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Abstract 

Hydrogen-deuterium exchange combined with mass spectrometry (HDX-MS) is a widely 

applied biophysical technique that probes the structure and dynamics of biomolecules in 

native environments without the need for site-directed modifications or bio-orthogonal 

labels. The mechanistic interpretation of measured HDX data, however, is often qualitative 

and subjective, owing to a lack of quantitative methods to rigorously translate observed 

deuteration levels into atomistic structural information. To help address this problem, we 

have developed a methodology to generate structural ensembles that faithfully reproduce 

HDX-MS measurements. In this approach, an ensemble of protein conformations is first 

generated, typically using molecular dynamics simulations. A maximum-entropy bias is then 

applied post-hoc to the resulting ensemble, such that averaged peptide-deuteration levels, as 

predicted by an empirical model of a value called the protection factor, agree with target 

values within a given level of uncertainty. We evaluate this approach, referred to as HDX 

ensemble reweighting (HDXer), for artificial target data reflecting the two major 

conformational states of a binding protein. We demonstrate that the information provided by 

HDX-MS experiments, and by the model of exchange, are sufficient to recover correctly-

weighted structural ensembles from simulations, even when the relevant conformations are 

observed rarely. Degrading the information content of the target data, e.g., by reducing 

sequence coverage or by averaging exchange levels over longer peptide segments, reduces 

the quantitative structural accuracy of the reweighted ensemble but still allows for useful, 

molecular-level insights into the distinctive structural features reflected by the target data. 

Finally, we describe a quantitative metric with which candidate structural ensembles can be 

ranked based on their correspondence with target data, or revealed to be inadequate. Thus, 

not only does HDXer facilitate a rigorous mechanistic interpretation of HDX-MS 

measurements, but it may also inform experimental design and further the development of 

empirical models of the HDX reaction. 
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Statement of significance 

HDX-MS experiments are a powerful approach for probing the conformational dynamics and 

mechanisms of proteins. However, the mechanistic implications of HDX-MS observations are 

frequently difficult to interpret, due to the limited spatial resolution of the technique as well 

as the lack of quantitative tools to translate measured data into structural information. To 

overcome these problems, we have developed a computational approach to construct 

structural ensembles that are maximally diverse while reproducing target experimental HDX-

MS data within a given level of uncertainty. Using artificial test data, we demonstrate that the 

approach can correctly discern distinct structural ensembles reflected in the target data, and 

thereby facilitate statistically robust evaluations of competing mechanistic interpretations of 

HDX-MS experiments. 
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Introduction 

Upon exposure to a deuterated solvent such as D2O, labile hydrogen atoms present in protein 

side chains and backbones will readily exchange for deuterium. The rate of this process is 

influenced by the chemical features of the exchanging groups and by conditions such as pD or 

temperature, and is also critically dependent on protein conformation (1, 2). Consequently, 

measurements of Hydrogen-Deuterium exchange (HDX) rates are increasingly used as a direct 

probe of protein dynamics. Moreover, by combining HDX with mass spectrometry (HDX-MS), 

this approach has become feasible also for large complexes and membrane proteins, even at 

low concentrations (3).  

Typically, HDX-MS is carried out using so-called bottom-up and continuous labeling strategies, 

in which proteins are deuterated for varying amounts of time, quenched, proteolytically 

fragmented, and purified in the solution phase, before analysis of the individual peptide 

fragments by mass spectrometry. For each identified fragment, typically 5-20 residues in 

length, deuterium incorporation is then reported as the change in peptide mass over time. 

Because side-chain and terminal-amine deuterons exchange back relatively rapidly with 

protons during analysis, HDX-MS data reports exclusively on backbone-amide exchange. This 

ability to directly probe protein dynamics has led to diverse applications (4), including studies 

of allostery (5–7), epitope mapping for protein-protein or protein-lipid interactions (8–11), 

effects of ligand binding (12–15), mechanisms of membrane proteins (16–22) and dynamics 

of large macromolecular complexes (23–26). This progress notwithstanding, the 

interpretation of HDX-MS data in structural and mechanistic terms has been, generally 

speaking, largely qualitative and lacking objective metrics. 

