acceleration. A single lumbar-mounted 
sensor was near equivalent to using three sensors (lumbar, left 
foot, right foot) when a VAF was used in conjunction with the 
mean centripetal acceleration over each step – both had 
excellent agreement with the MoS (R2 = 0.73 vs. R2 = 0.77). 
The relationship between VAF-mean centripetal acceleration 

 

Fig 2. Top: Example of left (blue) and right (red) gait event detection using 
inertial sensors on the feet for a 90° turn. Bottom: Centripetal acceleration 
in vertically aligned frame (VAF, solid) and body fixed frame (BFF, dotted). 

 
Fig 3. Flowchart of IMU processing pipeline to obtain VAF-, BFF-, mean, 
and integrated centripetal accelerations using three sensors or one sensor. 
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TABLE I 
CORRELATION BETWEEN MOS AND IMU-BASED CENTRIPETAL 

ACCELERATION 

 R2 95% CI RMSE 
R2 (Subject 

Range) 

Three Sensors 
VAF - Integrated 0.75 0.73-0.76 0.04 0.61-0.87 
VAF - Mean 0.77 0.75-0.79 0.04 0.64-0.87 
BFF - Integrated 0.44 0.40-0.47 0.06 0.10-0.60 
BFF - Mean 0.43 0.39-0.47 0.06 0.11-0.72 
     

One Sensor 
VAF - Integrated 0.66 0.63-0.69 0.05 0.41-0.82 
VAF - Mean 0.73 0.71–0.75 0.04 0.59-0.84 
BFF - Integrated 0.35 0.31-0.38 0.07 0.05-0.68 
BFF - Mean  0.37 0.33-0.41 0.07 0.09-0.74 

VAF – Vertically-aligned frame; BFF – Body-fixed frame 
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 25, 2020. ; https://doi.org/10.1101/768192doi: bioRxiv preprint 

https://doi.org/10.1101/768192


 5 

and MoS was consistent across subjects (Table 1, Fig 4A). The 
correlation between VAF-mean centripetal acceleration and 
lateral MoS was consistently high across turning angle using 
three sensors (R2 = 0.72, 0.82, 0.83, 0.79, and 0.71 for straight, 
45°, 90°, 135°, and 180° turns, respectively), but the correlation 
was less consistent over turning angles using only one-sensor 
(R2 = 0.60, 0.76, 0.81, 0.75, and 0.68 for straight, 45°, 90°, 135°, 
and 180° turns, respectively) (Fig 4B-F). Both three- and one-
sensor approaches yielded excellent relationships with lateral 
MoS regardless of speed; Normal and fast speeds R2 = 0.75 and 
0.79 for three sensor VAF-mean centripetal acceleration and 
0.72 and 0.74 for one sensor VAF-mean centripetal 
acceleration, respectively. 

B. Straight Gait versus Turning 
Comparing straight walking and turning, straight walking 

had a much tighter distribution of centripetal acceleration, 
centered at 0, compared to turning (Fig 5), agreeing with the 
expectation that centripetal acceleration is minimal during 
straight travel.  

Straight Turning
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0

0.2
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a c (m
/s

2 )

Right Foot
Left Foot

 
Fig 5. Violin plot depicting the distributions of centripetal acceleration 
values during straight and turning trials, stratified by stance limb. Note that 
the stratification is by trial, and therefore turning trials include all steps in 
the trial, including straight steps.  

C. Inside versus Outside Limb 
During left and right turns, the distributions of the average 

centripetal acceleration when the inside foot was in stance (left 
foot during left turns, right foot during right turns) were close 
to zero, and inside limb left and right foot plots overlapped more 
than during straight walking. Distributions of the outside limb 
were centered away from zero and skewed (Fig 6). 
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Fig 6. Violin plot depicting the distributions of centripetal acceleration 
between the inside and outside stance limb, stratified by foot. 

D. Difference between Turning Angles 
While sharper turning angles tended to widen distributions 

and increase the variance compared to shallower turning angles, 
this trend was only truly noted when comparing 45 degree turns 
to sharper turns (Fig 7). Note that all turns had a concentration 
of accelerations similar to straight gait due to the protocol.  

