1	Diverse flanking sequence types of <i>bla_{NDM}</i> in IncX3 and IncB/O/K/Z plasmids in <i>Escherichia</i>
2	<i>coli</i> isolated from poultry
3	Jia-Hang Zhu ^{a,b} , Run-Mao Cai ^{a,b} , Li-Juan Zhang ^{a,b} , Xing-Run Zheng ^{a,b} , Yue-Wei Lu ^{a,b} , Qiu-Yun
4	Zhao ^{a,b} , Man-Xia Chang ^{a,b} , Hong-Xia Jiang ^{a,b}
5	Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation ^a ,
6	National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria ^b ,
7	South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
8	
9	Abstract We identified 33 bla _{NDM} -harboring Escherichia coli in 470 poultry samples from
10	Shandong and Guangdong provinces during 2016 to 2017 and included the subtypes bla _{NDM-1} ,
11	$bla_{\text{NDM-5}}$ and $bla_{\text{NDM-9}}$. The bla_{NDM} gene possessed by all strains was plasmid-borne and ranged in
12	size from 46 to 265 kb. The plasmids included the replicon types IncX3, IncY, IncB/O/K/Z and
13	IncHI2 and most were transferable and stable in recipient host bacteria. Sequences flanking
14	$bla_{\rm NDM}$ in IncX3 and IncB/O/K/Z plasmids were diverse and the mobile element IS26 played an
15	important role in the evolution of the IncB/O/K/Z bla_{NDM} plasmids.
16	Keywords: carbapenems, <i>bla</i> _{NDM} , <i>Escherichia coli</i> , plasmids, fitness cost, genetic environment
17	
18	Transmissible carbapenem-resistance and its dissemination in the Enterobacteriaceae have
19	posed a major threat to global public health (1). In the existing 3 classes of carbapenemases, New
20	Delhi metallo-beta-lactamases (NDM) encoded by $bla_{\rm NDM}$ is most abundant globally and its
21	presence is increasing at an alarming rate in Asia (2, 3). The bla_{NDM} gene has been found primarily
22	on plasmids with numerous replicon types including IncF, IncL/M, IncA/C, IncX, IncH, IncN,

23 IncR, IncB/O and IncT (4, 5). In addition, this gene is often flanked by mobile genetic elements 24 such as insertion sequences and transposons that are responsible for horizontal genetic exchange 25 and therefore promote the acquisition and spread of resistance genes (4). The presence of 26 carbapenemase-producing Enterobacteriaceae (CPE) in livestock animals is of particular concern 27 because this may facilitate gene pool expansion from which pathogenic bacteria can pick up 28 resistance genes, and consumers may subsequently be exposed through the food chain (6). The 29 presence of *bla*_{NDM}-harboring isolates is rapidly increasing among food animals in China and this 30 is most likely related to the presence of bla_{NDM} -harboring plasmids (7-13). We therefore examined 31 *bla*_{NDM}-harboring plasmids from poultry in Guangdong and Shandong provinces in China. 32 We collected 470 organ samples from five unrelated areas during 2016 in Shandong and 2017 33 in Guangdong (Table S1). Escherichia coli strains were isolated on MacConkey agar plates and 34 were further identified by matrix-assisted laser desorption/ionization time of flight mass 35 spectrometry (MALDI-TOF MS) and 16S rRNA gene sequencing (14). The bla_{NDM} gene was identified using the PCR method as previously described (15, 16). We found 33 bla_{NDM}-harboring 36 37 E. coli strains in our sample group and 9 were from Shandong and 24 were from Guangdong. Of 38 the 33 strains, three *bla*_{NDM} subtypes were identified including *bla*_{NDM-1} (1/33), *bla*_{NDM-5} (24/33) 39 and *bla*_{NDM-9} (8/33) (Fig. 1). Antimicrobial susceptibilities of these strains were determined using 40 the agar dilution method according to CLSI guidelines. All 33 isolates were resistant to at least 41 four classes of antibiotics including carbapenems (Table S2). Additional PCR screening for the 42 presence of other resistance genes demonstrated that all *bla*_{NDM}-harboring *E. coli* co-harbored 43 other resistance genes and 10 of which co-harbored polymyxin resistance gene mcr-1 (Table S3 44 and Fig 1). Pulsed-field gel electrophoresis (PFGE) analysis identified the presence of 19 clusters

45 at 85% identity (17) (Fig 1).