No matter the protein system, interpretation of HDX-MS data requires an understanding of 

the processes reflected in the exchange kinetics. For any given backbone amide under a given 

set of conditions (pH, temperature, etc.), the most rapid rate of exchange occurs when the 

residue is in a completely unstructured, solvent-accessible conformational state of the 

protein. Under these circumstances, the value of the intrinsic exchange rate constant, 𝑘"int for 

residue i, is determined predominantly by steric and electronic effects from neighboring 

sidechains (27, 28). In a folded conformational state, by contrast, amides will be partially or 

fully occluded from solvent and/or engaged in hydrogen bonding. This structural protection 

can diminish the intrinsic rate constant by several orders of magnitude. In this case, exchange 

is better described as a two-step process: first, a structural transition must occur from a so-

called non-competent exchange state to a competent one; this step is followed by the intrinsic 

chemical exchange reaction with rate constant 𝑘"int (2, 29). If the structural transition entails 
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only local alterations rather than complete unfolding, an equilibrium between the exchange-

competent and non-competent states may be reached rapidly, even more so than the 

hydrogen-deuterium substitution; this situation is referred to as occurring with ‘EX2’ kinetics. 

The overall exchange rate under these conditions is thus given by the product of the 

equilibrium constant for the structural transition and the intrinsic rate,	𝑘" = 𝐾"
eq𝑘"int. This 

relationship is commonly expressed as 𝑘" = 𝑘"int 𝑃"⁄ , where 𝑃"  denotes the ‘protection factor’ 

for each amide, which in turn relates to the free energy difference between the non-

competent and competent states, ∆𝐺 = 𝑅𝑇 ln𝑃". Following these concepts, HDX data is 

commonly interpreted in terms of the degree of protein structural flexibility and solvent 

accessibility for a given amide. 

In practice, HDX-MS experiments measure deuteration averaged over lengthy peptide 

fragments rather than at the single-residue level. Even with robust methods to derive high-

resolution protection factors directly from experimental data (30, 31), interpretation of the 

observed data in structural terms is not straightforward. Oftentimes HDX levels are color-

coded and mapped on known protein structures, which allows an intuitive visualization of the 

results and highlights dynamic or solvent-exposed protein regions. However, this kind of 

qualitative visual analysis can easily lead to a biased interpretation of the experimental data 

(32). Moreover, HDX data reflect the properties of an ensemble of protein conformations and 

in some cases, therefore, might not be explained by a single structural state. To address these 

issues, previous studies have relied on molecular simulation methods. A typical approach is to 

first generate a conformational ensemble for the protein of interest with molecular dynamics 

(MD) or Monte Carlo simulations. Empirical models that predict protection factors 𝑃"  for 

individual protein structures are then used to compute peptide deuteration levels, whose 

ensemble averages are correlated with the experimental data (33–43). An important caveat 

of this seemingly straightforward approach is that, for many cases of interest, a simulation 

may not accurately represent the conformational ensemble reflected by the experimental 

data, for example due to force-field inaccuracies or incomplete sampling. Thus, even if a 

perfectly accurate empirical model for 𝑃"  was used, the predicted protection factors might 

deviate substantially from measured data. 

Here, we develop and test a simulation methodology to construct conformational ensembles 

that faithfully reflect a given set of target HDX-MS data, for a given empirical model of 𝑃". This 

approach, which we refer to as HDX ensemble reweighting (HDXer), is based on concepts 

outlined in previous studies and applied to other types of biophysical data (44–54), but not 

yet to HDX-MS. In brief, our approach uses a maximum-entropy criterion to reweight the 
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configurations obtained computationally post-hoc, so that calculated ensemble-averaged 

peptide deuterated fractions reproduce measured values, within a given level of uncertainty. 

