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ABSTRACT

1. Morphometrics has become an indispensable component of the statistical analysis of size and shape
variation in biological structures. Morphometric data has traditionally been gathered through low-
throughput manual landmark annotation, which represents a significant bottleneck for morphometric-
based phenomics. Here we propose a machine-learning-based high-throughput pipeline to collect
high-dimensional morphometric data in images of semi rigid biological structures.
2. The proposed framework has four main strengths. First, it allows for dense phenotyping with
minimal impact on specimens. Second, it presents landmarking accuracy comparable to manual
annotators, when applied to standardized datasets. Third, it performs data collection at speeds several
orders of magnitude higher than manual annotators. And finally, it is of general applicability (i.e., not
tied to a specific study system).
3. State-of-the-art validation procedures show that the method achieves low error levels when applied
to three morphometric datasets of increasing complexity, with error varying from 0.5% to 2% of
the structure’s length in the automated placement of landmarks. As a benchmark for the speed of
the entire automated landmarking pipeline, our framework places 23 landmarks on 13,686 objects
(zooids) detected in 1684 pictures of fossil bryozoans in 3.12 minutes using a personal computer.
4. The proposed machine-learning-based phenotyping pipeline can greatly increase the scale, repro-
ducibility and speed of data collection within biological research. To aid the use of the framework,
we have developed a file conversion algorithm that can be used to leverage current morphometric
datasets for automation, allowing the entire procedure, from model training all the way to prediction,
to be performed in a matter of hours.

Keywords landmarks · morphometrics · machine learning · automation · images · shape · form

1 Introduction

In the past 20 years, genomics has revolutionized our understanding of biology, leading to the discovery of a
wealth of novel phenomena (Koboldt et al, 2013). These discoveries were only possible through the development of a
technological infrastructure that allowed us to acquire genomic information at a large scale (Schuster, 2007). While
many researchers have argued that phenomics - large scale phenotyping - will bring about a similar revolution in biology,
most approaches for collecting high-throughput phenotypic data developed so far are system-specific and difficult to
generalize (see Kristensen et al., 2008; Falkingham, 2012; Boyer et al., 2011; Hsiang et al., 2018; Manacorda and
Asurmendi, 2018), with the notable exception of sub-cellular phenotypes (e.g., Clish, 2015). As a consequence, for
most study systems, phenotyping methods remain low-throughput and can only be applied on a small scale (Houle,
Govindaraju, and Omholt, 2010).
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These limitations have important consequences for biological research. First, the majority of the history of life
remains inaccessible to genomic information, due to DNA degradation (Allentoft et al., 2012), and therefore needs to
be integrated into current evolutionary theory through its phenotype. Second, even with the advances that came with
genomics, we still cannot understand a wealth of important biological phenomena, such as disease and evolutionary
fitness, suggesting that we have not been able to fully characterize such phenomena (Houle, Govindaraju, and Omholt,
2010). Third, phenomic and genomic research are largely synergistic, and the end product of being able to characterize
both aspects of biological variation simultaneously is likely to increase the power of each approach (Houle, Govindaraju,
and Omholt, 2010).

The low-throughput nature of current phenotyping methods is particularly problematic in morphometrics. Mor-
phometrics has become an indispensable component of statistical analyses of size and shape variation in biological
structures, with thousands of papers that make use of it being published every year (Hook et al., 2018). In the last
two decades, with the growth of geometric morphometrics, geneticists, evolutionary biologists, ecologists and pale-
obiologists have accumulated dense landmark datasets, often collected in thousands of specimen images. Despite
considerable progress in multivariate statistical analyses of morphometric data (Adams et al., 2016) and attempts
of incorporating it into phylogenies (Parins-Fukuchi, 2018), we are still far from a comprehensive understanding
of multivariate patterns of morphometric variation. Understanding multivariate patterns of variation requires large
sample sizes (Grabowski and Porto, 2017). One of the main impediments to the acquisition of large landmark datasets
is the manual collection of landmark data, which is both time and labor intensive. Given the recent explosion of
semi-landmark use in morphometrics (Watanabe, 2018), data collection time has only increased. Depending on the
number of landmarks and the necessary steps to prepare a specimen for landmark data collection, this manual annotation
can take months, if not years.