46

70 80 90 100	H9812-Xbal	12-Xbal Strains Date <u>Source a</u>			Resistance genes b		
		1	2016	Shandongl	Chicken	Lung	blaNDM-5, blaCTX-M, blaTEM, fosA3
		4	2016	Shandong1	Chicken	Weasand	blaNDM-5, blaCTX-M, blaTEM, fosA3
		9	2016	Shandongl	Chicken	Weasand	blaNDM-5, blaCTX-M, blaTEM, fosA3
		7	2016	Shandong1	Chicken	weasand	blaNDM-5, blaCTX-M, blaTEM, fosA3
		30	2017	Guangdong1	Duck	Rectum	blaNDM-5, blaCTX-M, blaTEM, qnrS, oqxA, fosA3
	0 00 000 000000	33	2017	Guangdongl	Duck	Ceacum	blaNDM-5, blaCTX-M, blaTEM, qnrS, oqxA, fosA3, rmtB
		A	2017	Guangdongl	Chicken	Weasand	blaNDM-9, aac-(6')-Ib-cr, oqxA, fosA3
		В	2017	Guangdongl	Chicken	Weasand	blaNDM-9, blaOXA, aac-(6')-Ib-cr, oqxA, fosA3
		C	2017	Guangdong1	Chicken	Weasand	blaNDM-9, blaOXA, aac-(6')-Ib-cr, oqxA, fosA3
		D	2017	Guangdong1	Chicken	Weasand	blaNDM-9, blaOXA, aac-(6')-Ib-cr, oqxA, fosA3
	1 100000 1000	17	2017	Guangdongl	Duck	Rectum	blaNDM-5, blaCTX-M, blaTEM, oqxA, fosA3
		27	2017	Guangdongl	Duck	Ceacum	blaNDM-5, blaTEM, qnrS
		36	2017	Guangdong2	Chicken	Ceacum	blaNDM-5, blaCTX-M, blaTEM, fosA3, qnrS
		11	2017	Guangdongl	Chicken	Weasand	blaNDM-5, blaCTX-M, qnrS, oqxA, floR
		18	2017	Guangdong1	Duck	Rectum	blaNDM-5, blaTEM, qnrS, oqxA, floR
		15	2017	Guangdong1	Duck	Rectum	blaNDM-5, blaTEM, oqxA, mcr-1
		19	2017	Guangdong1	Duck	Ceacum	blaNDM-5, blaTEM, oqxA, mcr-1
		21	2016	Guangdong1	Duck	Ceacum	blaNDM-5, blaTEM, oqxA, mcr-1
		22	2016	Guangdongl	Duck	Ceacum	blaNDM-5, blaTEM, oqxA, mcr-1
		16	2016	Guangdongl	Duck	Rectum	blaNDM-5, blaCTX-M, blaCTX-M, qnrB, aac-(6')-Ib-cr, oqxA, fosA3
		32	2016	Guangdong1	Chicken	Rectum	blaNDM-5, blaCTX-M, blaTEM, qnrS
		20	2017	Guangdong1	Duck	Ceacum	blaNDM-5, qnrS
		28	2017	Guangdong1	Duck	Ceacum	blaNDM-5, blaTEM, qnrD, qnrS, aac-(6')-Ib-cr, mcr-1
		3	2016	Shandongl	Chicken	Lung	blaNDM-9, blaCTX-M, blaTEM, mcr-1
		6	2016	Shandongl	Chicken	Weasand	blaNDM-9, blaCTX-M, blaTEM, mcr-1
		8	2016	Shandong1	Chicken	weasand	blaNDM-9, blaCTX-M, blaTEM, mcr-1
		2	2016	Shandongl	Chicken	Lung	blaNDM-9, blaCTX-M, mcr-1, fosA3
		5	2016	Shandong1	Chicken	Weasand	blaNDM-1, blaCTX-M, blaTEM, mcr-1, fosA3, rmtB
5		12	2017	Guangdong1	Chicken	Rectum	blaNDM-5, blaCTX-M, qmrS
		13	2017	Guangdongl	Chicken	Ceacum	blaNDM-5, blaCTX-M, qnrS
		14	2017	Guangdong1	Chicken	Ceacum	blaNDM-5, blaCTX-M, blaTEM, qnrS
		37	2017	Guangdong3	Chicken	Ceacum	blaNDM-5, blaCTX-M
		E	2017	Guangdong1	Chicken	Weasand	blaNDM-5, blaCTX-M, blaTEM, qnrB, qnrS

Figure 1. PFGE patterns and resistance genes of 33 *bla*_{NDM}-harboring *E. coli* strains. ^a Shandong1,
Guangdong1, Guangdong2 and Guangdong3 represent four different areas in Shandong and
Guangdong provinces. ^b Genes shown in red color represent that it could be transferred through
conjugation.

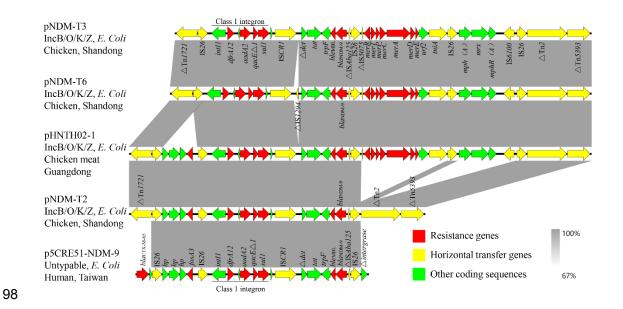
51 Conjugation assays were performed with the 33 bla_{NDM} strains as previously described using 52 E. coli J53 as the recipient (18). Transconjugants harboring bla_{NDM} and mcr-1 were selected on 53 MacConkey agar / sodium azide (150 µg/mL) plates that also contained either meropenem (0.3 54 µg/mL) or colistin (0.5 µg/mL), respectively. All transconjugants were confirmed by PCR and 55 Enterobacterial repetitive intergenic consensus (ERIC) PCR assays (19). The bla_{NDM} gene from 56 29/33 strains was successfully transferred, as was mcr-1 in 5/10 of the mcr-1-harboring strains 57 (Fig. 1 and Table 1). The plasmids carrying *bla*_{NDM} were characterized by PCR-based replicon 58 typing (PBRT) (20, 21), S1 nuclease PFGE and Southern hybridization (18, 22). The bla_{NDM} genes 59 were all located on plasmids of different replicon types that included IncB/O, IncY, IncX3 and

60 IncHI2 with sizes from 46 to 265 kb (Table 1).

61	The fitness of different <i>bla</i> _{NDM} -harboring plasmids was tested <i>via</i> stability and competition
62	experiments as previously described (23, 24). Plasmid DNA from transconjugants were extracted
63	using plasmid minikits (Qiagen, Hilden, Germany) and then electroporated into E. coli DH5a
64	except for the plasmid from strain 33 that failed. Each transformant was confirmed to contain a
65	single plasmid by S1 nuclease PFGE. Transconjugants harboring $bla_{\rm NDM}$ were selected on
66	Luria-Bertani agar plates containing cefotaxime (1 μ g/mL) and incubated 8 days for stability
67	assays and 12 days for competition assays. Except for the replicon HI2 type plasmids, the
68	remainders were stable and persistent in their host strains without reduced fitness (Table 1), these
69	are conditions conducive to the dissemination of $bla_{\rm NDM}$.