This approach aims to adjust populations in a heterogenous conformational ensemble such 

that they conform ideally to the experimental data, while taking into account all potential 

sources of uncertainty. Importantly, this method allows us to rank the correspondence 

between a given HDX-MS dataset and several candidate conformational states, based on the 

degree of bias required to reproduce the experimental results.  

To evaluate the validity of HDXer, we analyze artificial HDX-MS data generated for the two 

major conformations of TeaA, the accessory substrate-binding protein of the bacterial TRAP 

membrane transport system (55). This protein undergoes a large-scale conformational change 

upon substrate binding, which has previously been characterized through extensive 

enhanced-sampling simulations (55).  To rigorously assess the performance of our method we 

reweight these simulation data so that calculated deuteration levels match a set of artificial 

HDX-MS data that reflects pre-defined populations of the two conformational states. We then 

ask whether the conformations favored by the reweighting indeed correspond to the 

structural states used to generate the target data. To explore the reliability of the method in 

practical applications, we also performed the reweighting for target data whose information 

content had been progressively degraded, either by increasing the length of the protein 

fragments or by reducing the sequence coverage. Encouragingly, the results show that the 

proposed approach always recovers the key features of the correct structural ensemble, even 

when sparse HDX data are targeted. 
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Theory and Methods 

Calculation of HDX residue protection factors and peptide deuterated fractions 

To predict deuterium uptake based on structural snapshots (obtained from MD simulations 

or other molecular modeling method), we first calculate the protection factor for each residue 

i, 𝑃", using the method of Best and Vendruscolo (33). Specifically, the free-energy difference 

between exchange-competent and non-competent states of a residue is approximated by a 

linear function of the numbers of H-bonds and heavy-atom contacts of the corresponding 

backbone amide, denoted as 𝑁H,"  and 𝑁C,", respectively: 

ln 𝑃" = 〈	𝛽C𝑁C," + 𝛽H𝑁H,"	〉 (1). 

The notation 〈… 〉 signifies an ensemble average over all snapshots available. 𝑁C,"  is calculated 

as the number of non-hydrogen atoms within 6.5 Å of the amide N atom of residue i, excluding 

atoms in residues i–2 to i+2; 𝑁H,"  is the number of O or N atoms within 2.4 Å of the amide 

hydrogen atom. In the original formulation by Best and Vendruscolo, the scaling factors 𝛽C 

and 𝛽H are set to 0.35 and 2.0, respectively. These values reflect an empirical optimization 

with respect to experimental HDX data for several water-soluble proteins (33); however, their 

optimal value depends on the protein or experimental conditions (36), and therefore we will 

treat them as optimizable parameters. 

In addition to	𝑃", we consider the intrinsic exchange rate constant for each residue type, 𝑘"int, 

from Bai and coworkers, updated for acidic residues and glycine (27, 28). Deuterated fractions 

for peptide segments of the protein, 𝐷<,=sim, can then be calculated for any given timepoint of 

exchange, t, using the exchange rate constants of each individual residue and according to 

first-order kinetics. That is:  

𝐷<,=sim =
∑ 1 − exp	 E− 𝑘𝑖

int

𝑃𝑖
𝑡H𝑖=𝑛𝑗

𝑖=𝑚𝑗+1

𝑛𝑗 − 𝑚𝑗
 (2), 

where 𝑚<  and 𝑛<  are the first and last residue numbers of the j-th protein fragment 

respectively. Note that proline residues do not have an exchangeable amide proton and were 

therefore excluded from the deuterated fraction calculation. The first residue (𝑚<) in each 

peptide segment was also omitted from the average, as hydrogens in the amine N-terminus 

are labile after proteolytic fragmentation and are assumed to have fully exchanged back to 

protons during the HDX-MS purification and analysis step. It should also be noted that in direct 

comparisons of experimental and predicted data, the measured deuterated fractions should 
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be corrected for the fraction of D2O/H2O in the reaction buffer and for back-exchange during 

the analysis process. Both corrections can be achieved by normalizing to deuterated fractions 

observed in identical control experiments performed under maximal deuteration conditions 

(32). 