A promising way to collect high-throughput phenotypic data is to automate landmark data collection using
computer vision techniques (e.g., Manacorda and Asurmendi, 2018). Automated landmarking has become the gold
standard in human facial landmarking for both biomedicine (Porto et al., 2019) and, more notoriously, social networking
websites and software developed for mobile phones (Kazemi and Sullivan, 2014), but its application in geometric
morphometrics has remained restricted (Manacorda and Asurmendi, 2018; Vandaele et al., 2018). However, the
explosion in machine learning algorithms for computer vision represents an important technological leap, which lays
the foundation for the development of general methods of high-throughput high-dimensional morphometrics (Kazemi
and Sullivan, 2014; He et al., 2017; Voulodimos et al., 2018).

Here we develop a supervised learning-based phenotyping pipeline (ML-morph) to collect high-dimensional
morphometric data in images of semi-rigid biological structures. This pipeline is based on adapting methods currently
being used in computer vision research to morphometrics and allows for dense and accurate landmarking at low cost,
high speed, and with minimal impact on specimens. Since morphometrics has traditionally relied on specialized
software (Rohlf, 2006) and R packages (Adams et al., 2016), while most computer vision libraries are implemented in
Python or C++(e.g., King, 2009), we also develop file conversion algorithms to leverage current morphometric datasets
for training the machine-learning phenotyping pipeline. Development of a machine-learning infrastructure will enable
biologists to get the necessary data to investigate and tackle important theoretical and empirical challenges within the
field, and will greatly increase the scale, reproducibility and reach of biological research.

2 Methods

2.1 Description of the framework

We approach the problem of automated landmark detection using a supervised learning approach. In this approach,
automated landmarking is performed by a combination of object detection (Dalal and Triggs, 2005) followed by shape
prediction (Kazemi and Sullivan, 2014). In other words, our models are trained to (i) predict the location of a biological
structure we intend to landmark in images (object detection) and, to (ii) predict the shape of each detected structure (i.e.
annotate landmarks). Object detection and shape prediction models are trained using a dataset of manually annotated
images (see Image annotation). In the following sections, we present and describe in detail the training process that can
be used to generate detectors and predictors, the set of images and landmarks used to explore the performance of the
method, and finally the metrics employed to validate the approach and to quantify how reliable it is in comparison with
system-specific tools that have been published in the literature.

2.2 Sample

We tested the below proposed framework on three morphometric datasets (fly wings, sea basses and bryozoan
colonies) with different levels of complexity. Figure 1 shows the landmarks we analyzed in each of the three datasets.
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Figure 1: Landmark datasets and corresponding histogram of gradient (HOG) features. Three landmark datasets
of increased difficulty were used to test the performance of the automated landmarking framework. Our framework
uses HOG features (second column) to detect objects within an image (first column). (A) Drosophilid wing – (B) Sea
bass (genus Pseudanthias) - (C) Bryozoan colony (Steginoporella magnifica) (D-F) Histogram of gradient features of
images A-C.

Low complexity image set: The drosophilid wing is a structure commonly used in morphometric studies in
ecology and evolution (e.g., Houle et al., 2003). We consider it to be a relatively simple dataset to develop automated
landmarking algorithms for, in large part because: (1) the structure is translucent, creating clear contrast between
structure and background, (2) the structure itself is highly conserved across species (Houle et al., 2017), and (3)
landmarks are positioned in clear intersections of wing veins. Indeed, image analysis has already been automated for
drosophilid wings using a B-spline model of wing shape (Houle et al., 2003), which makes this an ideal structure to
investigate the performance of our machine-learning phenotyping pipeline. More specifically, we obtained a total of
280 images of drosophilid wings from Morphbank (Supporting Information 1) and placed a total of 12 landmarks in
each image, following (Houle et al., 2003). Images have 632x480 pixels resolution and have been randomly selected
from a larger pool of images. The reason to limit the number of images is to mimic the size of datasets that are usually
used in morphometric studies. Figure 1A shows all 12 landmarks collected in each specimen.