70

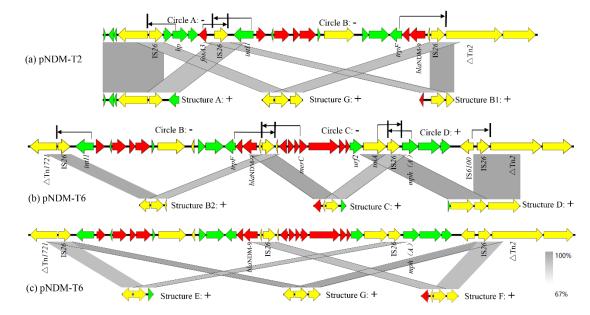
Table 1. Characteristics of *bla*_{NDM}-harboring plasmids among *E. coli* isolates

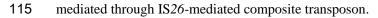

Replicon	on Size (~kb)	bla _{NDM}	Conjugation	Conjugation	Host strains ^b	Plasmid	Relative competitive fitness	
type			transfer	frequency ^a		stability	Value	SD ^c
IncB/O/K/Z	105	-9	+	1.93×10 ⁻²	2	100%	1.36	0.0875
IncB/O/K/Z	115	-9	+	8.62×10 ⁻⁴	<u>3,</u> 6, <u>8</u>	100%	1.21	0.1420
IncY	120	-1	-	N.A	5	100%	0.99	0.0128
IncX3	46	-5	-	N.A	1, 4, 7	100%	0.98	0.0427
					9, 11, 12, 13, 14, <u>15</u> , 16,			
IncX3	46	-5	+	7.14×10 ⁻⁴	17, 18, <u>19</u> , 20, <u>21</u> , <u>22</u> , 27,	100%	0.98	0.0369
					28, 30, 32, E, 36, 37			
IncHI2	265	-5	+	N.D	33	N,D	N.D	N.D
IncHI2	260	-9	+	7.59×10 ⁻⁶	A, B, C, D	93.3%	0.84	0.0894

^aN.D, not detected. N.A, not applicable. ^b Flanking sequences of *bla*_{NDM} in strains 3 and 8 were similar
to each other but differed from isolate 6. Flanking sequences of *bla*_{NDM} in strains 15, 19, 21, 22 were
also similar to each other. The flanking sequences of *bla*_{NDM} in the other IncX3 plasmid-harboring
strains were similar. ^c SD, standard deviation.

76	We sequenced the bla_{NDM} -harboring plasmids of the replicon IncB/O type (105 and 115 kb)
77	and the IncX3 type using the Illumina Hiseq platform (Majorbio, Shanghai) and assembled data
78	using SOAP denovo. Gaps were closed through PCR and Sanger sequencing. Plasmid sequences
79	were analyzed using BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi) and plasmid replicon types
80	were analyzed using the PlasmidFinder tool (<u>https://cge.cbs.dtu.dk/services/ PlasmidFinder/</u>). PCR
81	primers were designed to detect the $bla_{\rm NDM}$ genetic environment of similar plasmids (Tables S4
82	and S5).

83 Two types of sequences flanking $bla_{\rm NDM}$ were found in the IncX3 plasmids that were assigned the names pNDM-T16 and pNDM-T21. Plasmid pNDM-T16 was 46161 bp and almost 84 85 100% identical to plasmid pNDM5_IncX3 (KU761328) with only 6 single-base changes, in which 86 the ISAba125 sequence adjacent to bla_{NDM-5} was interrupted by IS5 and split into two fragments. 87 The sequence of pNDM-T21 has not been reported previously and downstream of IS5 was a 88 truncated IS3000 transposase gene that most likely was the product of intramolecular 89 recombination (Figure S2). This discovery gives further evidence for the diversity of the sequence 90 types for IncX3 *bla*_{NDM}-harboring plasmids as reported previously (25-27).


The IncB/O plasmids were identified as IncB/O/K/Z plasmids using the PlasmidFinder tool. Three kinds of sequences flanking bla_{NDM} were found and the plasmids were assigned the names pNDM-T2, pNDM-T3 and pNDM-T6. The major genetic organization surrounding bla_{NDM-9} in these plasmids was similar to that in the plasmids pHNTH02-1 (MG196294) and p5CRE51-NDM-9 (CP021177). All 5 plasmids possessed IS26-*int11-dfrA12-qacE* Δ 1-*sul1* -ISCR1-(Δ IS1294)- Δ *dct-tat-trpF-ble*_{MBL}-*bla*_{NDM}- Δ ISA*ba125*-IS26 and this IS26 composite transposon was most likely responsible for *bla*_{NDM} transfer (28) (Fig. 2).