Maximum-entropy ensemble reweighting with HDX data  

In this section we describe the basic formulation for calculating corrections to the statistical 

weight of the individual structural snapshots in an ensemble, each denoted by XM, such that 

the ensemble-averaged deuteration fractions reproduce a set of HDX experimental data. Our 

approach is related to that of Marinelli & Fiorin (46), in which the only bias applied is that 

strictly required to conform to the experiments, following the so-called maximum-entropy 

principle (44, 45, 53, 54, 56). In general terms, the minimal bias needed to correct the mean 

value of one or more observables of interest is provided by a linear function of those 

observables, added as a perturbation term to the molecular force field or energy function, 

𝑈(X) (44). In this case, the target observables are 𝑃"  (or functions thereof) (Eq. 1-2), and 

therefore the corrected forcefield is defined as: 

𝑈corr(X) = 𝑈(X) − 𝑘B𝑇U𝜆"W𝛽C𝑁C,"(X) + 𝛽H𝑁H,"(X)X
"

 (3). 

In the initial sample, the statistical weight of each configuration XM is proportional to 

exp{−𝑈(XM) 𝑘B𝑇⁄ }. Similarly, in the corrected ensemble these weights are proportional to 

exp{−𝑈corr(XM) 𝑘B𝑇⁄ }. The set of weight adjustments we seek, Ω(XM), are therefore simply 

a Boltzmann factor of the linear term of Eq. 3: 

Ω(𝑿M) =
exp]∑ 𝜆"W𝛽C𝑁C,"(XM) + 𝛽H𝑁H,"(XM)X" ^

∑ exp]∑ 𝜆"W𝛽C𝑁C,"(𝐗M̀) + 𝛽H𝑁H,"(XM̀)X" ^M̀
 (4), 

in which the denominator is a normalization term calculated by summing over all simulation 

configurations. 

The scaling factors 𝜆"  in Eq. 3-4 are the key adjustable parameters in this methodology. These 

parameters will be uniquely determined so that deuteration fractions deduced from the re-

weighted ensemble fit the experimental data within a defined level of uncertainty, 𝜌err, and 

with the smallest possible bias. To quantify this bias, we report the amount of apparent work, 

𝑊app,  required to reweight the ensemble. In formal terms, the optimal value of 𝜆"  is at the 

global minimum of the following (Kullback-Leibler) likelihood function (46, 57): 
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𝐿 =
𝑊app
𝑘B𝑇

− ln 𝜌err (5). 

The apparent work, 𝑊app, depends on the correction to the potential applied in Eq. 3 as 

follows: 

𝑊app = 𝑘e𝑇 	ln 〈	exp f−U 𝜆"W𝛽C𝑁C,"(X) + 𝛽H𝑁H,"(X) − ln𝑃"X
"

g	〉	 (6), 

where 〈… 〉 denotes a mean value over the corrected ensemble, or in other words, a weighted 

average according to the weights of Eqn. 4. Note that 𝑊app is related to the Kullback-Leibler 

divergence between the initial and corrected ensembles (46, 57, 58), 𝐷KL = 𝑊app 𝑘e𝑇⁄ =

∑ Ω(XM) lnΩ(XM) + ln𝑁M , where 𝑁 is the number of simulation frames. 