Intermediate complexity image set: We analyzed 180 lateral images of sea basses belonging to genus Pseudanthias
(Randall, 1997). This genus was chosen because it is composed by a large array of species with diverse morphologies,
not only in terms of body shape but also in terms of coloration. These images have been captured by Dr John E. Randall
and are deposited at the Bernice Pauahi Bishop Museum (Honolulu, Hawaii). They represent an intermediate level of
complexity for the pipeline because the morphological diversity is much larger among these organisms than what is
observed in drosophilids. Background color and image resolution are also more varied across image files compared to
the drosophilids wings. Following the approach used for drosophilids, a total of 12 landmarks were manually annotated
in each fish by the same expert (Figure 1B).

High complexity image set: Our high complexity dataset was collected in-house (UiO) and consists of 400
scanning electron microscope (TM-4000; Hitachi, Tokyo, Japan) images of bryozoan colonies belonging to the species
Steginoporella magnifica. This data has been acquired as part of a fossil time-series project and is composed exclusively
of Plio-Pleistocene fossil specimens collected from the Wanganui basin, New Zealand (Carter and Naish, 1998; Liow et
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al., 2017). We consider these pictures more complex than the fish and wing pictures, as the material contains colonies
with different levels of fossil degradation. In addition, colonies contain multiple zooids with extreme plasticity in
morphological traits, requiring the identification of individual zooids from whole-colony image data, while the fish and
fly wing pictures contained only one specimen per image. We imaged all S. magnifica colonies at 1280x960 resolution
and annotated individual zooids for a total of 23 landmarks (Figure 1C).

2.3 Image annotation – Defining ground truths

An essential component of supervised learning is image annotation. In our case, prior to model fitting, we annotated
all images belonging to the three datasets using both bounding box annotations and individual landmark XY coordinates
using imglab (King, 2009). Bounding box annotations are used to locate objects within images in order to train object
detectors, while XY coordinates are used as landmark positional ground truths by the shape prediction part of the
pipeline. A total of 10% of all images from each of the three datasets were annotated twice (3 months later), allowing
us to estimate intra-observer measurement error. The intra-observer error is a key parameter, as it limits the maximum
accuracy of any machine-learning algorithm. Here, we use intra-observer error as the theoretical minimum error our
pipeline could hope to achieve.

Once annotated, we split all three datasets into training and validation sets, representing 80% and 20% of the
images, respectively. We used the training set to fit the parameters of the object detectors and shape predictors. We
then used the validation set to evaluate the performance of these algorithms. We employ metrics that are standard in
problems of such kind to evaluate the performance of our models (see Testing for details).

2.4 Training object detectors

The first step in any computer vision algorithm for automated landmarking is the detection of the presence and
position of the structure of the interest within the image. For example, if we want to identify landmarks in still images
of drosophilid wings, we need the ability to identify the number and position of wings within an image. While a large
number of object detection algorithms have been published in the past few years (King, 2009; Viola and Jones, 2001;
Girshick, 2015; Ren et al., 2015 to name a notable few), the basic procedure for object detection remains largely the
same. First, a set of positive (object, e.g., wing) and negative (not object, e.g, background) image windows are produced
based on annotated training images and then a binary classifier is trained based on these windows. Finally, this classifier
is tested on images in which the main model has not been trained on.

While the current state of the art in object detection relies on convolutional neural networks (CNN, e.g., Ren et al.,
2015), these can be overpowered for standard biological applications. They also require large training samples (one
to two orders of magnitude higher than the one proposed here), more fine-tuning of training parameters, specialized
hardware (e.g., GPU), and usually perform at lower image processing rates (images per second) than simpler models
(Suleiman et al., 2017).