45° 90° 135° 180°
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

a c (m
/s

2 )

Turning Angle by Trial

Right Foot
Left Foot

 
Fig 7. Violin plot depicting the distribution of centripetal acceleration at 
each turning angle. Qualitative differences can be noted as the turning angle 
increases, with more extreme values in centripetal accelerations. Note that 
all turning angles have a concentration resembling straight gait due to each 
trial including steps towards and away from the center dot. 

E. Difference between Speeds 
Speed primarily affected the centripetal acceleration on the 

inside limb of the turn. During fast trials, greater centripetal 
acceleration magnitudes were evident on the inside limb 
compared to normal walking trials (Fig 8). 
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Fig 8. Violin plots for 90 degree turns only, stratified by left and right foot 
and inside and outside limb. Speed primarily changed the centripetal 
acceleration of the inside limb. 

IV. DISCUSSION 
Centripetal acceleration calculated from inertial sensors on 

the feet and the lumbar spine was able to estimate lateral MoS 
during walking and turning. Notably, the relationship between 
average centripetal acceleration and MoS was consistent and 
strong across all subjects without the need for a subject-specific 
correction for anthropometry (Fig 4). However, the validity of 
this estimation required using a VAF and the average of the 
centripetal acceleration over the following step. Restricting the 
analysis to a single sensor on the lumbar spine resulted in 
negligible decrements in performance. The largest difference 
between three-sensor and one-sensor approaches appeared 
during straight walking trials (R2 = 0.72 vs. 0.60, respectively), 

 
Fig 4. Scatter plots (A-F) between VAF-Mean centripetal acceleration 
using a single sensor and lateral MoS. A. All steps from all trials are 
included, with different colored scatters indicating different subjects. Thin 
gray lines indicate linear fits within each subject. The thick black line 
indicates the linear fit across all subjects and trials. B-F. Scatter plots for 
trials of specific turning angles, with all subjects plotted together and 
overall linear fits depicted with thick black lines. 
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suggesting a three-sensor approach may be necessary when 
investigating straight gait. Nevertheless, these results suggest 
that MoS during combined walking and turning may be 
estimated using only a single inertial sensor located around the 
waist with the caveat that a method for determining which limb 
is in stance is recommended for the single sensor solution.  

Interestingly, the best agreement between the centripetal 
acceleration and lateral MoS was found by averaging, rather 
than integrating, the centripetal acceleration over each step. 
This result was curious because the construct of averaging 
relied on assumptions of constant step time. The improved 
performance of averaging, compared to integrating, can most 
likely be attributed to a lack of precision in our gait event 
detection and error propagation from integration. As seen in Fig 
2, step transitions correspond to large shifts in the centripetal 
acceleration. Small temporal errors in step detection, therefore, 
are more likely to compound when integrated than when 
averaged. The decrease in performance of the single-sensor, 
integrated acceleration algorithm provides further support 
along this line as the precision of gait event detection decreases 
when using a single lumbar-mounted sensor compared to 
sensors on the lower extremities [34]. Additionally, random 
error propagates when integrated (often called drift), while 
averaging reduces error. Integrating, while based on less model 
assumptions, is therefore more susceptible to random error in 
accelerometer measurements. While step time is not constant, 
variation in step time is small in healthy adults (<3-5%) [35], 
and an approximation of constant step time is not unreasonable 
in this population. Combined, these factors suggest averaging 
the acceleration over each step, even if assumptions are not 
strictly met, is more robust against random gait event detection 
and measurement error than an integration-based approach.  