The function 𝜌err is an error distribution that, for simplicity, we assume to be Gaussian: 

𝜌errj𝐷k"lm ∝ expo−U U 𝛾
q𝐷<,=k"l − 𝐷<,=

expr
s

2𝜂s<=
v (7), 

where the parameter 𝛾 controls the final level of agreement with the experiments (see 

below), 𝜂 is an estimate of the uncertainty, and 𝐷<,=
exp and 𝐷<,=sim are the experimental and 

predicted deuterated fractions, respectively. 𝐷<,=sim is calculated according to Eqn. 2 using the 

protection factors for each amide, but after adjusting for reweighting, ln 𝑃" = 〈𝛽C𝑁C," +

𝛽H𝑁H,"〉 = ∑ W𝛽C𝑁C,"(XM) + 𝛽H𝑁H,"(XM)XΩ(XM)M .  

In practice, we use a gradient-based minimization of the likelihood function 𝐿 in Eqn. 5, in 

which the parameters 𝜆"  are calculated iteratively according to the derivative of 𝐿: 

𝜆"wxy = 𝜆"w(1 − 𝜖) + 𝜖
𝜕	 ln 𝜌err(𝐷sim)

𝜕	 ln 𝑃"
 (8), 

where 𝜖 is an update rate selected to ensure convergence. The weights (Eq. 4) and corrected 

protection factors entered into Eq. 8 depend on 𝜆"  and are also updated at each iteration. The 

model parameters 𝛽C and 𝛽H are optimized at each step using a Monte Carlo procedure, to 

reduce the discrepancy between simulated and experimental data, measured by the mean 

squared deviation, MSD = 𝜒s 𝑁D⁄ , where 𝜒s = ∑ ∑ q𝐷<,=sim − 𝐷<,=
expr

s
𝜂s�<=  and 𝑁D is the 

number of data points.  

We note that although HDX-MS measures the total deuterated fraction for protein fragments, 

our approach uses the minimal bias condition to spread such experimental information across 

individual residues (Eq. 3-8). Nevertheless, if multiple experimental datapoints incorporating 
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a single amide are available, the contribution of that amide to the ensemble correction is 

constrained by a simultaneous fit to all the experimental data. Therefore, in practical 

applications of reweighting, the inclusion of HDX-MS measurements for overlapping peptide 

segments will ultimately lead to enhanced resolution. 

Reweighting parameters and metrics of robustness 

In the reweighting procedure, the presence of unknown errors in predicted and experimental 

data is considered by setting a parameter 𝛾 (Eq. 7) that regulates the variance in the error 

distribution and that can be tuned to achieve a compromise between the applied bias and the 

level of agreement with experiments (46, 57). To identify a reasonable value of 𝛾, a decision 

plot of 𝑊app vs. MSD can be constructed for different values of 𝛾. Typically, the presence of 

undetermined, systematic errors, such as forward-model uncertainty or sampling inefficiency, 

induces a rapid increase of the work value below a certain value of MSD, resulting in an 

L-shaped decision plot (see Fig. 6B). In this case, a reasonable value of 𝛾 can be found at the 

kink of the L-curve, provided that the associated value of 𝑊app is within a few (2-3) 𝑘e𝑇.   

TeaA simulation data and generation of the artificial target HDX data 

The simulation data used for ensemble reweighting were taken from the unbiased replica (~45 

ns, with frames at 1 ps intervals) of bias-exchange metadynamics simulations of TeaA 

performed previously (55), including both ‘closed’ and ‘open’ states of TeaA (Fig. 1B). The 

artificial HDX-MS data used as a target for the reweighting was created from this trajectory so 

as to represent a rapidly-interconverting conformational ensemble comprising 60% closed 

and 40% open states. Specifically, two reference configurations were chosen to represent 

typical ‘closed’ and ‘open’ states (Fig. 1B), and two sub-ensembles of closed and open 

configurations (corresponding to 37.2% and 1.6% of the initial frames, respectively) were then 

obtained by extracting frames in which the root-mean-square deviation (RMSD) of the Ca 

atoms was < 1.0 Å from those in the closed or open reference structures. The remaining 61.2% 

of frames remained unassigned. 