Our implementation of object detection is based on histogram of oriented gradients (HOG) features within a
sliding window framework (Dalal and Triggs, 2005; Figure 2). In brief, based on each training image, we randomly
extract image regions that contain and do not contain the object of interest using bounding box annotations. From each
randomly extracted region, we extract HOG features and create a training set. We then train a structural support vector
machine (SVM) classifier to classify images according to these two labels (object vs. no object). In order to perform
detection on the test set, we scan this classifier over an image pyramid using a sliding window, and, whenever a certain
window passes a threshold test, it is output as being an object, after non-maximum suppression is performed. HOG
feature generation follows the general approach developed by (Dalal and Triggs, 2005). We start by dividing each image
into 8x8 cells and compute the gradient vector at each pixel. Following this step, we end up with a 64 (8x8) gradient
vectors for each cell, which are then represented as histograms. These histograms compress the information in each cell
by splitting that information into angular bins, where each bin corresponds to a gradient direction (20 degrees each).
We then normalize the gradients using block normalization. During training, two parameters of SVMs require particular
attention: the soft margin parameter C and the insensitivity zone (ε) (Kecman, 2001, page 182-183). The C parameter
regulates the size of the margin, which is the distance between the hyperplane that separates the two classes and the
closest data point. The ε parameter, on the other hand, regulates the penalty associated with errors in classification.
In order to evaluate the impact various C and ε parameters (the training parameters) have on the performance of the
final model, we performed an exhaustive grid search, in which a model is trained for each possible combination of
hyperparameters, given a certain parameter range. In our case, we varied both the SVM C (from 1 to 7) and ε parameters
(from 10−2 to 10−4). The combination of hyperparameters that results in the best model performance is then used in
the final model, preventing errors that are incurred by overfitting.
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Figure 2: Diagram of object detection framework. In the proposed framework, a training set containing object and
background examples is used to train a support vector machine (SVM) classifier. A sliding window is then scanned
over an image pyramid and its features are then classified as either object or background. Detected objects are output by
the model after non-maximum suppression of overlapping windows is performed.

2.5 Training shape predictors

We performed shape prediction by feeding objects detected using the above procedure to a cascade regression
algorithm (Kazemi and Sullivan, 2014) that performs object-specific automated landmark detection. In brief, cascade
shape regression predicts shape (S) in an iterative procedure using a sparse subset of pixel intensities collected on the
area of the image where the object was identified. Starting with an initial shape ‘guess’ S0, the predicted shape (S) is
refined through shape increments in a cascade of depth K (Figure 3), so that:

S
(t+1)
i = S

(t)
i + rt(Iπi, S

(t)
i ) (1)

where rt represents a trained regressor, Iπi represents an image and S(t)
i represents the previous stage’s shape

estimate (Kazemi and Sullivan, 2014). Each regressor in the cascade is learnt using a gradient boosting algorithm
with a square error loss function (Hastie, Tibshirani, and Friedman, 2009). The gradient boosting algorithm uses a
user-defined number of regression trees of depth T for which decisions at each node are based on thresholding the
difference in intensity values at a random pair of pixels, given an exponential prior over the distance between pixels
used in a split. More details of the gradient boosting algorithm can be found in Kazemi and Sullivan (2014). During
training, we performed data augmentation of the training set by adding in 300 random deformations of each training
object, effectively boosting the number of training examples. Similar to object detection, we carry out an exhaustive
grid search of the training parameters T (from 1 to 8) and K (from 10 to 30), and use the best performing model as the
final model.

2.6 Testing object detectors – Precision and Recall

We evaluated the performance of object detectors using three metrics that are standard in the field: precision, recall
and mean average precision (Powers, 2011). Precision is defined here as the ratio of true positive object predictions to
all positive object predictions. Recall, also known as the true positive rate, refers to the ratio of true positive object
predictions to all true positive objects present in the data. Finally, mean average precision is defined as the area under
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Figure 3: Diagram of shape prediction framework. In the proposed framework, a training set containing positional
ground truths is used to train a cascade shape regression model. Shape prediction of unannotated objects is then
performed using a sparse subset of pixel intensities collected on the area of the image where each object was identified.
Cascade shape regression uses an iterative procedure (green arrows) to predict the shape of the object (orange landmarks).
Starting with an initial shape ‘guess’ (landmarks at t=0), the predicted shape is refined through shape increments (using
r regressors) in a cascade (from t=0 to t=5).

the recall-precision curve. All three performance measurements vary from 0 to 1 and can be directly compared across
datasets. Note that the performance of the classifier on the test set will only correctly reflect the performance of the
model on unlabeled data if these pictures were taken with the same general setup as in the training data (i.e., similar
background and resolution), and not necessarily if image capture methods change dramatically (e.g., extremely low
resolution images, such as 80x80).