A. Limitations and Guidelines for Implementation 
While the average centripetal acceleration over each step was 

consistent and valid across subjects and sensitive to different 
conditions, underlying assumptions and limitations must be 
considered when using centripetal acceleration from inertial 
sensors as a correlate for lateral MoS. Specifically: 
1) Correctly identifying left and right foot contacts may be 
problematic using only a single sensor. Previous methods have 
relied on using the lateral acceleration or angular velocities to 
determine the stance limb using a lumbar-mounted inertial 
sensor [33]. However, angular-velocity-based methods are not 
viable during non-straight gait, where roll and yaw angular 
velocities are strongly influenced by the turn. In these cases, 
left-right stance limbs are assumed based on alternating steps 
within a pair. While this is generally a robust assumption, it is 
not always true, particularly for sharp turns and in individuals 
with severe gait impairments. For this reason, if a primary 
outcome is dependent on identifying MoS on each foot, we 
recommend using the three-sensor approach until a validated 
method emerges addressing this problem. While results may be 
meaningful without stratifying by stance limb, interpretations 
should carefully consider the underlying bimodal distributions.  
2) Step-to-step based centripetal acceleration correlates of 
lateral MoS may not be robust for comparisons with small 
effects. Inertial sensors matched motion-capture-based MoS 
with R2 values exceeding 0.7 and, on average, were very 
consistent. However, ~ 25% of variance remained unexplained. 

As noted in Fig 4, many points fall along the correlation line of 
best fit, but some do not. Therefore, it is advisable to use 
aggregate summary statistics, rather than individual maximum 
or minimum values, to compare conditions. Further work 
should validate the accuracy and reliability of centripetal 
acceleration for individual perturbation recovery steps. 
3) Centripetal acceleration may not be reliable in scenarios 
with external forces (e.g., perturbations). Based on our model 
framework, the average centripetal acceleration over one step is 
dependent on the desired change in CoM velocity at initial 
contact. Therefore, there is a time lag that must be considered 
when external forces are applied. For instance, a lateral impulse 
J applied to the CoM during stance will change the centripetal 
acceleration of the CoM, but will not retroactively adjust the 
MoS at the initial contact preceding that stance. In this case, the 
average centripetal acceleration over stance will differ from the 
MoS by J/m, where m is the mass of the individual. 
4) Mean centripetal acceleration may not be useful in some 
comparisons of continuous monitoring. As noted in Fig 5, the 
distribution of centripetal acceleration is distinct between 
walking and turning. However, comparing only mean values 
does not capture the full picture; the spread of the distribution 
is the most apparent difference between walking and turning. 
As daily walking is a continuous mixture of straight and turning 
steps, examining the variability of centripetal acceleration may 
be advisable considering the underlying bimodal distributions. 
5) Reliance on the VAF requires robust sensor fusion 
algorithms and stable magnetometer estimates. Average 
centripetal acceleration only related to MoS when centripetal 
acceleration was confined within the global horizontal plane 
(VAF). To achieve this VAF, continuous estimates of the 
lumbar sensor orientation had to be resolved by fusing 
accelerometer, gyroscope, and magnetometer data. In unknown 
environments, changes in the local magnetic field may 
influence the magnetometer reading and alter the alignment of 
the VAF. Uses of centripetal acceleration as a correlate for MoS 
should consider using sensor fusion algorithms that are robust 
to environmentally-induced magnetometer changes. 
6) Validity in pathological populations has not been 
established. Only healthy older adults were tested here. While 
the long-term utility of this approach may include continuous 
monitoring of pathological populations, it is unclear whether 
the centripetal acceleration will maintain its consistent 
relationship. Populations with short, shuffling steps may pose 
particular problems associated with gait event detection. 
7) Ignoring the eigenfrequency may have more significant 
effects in different populations. Our sample of adults was 
relatively homogenous in stature. It is possible that the effects 
of eigenfrequency, which were ignored in this analysis due to 
the small variance, may need to be accounted for in populations 
with widely varying stature (e.g., children vs. adults). 

V. CONCLUSIONS 
Inertial sensors can provide reliable and consistent measures 

of the centripetal acceleration of the CoM that correlate with the 
lateral MoS. While the best results were obtained using an 
inertial sensor on each foot and one on the lumbar region of the 
spine, output from a single sensor on the waist is also capable 
of providing valid and robust estimates of the lateral MoS given 
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knowledge of stance foot at time of calculation. It is possible to 
obtain reliable MoS estimates using only a few inertial sensors, 
but future validation may be required during free-living 
walking in community settings using this approach. Limitations 
and assumptions prompt future work. 
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