99 Figure 2. Comparison of the *bla*_{NDM} genetic environment in pNDMT-2 and pNDMT-6 with other
100 plasmids.

101 The sequences surrounding the *bla*_{NDM-9} genes were diverse and was most likely the result of 102 the action of the IS26 mobile element. We therefore designed specific PCR primers to detect 103 circular intermediates (circle A-D) and other possible structures (structure A-G) mediated by IS26 104 in three IncB/O/K/Z plasmids (Table S6 and Fig3). The PCR products were confirmed by Sanger 105 sequencing and we found only one cyclic intermediate formed by IS26-mph(A)-mrx-mphR(A)106 -IS6100-IS26. Interestingly, the A-G structures were all detected although no direct repeats were 107 found adjacent to the IS26 insertions. These results demonstrated there were various plasmids 108 possessed different genetic organizations surrounding *bla*_{NDM-9} in the host bacteria, and all were 109 derived from a larger plasmid via IS26 transposition. Remarkably, even though the circular 110 intermediates containing bla_{NDM} were not detected in these plasmids, IS26-intI1-dfrA12-qacE Δ 1-111 sul1-ISCR1- Δdct -tat-trpF- ble_{MBL} - bla_{NDM} - Δ ISAba125-IS26 has also been found in IncA/C2 112 (pNDM-2248, CP021177), IncHI2-N (pC629, CP015725) and IncFII(Y)-like (pKPGJ-1a, 113 CP017283.1) plasmids that originated from E. coli, Salmonella Indiana, and Klebsiella variicola,

114 respectively (28, 29). This suggests the possible transfer of bla_{NDM} between different plasmids

116

117 Figure 3. Circular intermediates and possible structures present in the IncB/O/K/Z plasmids found118 in this study.

119 In conclusion, this study demonstrated that the dissemination of $bla_{\rm NDM}$ among poultry is 120 closely related to diverse plasmids, especially the IncX3 and IncB/O/K/Z conjugative plasmids. 121 The sequences flanking *bla*_{NDM} in IncB/O/K/Z as well as in IncX3 plasmids, tended to be diverse 122 and was most likely the result of intramolecular recombination and frequent activity of mobile 123 elements such as IS26. These events resulted in new types of *bla*_{NDM}-harboring plasmids and are 124 related to the process of evolution for the $bla_{\rm NDM}$ -harboring plasmids over time. Given the 125 continued spread of $bla_{\rm NDM}$ gene and the significant role that mobile elements and cyclic 126 intermediates played in the evolution and dissemination of resistance plasmids (2, 30), further 127 studies concerning the molecular mechanisms behind the dissemination of *bla*_{NDM} are urgently 128 needed.

130	Accession numbers The complete nucleotide sequences of the three bla_{NDM} -carrying								
131	plasmids characterized in this study were submitted to GenBank under accession numbers								
132	MN335919 (pNDM-T2), MN335921 (pNDM-T6), MN335922 (pNDM-T16), and the annotated								
133	sequences of the bla_{NDM} genetic environment identified from strain 3 and strain 21 have been								
134	submitted to GenBank under accession number MN335920 (pNDM-T3), MN307121								
135	(pNDM-T21), respectively.								
136									
137	SUPPLEMENTAL MATERIAL								
138	Supplemental file 1, PDF file,MB.								
139	ACKNOWLEDGMENTS								
140	This work was supported in part by the National Natural Science Foundation of China								
141	(31972734) and National key research program of China (grant 2016YFD0501300).								
142	FUNDING INFORMATION								
143	This work was funded by the National Natural Science Foundation of China (31972734) and								
144	National key research program of China (grant 2016YFD0501300).								
145									
146	REFERENCES:								
147	1. van Duin D, Doi Y. 2017. The global epidemiology of carbapenemase-producing								
148	Enterobacteriaceae. Virulence 8:460-469.								
149	2. Logan LK, Weinstein RA. 2017. The Epidemiology of Carbapenem-Resistant								
150	Enterobacteriaceae: The Impact and Evolution of a Global Menace. J Infect Dis								
151	215:S28-S36.								

- 152 3. Khan AU, Maryam L, Zarrilli R. 2017. Structure, Genetics and Worldwide Spread of New
- 153 Delhi Metallo-beta-lactamase (NDM): a threat to public health. BMC Microbiol 17:101.
- Partridge SR, Kwong SM, Firth N, Jensen SO. 2018. Mobile Genetic Elements
 Associated with Antimicrobial Resistance. Clin Microbiol Rev 31.
- 156 5. Liu BT, Song FJ, Zou M, Hao ZH, Shan H. 2017. Emergence of Colistin Resistance Gene
- 157 *mcr-1* in *Cronobacter sakazakii* Producing NDM-9 and in *Escherichia coli* from the Same
- 158 Animal. Antimicrob Agents Chemother 61.
- 159 6. Kock R, Daniels-Haardt I, Becker K, Mellmann A, Friedrich AW, Mevius D, Schwarz S,
- 160 Jurke A. 2018. Carbapenem-resistant *Enterobacteriaceae* in wildlife, food-producing, and
- 161 companion animals: a systematic review. Clin Microbiol Infect 24:1241-1250.
- 162 7. He T, Wang Y, Sun L, Pang M, Zhang L, Wang R. 2017. Occurrence and characterization
- 163 of *bla*_{NDM-5}-positive *Klebsiella pneumoniae* isolates from dairy cows in Jiangsu, China. J
- 164 Antimicrob Chemother 72:90-94.
- 165 8. Kong LH, Lei CW, Ma SZ, Jiang W, Liu BH, Wang YX, Guan R, Men S, Yuan QW,
- 166 Cheng GY, Zhou WC, Wang HN. 2017. Various Sequence Types of *Escherichia coli*
- 167 Isolates Coharboring bla_{NDM-5} and *mcr-1* Genes from a Commercial Swine Farm in China.
- 168Antimicrob Agents Chemother 61.
- 169 9. Lin D, Xie M, Li R, Chen K, Chan EW, Chen S. 2017. IncFII Conjugative
 170 Plasmid-Mediated Transmission of *bla*_{NDM-1} Elements among Animal-Borne *Escherichia*171 *coli* Strains. Antimicrob Agents Chemother 61.
- 172 10. Liu BT, Song FJ, Zou M, Zhang QD, Shan H. 2017. High Incidence of *Escherichia coli*173 Strains Coharboring *mcr-1* and *bla*_{NDM} from Chickens. Antimicrob Agents Chemother 61.