2.7 Testing shape predictors – Euclidean distance

In order to quantify the accuracy in placement of landmarks, we measured the normalized Euclidean distance in
pixels between each landmark’s location in the ground truth (test) set and as predicted by the model (Kazemi and
Sullivan, 2014). The normalization process allows direct comparison of the error between the three datasets (and across
studies), since image parameters are different in each study. Here, landmark distances were normalized by the total
length of the structure. For the most complex dataset, we also break down the total measurement error by image file and
landmark, allowing us to evaluate potential sources of error in landmark predictions.

2.8 Implementation and file conversion

All algorithms were implemented in Python using the following libraries: numpy 1.13.3, pandas 0.22.0, dlib 19.7.0
and opencv-python 3.4.0.12. Our current implementation can be found at https://github.com/agporto/ml-morph. The
scripts can be used out-of-the-box and can be run on any operating system. On the github page, we also provide a
detailed vignette and an example dataset in order to illustrate the use of this software. Among the capabilities of this
software, we should note that there is a preprocessing script that converts traditional landmark files from the most
common morphometric packages (tps format; Rohlf, 2006) to standard input files used in training and testing of the
object detectors and shape predictors used in our machine-learning phenotyping pipeline. This script allows previously
landmarked datasets to be immediately used in automation.

3 Results

3.1 Object detection

The object detectors learnt based on HOG features achieved a high degree of recall and precision in all three datasets
(Table 1). To a large extent, the training parameters had no major impact on the performance of the final model, with
several different training parameter combinations resulting in similar performance (Figure 4). As expected, recall
and precision were highest in the low and intermediate complexity datasets ( 100%), and slightly lower in the high
complexity dataset ( 95%). Using the high complexity dataset as a benchmark, we can infer that false positives occur
at low frequency ( 5%; Table 1) and can be effectively eliminated by a simple size filter without incurring in loss of
true positives. For example, eliminating zooids with size smaller than 40% of the mean population size in the highly
complex dataset leads to the elimination of all false positives, without eliminating true positives.

6

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 14, 2019. ; https://doi.org/10.1101/769075doi: bioRxiv preprint 

https://doi.org/10.1101/769075
http://creativecommons.org/licenses/by-nc-nd/4.0/


A PREPRINT - SEPTEMBER 13, 2019

Figure 4: Grid search for optimal object detection training parameters.Barplots illustrating the recall and precision
obtained by object detection models trained with varying training parameters. Each dataset is represented by a drawing
of an example specimen. In our case, we varied the soft margin parameter C (X-axis, from 1 to 7) and the insensitivity
zone (colored bars, from 10−2 to 10−4). The C parameter regulates the distance between the hyperplane that separates
the two classes and the closest data point. The insensitivity zone (ε) regulates the penalty associated with errors in
classification.

Table 1: Training and testing parameters of the best fit object detection model. In this table, we detail the training
parameters of the best fit object detection model for each of the landmark datasets used in this manuscript, together with
their performance on the test set. Precision is defined here as the ratio of true positives to all positives. Recall refers to
the ratio of true positives to all true positives. Mean average precision is defined as the area under the recall-precision
curve. Details of the training parameters can be found in the main text and in (Powers 2011)..