Artificial target HDX-MS data sets were then derived from the closed and open sub-ensembles 

according to Eqn. 2. Residue protection factors for the mixed target ensemble were calculated 

as ln 𝑃"mix = 0.6 ln 𝑃"closed + 0.4 ln 𝑃"
open, in which 𝑃"closed and 𝑃"

open represent protection 

factors calculated across the sub-ensemble of the closed and open conformations, 

respectively. Protection factors were calculated using Eqn. 1, with 𝛽C = 2.0 and 𝛽C = 0.35. 

Artificial HDX-MS data were also constructed for the open and closed ensembles separately, 
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using the same values of 𝑃"closed and 𝑃"
open. All artificial data was calculated at timepoints of 

0.167, 1.0, 10.0, 60.0, and 120.0 min. These timepoints reflect typical HDX-MS experiments, 

and capture both short- and long-timescale EX2 exchange. A scheme of the generation and 

use of the artificial mixed-ensemble HDX data for ensemble refinement is provided in Fig. S1. 

To assess the impact of segment averaging and sequence coverage upon reweighting, multiple 

TeaA HDX-MS datasets were generated. The largest set of artificial HDX measurements, 

obtained at residue-level resolution and with full sequence coverage, comprised 294 residues 

at 5 timepoints, for a total of 1470 individual predicted observables to be refined against. To 

evaluate the effect of segment averaging, five other target datasets were generated, in which 

TeaA was divided into fragments of size 5, 10, 15, 20 or 50-residues, including prolines. Note 

that, since deuteration of the N-terminal amine is excluded from HDX-MS data, neighboring 

protein segments were defined with a one-residue overlap (e.g., 1-10, 10-19, etc.). The final 

peptide segment in each dataset was extended up to the C-terminal residue 310. Analysis of 

the effect of sequence coverage was based on the 10-residue segment target HDX dataset, 

which comprises 34 peptides, from which coverage was reduced in five cumulative steps from 

100% to 20% of the sequence (6-7 peptides at each step; Fig. S2). Assuming that buried 

peptides are less likely to be proteolytically hydrolyzed, we preferentially excluded peptides 

with lower solvent accessibility. 

Trajectory clustering 

To rationalize the results of the reweighting, the structures ('samples') in the final ensembles 

were clustered based on pairwise Ca RMSD with the density-based algorithm DBSCAN, as 

implemented in scikit-learn v0.21.2 (59). The minimum size of a cluster, n, was set to 10% of 

the total ensemble size, but the contribution of each frame to n corresponded to the weight 

assigned after ensemble reweighting (Eq. 4) and normalized to the number of structures in 

the entire ensemble. The maximum radius, e, which defines the neighborhood of an individual 

sample, was chosen by evaluating cluster quality for the ensemble obtained after reweighting 

to the residue-level dataset with g = 103. Scanning a range of values of e from 10.546 Å to 

105.46 Å (equivalent to pairwise RMSD values of 0.05 Å or 0.50 Å, respectively) on this test 

set revealed well-defined clusters with high silhouette scores (60) at an e value of 42.187 Å (a 

pairwise RMSD of 0.20 Å). 

Data availability 

All underlying data used in this study is made freely available (DOI: 10.5281/zenodo.3385169), 

including the initial simulation trajectories, target HDX datasets, and analysis code for 
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extracting contacts and H-bonds, generating artificial target datasets, reweighting ensembles, 

and clustering. The code and underlying data used to create figures is also available in this 

repository. 
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Results 

The TeaA test system undergoes a substantial conformational change 

In the proposed computational approach, we seek to be able to reweight a heterogenous 

structural ensemble so that it optimally reflects a given set of HDX-MS data. The success of 

such a method requires that it be able to detect and up-weight the protein configurations that 

are most consistent with the data, but also to detect and down-weight those that are not. To 

meaningfully test this method, therefore, one must begin with a sample that is sufficiently 

heterogeneous, for a system with several states of known structure. To this end, we 

considered the ectoine-binding protein TeaA, and extracted a broad sample of configurations 

from enhanced-sampling MD simulations carried out in a previous study (55). The structure 

of TeaA consists of two distinct lobes interconnected by a single b-strand (b4) and a single a-

helix (a9) (Fig. 1A). Ectoine binding at a central cleft between the lobes fosters a clamshell-

like structural change (Movie S1), whereby the distance between lobes changes by up to 