- 174 11. Wang Y, Zhang R, Li J, Wu Z, Yin W, Schwarz S, Tyrrell JM, Zheng Y, Wang S, Shen Z,
- 175 Liu Z, Liu J, Lei L, Li M, Zhang Q, Wu C, Zhang Q, Wu Y, Walsh TR, Shen J. 2017.
- 176 Comprehensive resistome analysis reveals the prevalence of NDM and MCR-1 in
- 177 Chinese poultry production. Nat Microbiol 2:16260.
- 178 12. Wang R, Liu Y, Zhang Q, Jin L, Wang Q, Zhang Y, Wang X, Hu M, Li L, Qi J, Luo Y,
- 179 Wang H. 2018. The prevalence of colistin resistance in *Escherichia coli* and *Klebsiella*
- 180 *pneumoniae* isolated from food animals in China: coexistence of mcr-1 and bla_{NDM} with
- 181 low fitness cost. Int J Antimicrob Agents 51:739-744.
- 182 13. Xiang R, Zhang AY, Ye XL, Kang ZZ, Lei CW, Wang HN. 2018. Various Sequence Types
- 183 of *Enterobacteriaceae* Isolated from Commercial Chicken Farms in China and Carrying
 184 the *bla*_{NDM-5} Gene. Antimicrob Agents Chemother 62.
- 185 14. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 1991. 16S ribosomal DNA
 186 amplification for phylogenetic study. J Bacteriol 173:697-703.
- 187 15. Poirel L, Walsh TR, Cuvillier V, Nordmann P. 2011. Multiplex PCR for detection of
 188 acquired carbapenemase genes. Diagn Microbiol Infect Dis 70:119-23.
- 189 16. Bonnin RA, Naas T, Poirel L, Nordmann P. 2012. Phenotypic, biochemical, and
 190 molecular techniques for detection of metallo-beta-lactamase NDM in *Acinetobacter*
- 191 *baumannii*. J Clin Microbiol 50:1419-21.
- 192 17. Jiang HX, Song L, Liu J, Zhang XH, Ren YN, Zhang WH, Zhang JY, Liu YH, Webber
- MA, Ogbolu DO, Zeng ZL, Piddock LJ. 2014. Multiple transmissible genes encoding
 fluoroquinolone and third-generation cephalosporin resistance co-located in
 non-typhoidal *Salmonella* isolated from food-producing animals in China. Int J

196 Antimicrob Agents 43:242-7.

- 197 18. Zhang WH, Lin XY, Xu L, Gu XX, Yang L, Li W, Ren SQ, Liu YH, Zeng ZL, Jiang HX.
- 198 2016. CTX-M-27 Producing *Salmonella enterica* Serotypes Typhimurium and Indiana
- Are Prevalent among Food-Producing Animals in China. Front Microbiol 7:436.
- 200 19. Versalovic J, Koeuth T, Lupski JR. 1991. Distribution of repetitive DNA sequences in
- 201 eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res202 19:6823-31.
- 203 20. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ. 2005. Identification of
- 204 plasmids by PCR-based replicon typing. J Microbiol Methods 63:219-28.
- 205 21. Johnson TJ, Bielak EM, Fortini D, Hansen LH, Hasman H, Debroy C, Nolan LK,
 206 Carattoli A. 2012. Expansion of the IncX plasmid family for improved identification and
- 207 typing of novel plasmids in drug-resistant *Enterobacteriaceae*. Plasmid 68:43-50.
- 208 22. Barton BM, Harding GP, Zuccarelli AJ. 1995. A general method for detecting and sizing
 209 large plasmids. Anal Biochem 226:235-40.
- 210 23. Sandegren L, Linkevicius M, Lytsy B, Melhus A, Andersson DI. 2012. Transfer of an
- 211 Escherichia coli ST131 multiresistance cassette has created a Klebsiella
- 212 *pneumoniae*-specific plasmid associated with a major nosocomial outbreak. J Antimicrob
- **213** Chemother 67:74-83.
- 214 24. Gagneux S, Long CD, Small PM, Van T, Schoolnik GK, Bohannan BJ. 2006. The
 215 competitive cost of antibiotic resistance in *Mycobacterium tuberculosis*. Science
 216 312:1944-6.
- 217 25. Ho PL, Wang Y, Liu MC, Lai EL, Law PY, Cao H, Chow KH. 2018. IncX3 Epidemic