Train Test

Dataset N C ε N Precision Recall MAP

Low 224 1 10−4 56 100% 100% 100%
Intermediate 144 3 10−2 36 100% 100% 100%
High 320 5 10−2 80 95.4% 95.4% 95.1%

N = sample size; C = soft margin parameter ; ε = penalty parameter ; MAP = mean average precision

3.2 Shape prediction

We report shape prediction results for the three datasets in Table 2. The table contains comparisons of the magnitude
of the observed error of the best fit model against the theoretical minimum (intra-observer error) and against the best
performing semi-automatic methods available in the literature. All errors are reported as normalized mean Euclidean
distances. The magnitude of error is low across all datasets. In the low complexity dataset, the best-fit model presents
a normalized error of 0.51% of the wing length (2.8 pixels in raw values). This magnitude of measurement error is
remarkably close to the theoretical maximum accuracy that is possible given intra-observer measurement error (0.34%
or 1.8 pixels). The best-fit model performs equivalently to the best semi-automatic approach available in the literature
(0.67% or 3.54 pixels; Loh et al., 2017 -Table 5) and considerably better than others (e.g., >2% or > 10.6 pixels for
Houle et al., 2003, as reported in Loh et al., 2017 -Table 5). Search of the training parameter space reveals that similar
results can be obtained for different tree depths and cascade depth (Figure 5). In other words, prediction performance
is generally high, regardless of model fine-tuning. Relatively small models (low depths) still provide robust results.
Over-fitting can only be observed for tree depths larger than six.

While the degree of error observed for the intermediate complexity dataset is larger compared to the low complexity
dataset (0.81% or 4.8 pixels, Table 2), it is still similar to the intra-observer error (0.54% or 3.2 pixels). Search of the
training parameter space reveals that greater tree depths lead to over-fitting and pronounced performance loss (Figure
5). The depth of the cascade has only a mild impact on the results.

Finally, the degree of error observed for the high complexity dataset is higher than for the other two datasets (2.1%
or 6.2 pixels, Table 2), in a large part because intra-observer error is also higher (1.3% or 3.8 pixels). Notably, the
ratio of the best-fit model error relative to intra-observer error is remarkably similar across all datasets, with the shape
predictors producing datasets with a degree of error 50% higher than the theoretical minimum. While 50% might seem
like a substantial difference, note that in drosophilids this is equivalent to a difference of one pixel.
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Table 2: Training and testing parameters of the best fit shape prediction model. In this table, we detail the training
parameters of the best fit shape prediction model for each of the landmark datasets used in this manuscript, together with
their performance on the test set. Error is measured here as the normalized Euclidean distance. The literature tab refers
to the performance of the best semi or fully-automatic model present in the literature for each study system. Given that
drosophilids are the only structure that was automated in the past, only results for drosophila algorithm are detailed.
Details of the training parameters can be found in the main text and in Dalal and Triggs (2005) and King (2009).

Train

Dataset N nu T K Trees (N) Feature pool size Test splits Oversampling(N)

Low 224 0.1 3 30 500 1200 20 300
Intermediate 144 0.1 2 30 500 1200 20 300
High 320 0.1 2 25 500 1200 20 300

Test

Dataset N Error Minimum Literature

Low 56 0.513% 0.330% 0.6%(Loh et al. 2017); >2% (Houle et al ,2003)*
Intermediate 36 0.810% 0.540% None
High 80 2.090% 1.310% None

N = sample size; nu =regularization parameter; T= tree depth; K = cascade depth
’*’ as reported in Loh et al. (2017) .