~10 Å. We refer to the two endpoints of this conformational change as the ‘open’ and ‘closed’ 

states (Fig. 1B). These states have nearly identical secondary structure, except that closure 

requires local unwinding and kinking of the a9 helix, at residues K247-L249.  

 

Figure 1 – Structure of ectoine-bound TeaA in open and closed conformations. (A) 
Representative open structure shown as cartoon helices, highlighting the N-lobe (red), the C-
lobe (blue), and the b4/a9 segments (orange) that span both lobes. The ectoine ligand bound 
to the central binding cleft is shown in ball-and-stick representation. (B) Overlay of 
representative open (cyan) and closed (wheat) conformations. The Ca RMSD between the two 
conformations is 3.2 Å. 
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The existing simulations, based on Bias-Exchange Metadynamics, capture the full range of this 

structural change and explain how the affinity for ectoine is modulated by the conformational 

state of the protein (55). This data demonstrated that the closed state of TeaA becomes most 

favored when ectoine is bound; however, partial opening of this bound form was also 

observed, and found to entail a free energy penalty of only ~2 kcal mol-1 (55). Accordingly, the 

unbiased replica in these simulations samples open, closed, and intermediate configurations 

of the protein (Fig. S3). This structural heterogeneity makes this data an ideal choice as a 

reference set on which to test the ability of our reweighting method. 

Artificial HDX-MS data for open and closed TeaA  

To test the protocol proposed here, we need target HDX data sets for each of the 

conformation states of the protein. Moreover, these HDX data sets must also be distinct from 

each other. To our knowledge, however, no experimental HDX-MS data exists for TeaA. We 

therefore decided to generate artificial, high-resolution HDX data for the two major states of 

TeaA (open and closed), to evaluate whether a hypothetical experiment would yield a 

measurable contrast. To this end, we extracted separate ensembles of open and closed 

conformations from the simulation data and compared the predicted deuterated fractions at 

the single-residue level for each set (calculated using Eqn. 1-2). The HDX data was generated 

at single-residue resolution and across five timepoints, in order to capture both spatial and 

temporal differences in deuterium uptake at high resolution (see Theory & Methods). 

We observed substantial differences between the deuterated fractions of closed and open 

states (Fig. 2A), confirming that these artificial data sets are well suited for our purpose. As 

might be expected, this contrast is most pronounced at the binding site interface and in the 

a9 helix (Fig. 2B). Interestingly, though, subtle differences are also observed across almost 

the entire protein and vary from one timepoint to another. These complex patterns cannot 

be easily interpreted visually, e.g., by mapping the data onto the representative structures 

(Fig. 2B), as they reflect the dynamical nature of the simulated ensembles. For the same 

reasons, such comparisons based on single structures also offer limited insights into 

experimentally-determined HDX-MS data, as has been noted elsewhere (32). The striking 

variability of the idealized artificial data for TeaA further illustrates the need for an ensemble 

perspective to rigorously interpret HDX measurements at the structural level. 
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Figure 2 – Difference in predicted deuterated fractions between closed and open ensembles 
of TeaA. (A) By-residue ∆𝐷" = 𝐷",������ − 𝐷",���� for each timepoint, where red indicates that 
a residue is more deuterated in the open conformation than in the closed, while blue indicates 
the opposite. Domain definitions are indicated using bars beneath the plot. (B) Representative 
closed structure of TeaA, colored by residue ∆𝐷"  at the 0.167, 10 and 120-minute timepoints. 
The largest ∆𝐷" values are observed for residues either lining the central binding cleft or 
involved in the partial unfolding of helix a9, but are clearly not uniform across timepoints. 