- 218 Plasmid Carrying *bla*_{NDM-5} in *Escherichia coli* from Swine in Multiple Geographic Areas
- 219 in China. Antimicrob Agents Chemother 62.
- 220 26. Wang Y, Tong MK, Chow KH, Cheng VC, Tse CW, Wu AK, Lai RW, Luk WK, Tsang DN,
- Ho PL. 2018. Occurrence of Highly Conjugative IncX3 Epidemic Plasmid Carrying
 *bla*_{NDM} in *Enterobacteriaceae* Isolates in Geographically Widespread Areas. Front
- **223** Microbiol 9:2272.
- 224 27. Yoon EJ, Kang DY, Yang JW, Kim D, Lee H, Lee KJ, Jeong SH. 2018. New Delhi
- 225 Metallo-Beta-Lactamase-Producing *Enterobacteriaceae* in South Korea Between 2010
- and 2015. Front Microbiol 9:571.
- 227 28. Wang W, Baloch Z, Peng Z, Hu Y, Xu J, Fanning S, Li F. 2017. Genomic characterization
- of a large plasmid containing a *bla*_{NDM-1} gene carried on *Salmonella enterica* serovar
 Indiana C629 isolate from China. BMC Infect Dis 17:479.
- 230 29. Di DY, Jang J, Unno T, Hur HG. 2017. Emergence of Klebsiella variicola positive for
- 231 NDM-9, a variant of New Delhi metallo-beta-lactamase, in an urban river in South Korea.
- J Antimicrob Chemother 72:1063-1067.
- 233 30. Partridge SR. 2011. Analysis of antibiotic resistance regions in Gram-negative bacteria.

FEMS Microbiol Rev 35:820-55.

Figure 1

70 80 90 100	70 80 90 100 H9812-XbaI Strains Date Source a			Resistance genes b			
		1	2016	Shandong1	Chicken	Lung	blandm-5, blaCTX-M, blaTEM, fosA3
		4	2016	Shandong1	Chicken	Weasand	blaNDM-5, blaCTX-M, blaTEM, fosA3
		9	2016	Shandong1	Chicken	Weasand	<i>bla</i> NDM-5, <i>bla</i> CTX-M, <i>bla</i> TEM, <i>fosA3</i>
		7	2016	Shandong1	Chicken	weasand	blaNDM-5, blaCTX-M, blaTEM, fosA3
		30	2017	Guangdong1	Duck	Rectum	<i>bla</i> NDM-5, <i>bla</i> CTX-M, <i>bla</i> TEM, <i>qnrS</i> , <i>oqxA</i> , <i>fosA3</i>
		33	2017	Guangdong1	Duck	Ceacum	<i>bla</i> NDM-5, <i>bla</i> CTX-M, <i>bla</i> TEM, <i>qnrS</i> , <i>oqxA</i> , <i>fosA3</i> , <i>rmtB</i>
r i		A	2017	Guangdong1	Chicken	Weasand	<i>bla</i> NDM-9, <i>aac-(6')-Ib-cr</i> , <i>oqxA</i> , <i>fosA3</i>
		В	2017	Guangdong1	Chicken	Weasand	<i>bla</i> NDM-9, <i>bla</i> OXA, <i>aac-(6')-Ib-cr</i> , <i>oqxA</i> , <i>fosA3</i>
		C	2017	Guangdong1	Chicken	Weasand	<i>bla</i> NDM-9, <i>bla</i> OXA, <i>aac-(6')-Ib-cr</i> , <i>oqxA</i> , <i>fosA3</i>
		D	2017	Guangdong1	Chicken	Weasand	<i>bla</i> NDM-9, <i>bla</i> OXA, <i>aac-(6')-Ib-cr</i> , <i>oqxA</i> , <i>fosA3</i>
		17	2017	Guangdong1	Duck	Rectum	<i>bla</i> NDM-5, <i>bla</i> CTX-M, <i>bla</i> TEM, <i>oqxA</i> , <i>fosA3</i>
		27	2017	Guangdong1	Duck	Ceacum	<i>bla</i> NDM-5, <i>bla</i> TEM, <i>qnrS</i>
		36	2017	Guangdong2	Chicken	Ceacum	<i>bla</i> NDM-5, <i>bla</i> CTX-M, <i>bla</i> TEM, <i>fosA3</i> , <i>qnrS</i>
		11	2017	Guangdong1	Chicken	Weasand	<i>bla</i> NDM-5, <i>bla</i> CTX-M, <i>qnrS</i> , <i>oqxA</i> , <i>floR</i>
		18	2017	Guangdong1	Duck	Rectum	<i>bla</i> NDM-5, <i>bla</i> TEM, <i>qnrS</i> , <i>oqxA</i> , <i>floR</i>
		15	2017	Guangdong1	Duck	Rectum	<i>bla</i> NDM-5, <i>bla</i> TEM, <i>oqxA</i> , <i>mcr-1</i>
		19	2017	Guangdong1	Duck	Ceacum	<i>bla</i> NDM-5, <i>bla</i> TEM, <i>oqxA</i> , <i>mcr-1</i>
		21	2016	Guangdong1	Duck	Ceacum	<i>bla</i> NDM-5, <i>bla</i> TEM, <i>oqxA</i> , <i>mcr-1</i>
		22	2016	Guangdong1	Duck	Ceacum	<i>bla</i> NDM-5, <i>bla</i> TEM, <i>oqxA</i> , <i>mcr-1</i>
		16	2016	Guangdong1	Duck	Rectum	<i>bla</i> NDM-5, <i>bla</i> CTX-M, <i>bla</i> CTX-M, <i>qnrB</i> , <i>aac-(6')-lb-cr</i> , <i>oqxA</i> , <i>fosA3</i>
		32	2016	Guangdong1	Chicken	Rectum	<i>bla</i> NDM-5, <i>bla</i> CTX-M, <i>bla</i> TEM, <i>qnrS</i>
		20	2017	Guangdong1	Duck	Ceacum	blaNDM-5, qnrS
		28	2017	Guangdong1	Duck	Ceacum	<i>bla</i> NDM-5, <i>bla</i> TEM, <i>qnrD</i> , <i>qnrS</i> , <i>aac-(6')-lb-cr</i> , <i>mcr-1</i>
		3	2016	Shandong1	Chicken	Lung	<i>bla</i> NDM-9, <i>bla</i> CTX-M, <i>bla</i> TEM, <i>mcr-1</i>
		6	2016	Shandong1	Chicken	Weasand	<i>bla</i> NDM-9, <i>bla</i> CTX-M, <i>bla</i> TEM, <i>mcr-1</i>
		8	2016	Shandong1	Chicken	weasand	<i>bla</i> NDM-9, <i>bla</i> CTX-M, <i>bla</i> TEM, <i>mcr-1</i>
		2	2016	Shandong1	Chicken	Lung	<i>bla</i> NDM-9, <i>bla</i> CTX-M, <i>mcr-1</i> , <i>fosA3</i>
		5	2016	Shandong1	Chicken	Weasand	blaNDM-1, blaCTX-M, blaTEM, mcr-1, fosA3, rmtB
		12	2017	Guangdong1	Chicken	Rectum	<i>bla</i> NDM-5, <i>bla</i> CTX-M, <i>qnrS</i>
		13	2017	Guangdong1	Chicken	Ceacum	<i>bla</i> NDM-5, <i>bla</i> CTX-M, <i>qnrS</i>
		14	2017	Guangdong1	Chicken	Ceacum	blandm-5, blaCTX-M, blaTEM, qnrS
		37	2017	Guangdong3	Chicken	Ceacum	<i>bla</i> NDM-5, <i>bla</i> CTX-M
		E	2017	Guangdong1	Chicken	Weasand	<i>bla</i> NDM-5, <i>bla</i> CTX-M, <i>bla</i> TEM, <i>qnrB</i> , <i>qnrS</i>