Figure 5: Grid search for optimal shape prediction training parameters. The barplot illustrates the normalized
mean error obtained by shape prediction models trained with varying training parameters. Each dataset is represented
by a drawing of an example specimen. In our case, we varied the regression tree depth (X-axis, from 1 to 8) and the
cascade depth (colored bars, from 10 to 30). Tree depth refers to the depth of the decision trees used by the gradient
boosting algorithm. The cascade depth refers to the number of shape updates that are used to predict each object’s
shape, given local pixel patterns.
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Closer examination of the sources of error in the complex dataset reveals two important sources of error in our
approach. First, mean average error varies from 1.1% to 3.5% across image files (Figure 6). Differences among image
files are associated with differences in the quality of preservation of fossil specimens and with the quality of image
capture. Figure 6 illustrates one of the best and worst performing images, which vary considerably in the level of
contrast and taphonomy. Similarly, accuracy in landmark predictions varies significantly across landmarks, with certain
landmarks presenting mean average error around 0.91%, while others present values of 4.2% (Figure 7). The presence
of clear edges and high contrast is clearly associated with accuracy in the predictions (Figure 7).
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Figure 6: Breaking down the prediction error according to image quality. Each boxplot illustrates the distribution
of landmark prediction errors of our best fit model on each image of the test set (whiskers omitted for clarity). Image
files are sorted according to their median prediction error, from low (blue) to high (orange). Representative specimens
from the extremes of the distribution are shown near the upper and lower margins. Note the difference in fossil
degradation and image contrast between the two specimens. Note also that images with poorer image quality (orange
bars) have more variance in prediction error among detected objects.

3.3 Implementation speed

We used the high complexity dataset to benchmark the speed of the pipeline, when run on an Intel Core i7 2.7Ghz
with 16GB of RAM. Using the training parameters of the best fit models (Tables 1 and 2), object detector training
occurred in 9.3 minutes per run, and testing took a total of 15 seconds per run. Shape predictor training occurred in 9.23
hours per run, while testing took only 7 seconds per run. To a large extent, the amount of oversampling applied to the
training set is the key parameter regulating the training times for shape predictors, with higher oversampling amount
requiring longer training.

In order to benchmark the speed at which the pipeline can generate predictions for new images, we applied the final
object detector and shape predictor to a larger sample of Steginoporella images (N=1684). In this larger sample, the
entire automated landmarking pipeline took 3.12 minutes to process all images, during which it identified 23 landmarks
per zooid in a total of 13,686 zooids at a resolution of 800 x 600 pixels. Based on generous assumptions (3 minutes
per zooid), an experienced morphometrician would spend 684 hours (about 85 eight-hour uninterrupted workdays) to
collect a comparable dataset.

4 Discussion

Morphometric characterization of biological structures has become an essential component in studies of morphology.
However, morphometric data collection has remained mostly manual, in large part due to the lack of a general framework
for automation (see Hsiang et al., 2018 for a notable exception). In this study, we propose a simple, fast and accurate
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Figure 7: Breaking down the prediction error among the landmarks. Each boxplot illustrates the distribution of
landmark prediction errors of our best fit model according to each landmark (whiskers omitted for clarity). Landmarks
are sorted according to their median prediction error, from low (blue) to high (orange). We also show one representative
specimen with landmarks colored according to the degree of prediction error. Note the difference in the degree of
error between landmarks in low (e.g. T8, T9) and high (e.g., T4, T5) contrast areas. Note also that the variance in the
distribution of errors per landmark is correlated with the median.

pipeline for automation of landmark collection in any semi-rigid biological structure. Our approach is based on
supervised learning and uses a combination of object detection (Dalal and Triggs, 2005) and shape prediction (Kazemi
and Sullivan, 2014) to accurately place landmarks of interest on one or several objects in an image.

4.1 Model performance

Object detectors performed well in all three datasets, making no mistakes in the low and intermediate complexity
datasets (Table 1, Figure 4). Even in the most complex dataset consisting of pictures of fossil specimens in various
taphonomic states, object detection rates were high ( 95%), indicating detection should not be a concern for the
standardized images datasets typically analyzed in biological studies. Note, however, that the high performance of
object detectors in the low and intermediate complexity datasets is due to the high standardization of image capture
method and should not be used as the null expectation for less standardized data.

As expected, the shape prediction part of the pipeline is where differences in accuracy among data sets were
the largest (Table 2, Figure 5). In drosophilid wings, accuracy is homogeneous across landmarks and very similar to
the scale typically found among human observers. In Steginoporella, heterogeneous levels of accuracy depend on
the landmark and the individual specimen (Figure 6 and 7). We highlight two main sources for the heterogeneity in
accuracy in the Steginoporella dataset. First, image quality varied considerably across specimens, largely due to fossil
degradation. Since the Steginoporella samples are composed exclusively of fossil specimens (see Liow et al., 2017),
some of which were collected at harsher depositional environments than others, some specimens present a higher degree
of damage and cementation than the remaining ones, leading to a reduction in contrast between the morphological
features of interest and the background. Additionally, some landmarks are placed in contrast poor locations (Figure 6),
adding noise to automation based on HOG features, as this is informed by local image contrast (Dalal and Triggs, 2005).