Figure 2

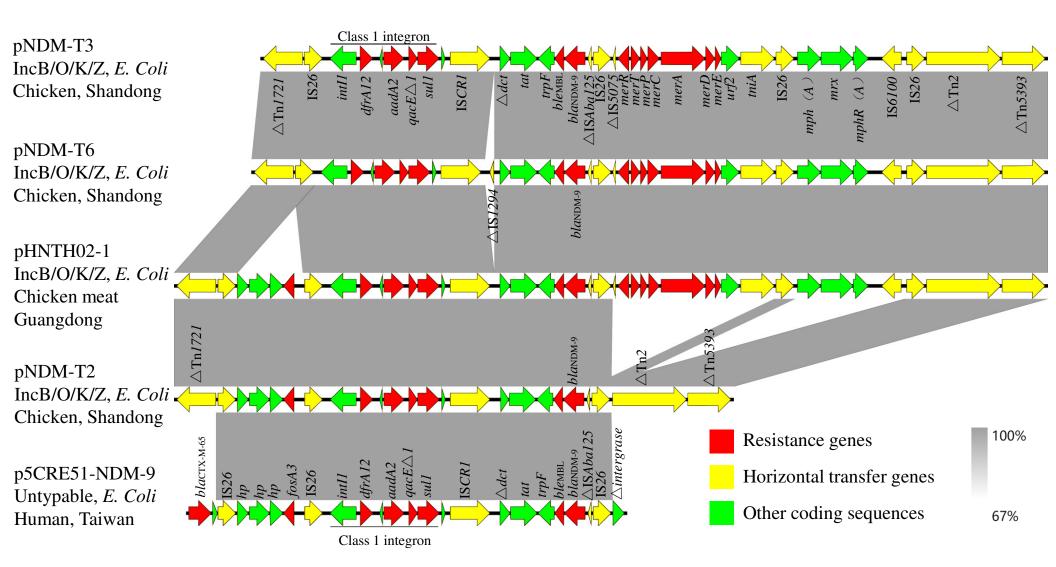


Figure 3

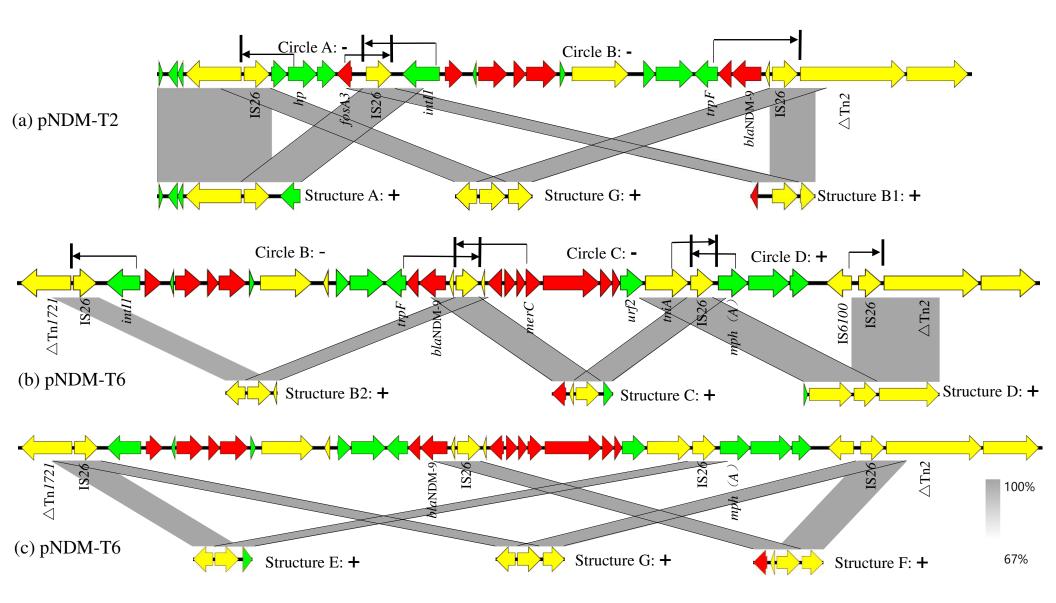
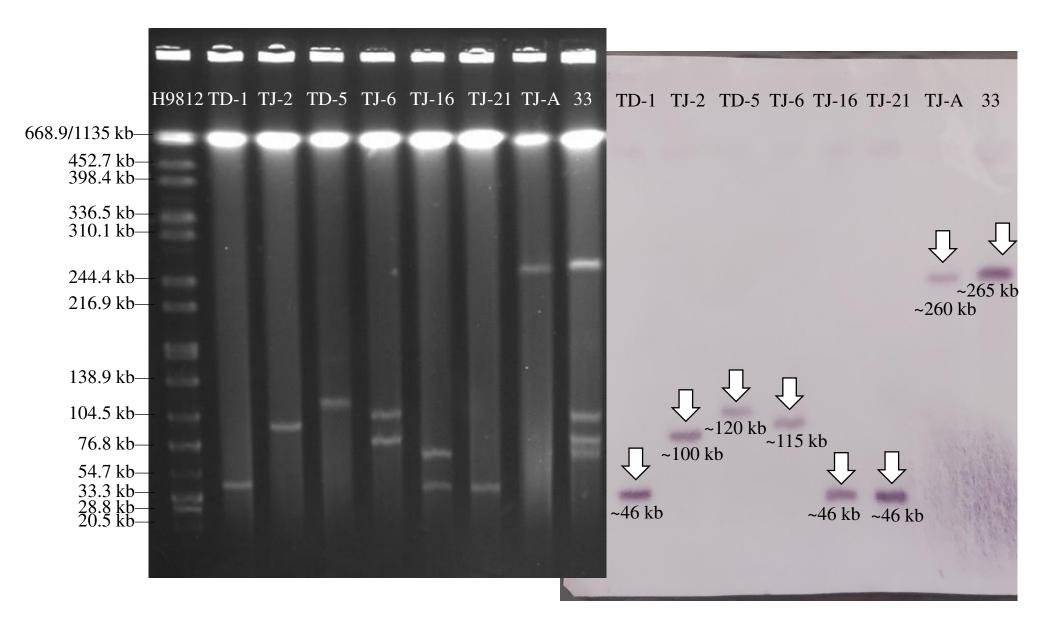



Figure S1

Figure S2

pNDM-HN380 JX104760, IncX3 *K. Pneumoniae*, human Hong Kong

pCRENT-193_2 CP024814, IncX3 *Enterobacter sp*, human South Korea

pNDM-T16 MN335922, IncX3 *E. Coli*, Chicken Guangdong

pNDM-HK3774 MH234502, IncX3 *E. Coli*, human HongKong

pNDM-T21 MN307121, IncX3 *E. Coli*, Chicken Guangdong

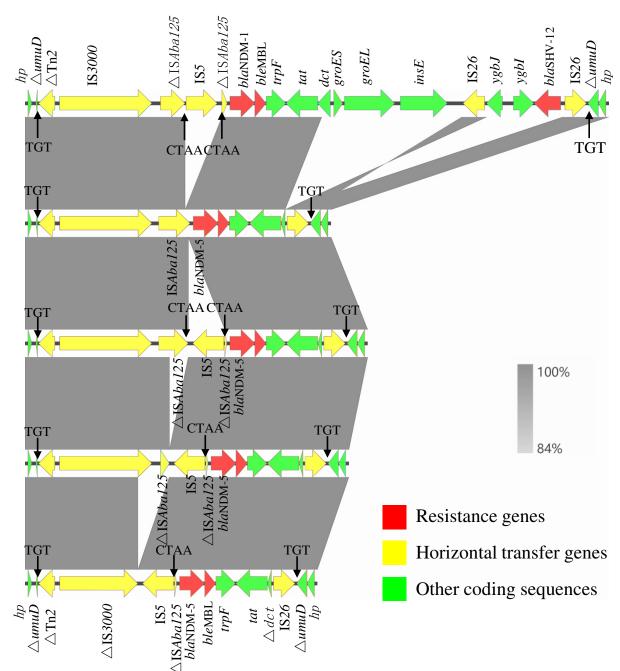
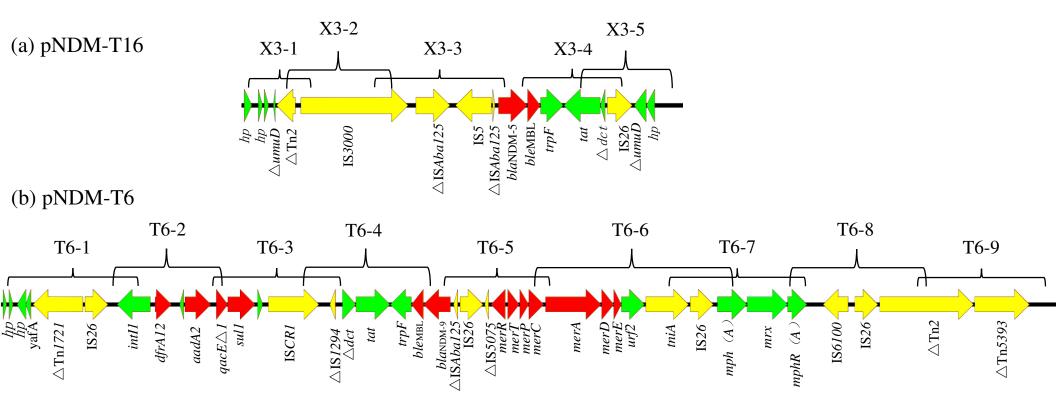



Figure S3