4.2 Advantages of the framework

Given the relative small size of our training sets and how well the pipeline performs on datasets of different
complexity, we argue here that this pipeline has general applicability in biology. The main advantages of this framework
are its accuracy, speed, and infrastructure requirement. Even in the most complex dataset, the landmarking pipeline
being proposed here exceeds the accuracy reported in many system-specific landmark approaches observed in the
literature (Loh et al., 2017; Houle et al., 2003). Note also that the intra-observer error, that we define as the theoretical
minimum error when evaluating our method, would probably be larger if multiple people had annotated such datasets,
as commonly done in morphometric studies. Furthermore, potential errors committed by the pipeline can be manually
corrected after prediction using the image software of choice (e.g., imglab (King, 2009) and/or tpsDig (Rohlf, 2006)).
When comparing time-weighed performance with manual annotation, the benefits of automation are even clearer.
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Manual annotation of the entire Steginoporella dataset would take around 85 days, using generous assumptions of the
work-load (3 minutes per zooid). In about the same amount of time (3.12 minutes), our pipeline is able to process 1,684
images, representing 13,686 zooids and 23 landmarks per zooid. This time can even be reduced to 1.5 minutes if a lower
image resolution is used, though that is likely to increase error levels. Moreover, if a previously annotated dataset has
already been collected, the whole procedure, from producing the training sets to training the object detection and shape
predictors to obtaining an automated landmarking framework, can be performed on a personal computer in the timespan
of two workdays. The proposed methodology for object detection, while not in our purview, can also be used for other
purposes in biology. For example, based on the detected objects, one could adapt this framework to count objects and to
obtain, for example, the spacing of objects on an image, such as the distance between the zooids of Steginoporella.

In our view, this automated landmarking framework opens up the possibility of development of truly high
throughput high-dimensional phenotyping procedures, which will propel biology into the age of phenomics (Houle,
Govindaraju, and Omholt, 2010).

4.3 Limitations of the framework

The most important limitation in the proposed pipeline is that HOG based object detectors are partially sensitive to
changes in orientation (Dalal and Triggs, 2005). As a consequence, objects cannot be detected when upside down, for
example. In our view, these limitations can be overcome using one of the following: (1) training of multiple object
detectors, one for each position or (2) through the use of CNN-based detectors, such as Ren et al. (2015). While CNN
based detectors are insensitive to changes in orientation, it is worth pointing out that such algorithms require a larger
training dataset (more images), higher hardware specifications, are less portable (file size), and require more fine tuning
(Suleiman et al., 2017).

Another limitation of the proposed pipeline is that it can only extract data from 2D images. A non-trivial portion
of geometric morphometrics is done in 3D, and while the techniques presented here could be expanded to 3D objects,
we currently do not have an efficient implementation of it. At most, our proposed framework can be applied to 2D
slices of 3D structures, but while this might prove useful in some systems (Hsiang et al., 2018), it cannot be considered
an explicit 3D approach. Finally, although we provide python code that can be used out-of-the-box, we strongly
recommend that other authors explore all training parameters for object detection and shape prediction, as those can
have significant impact on the accuracy of the final model (Kazemi and Sullivan, 2014). This is especially true if image
parameters (e.g., resolution) are significantly different from the three datasets presented here.

5 Conclusions

We have developed a machine-learning pipeline (ML-morph) for automated detection and landmarking of biological
structures in images, which can be used to collect morphometric data at a large scale. ML-morph opens up the number
of possibilities for automation within the morphometric community, greatly increasing the scale of the questions being
asked and opening up new research avenues that previously faced sample size barriers.
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