Ensemble reweighting with idealized single-residue HDX target data 

To begin to evaluate the HDXer method, we next produced artificial HDX-MS data for a 

hypothetical measurement in which TeaA spontaneously interconverts between closed and 

open states, populating these states in a 60:40 ratio. In contrast, the sample derived from the 

unbiased metadynamics replica (hereafter referred to as the reference ensemble) comprises 

a heterogeneous set of conformations including closed, open, and unassigned (decoy) states 

at a ratio of 37.2 : 1.6 : 61.2 (see Methods). We note, however, that the decoy structures, 

although unassigned, do share structural similarities with either open or closed states, as 

demonstrated by the continuity of the RMSD distributions (Fig. 3A, 3B, cyan). The challenge 

for the HDXer method, therefore, is to identify to the appropriate weights for each and all of 

the configurations in the reference ensemble so that ensemble-averaged HDX levels 

calculated for the reweighted sample exactly reflect the 60:40 ratio of open and closed 

conformations in the target dataset.  

As expected, without reweighting, the predicted HDX levels for the reference ensemble were 

in poor agreement with the target HDX data (MSD = 2.2 x 10–3), owing to the mismatch in 
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populations. Ensemble reweighting with HDXer, however, succeeds in matching the target 

data (Fig. S4, Fig. 3). By increasing the value of the parameter g in Eq. 7, an increasingly tighter 

agreement with the target HDX data was achieved (Fig. S4A), requiring a larger apparent work, 

Wapp, to be applied (Fig. S4B) and resulting in an increasing deviation from the initial reference 

ensemble. Enforcing closer agreement with the target HDX (by increasing g) resulted in the 

gradual development of a RMSD distribution profile containing two distinct peaks, 

corresponding to the closed and open states of TeaA, as the decoy trajectory frames became 

downweighted (dark brown – orange – yellow, Fig. 3A-B). Notably, the bimodal features of 

the target distribution could already be detected with only a small applied bias of 𝑊app = 

0.9 kJ mol–1 relative to the 2.6 kJ mol–1 bias applied at g = 103. After reaching an MSD ≤ 10–7 

(reweighting with g » 102 or larger) no further substantial changes in the ensemble were 

observed (Fig. 3A-B) and 𝑊app reached a plateau (Fig. S4B). 

 
Figure 3 – Effects of HDX ensemble reweighting at single-residue resolution. (A & B) 
Probability distributions of the RMSD with respect to the closed (A) or open (B) reference 
structure of TeaA for the initial, reference ensemble (cyan) and for ensembles obtained after 
reweighting with progressively higher g values (dark brown to orange to yellow). The dashed 
line indicates the 1.0 Å RMSD cutoff used to define frames as belonging to the closed (A) or 
open (B) ensemble. (C & D) Ensemble density maps of the closed (C) or open (D) clusters 
extracted by structural clustering after reweighting with g = 103. The mesh reflects the density 
of backbone N, CA, and C atoms overlaid onto the representative closed (C) or open (D) 
structure of TeaA. Maps were created using the AtomProb (61) feature of Xplor-NIH v2.51, 
and are shown at 0.25s. 
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To more quantitatively characterize the outcome of the reweighting, we applied a clustering 

algorithm to the configurations in the reweighted ensemble obtained using g = 103 (see 

Theory & Methods). Two clusters were found: the largest clearly represented a closed 

conformation (Fig. 3C) and comprised 59.3% of the ensemble by weight, while the second 

cluster comprised 35.5% of the ensemble and reflected an open conformation (Fig. 3D). The 

remaining 5.2% of the ensemble consisted of outliers that, owing to structural dissimilarities 

and/or low weight after reweighting, could not be assigned to either of the clusters.  

From the RMSD distributions of the reweighted ensembles it was clear that the final ensemble 

still contained a non-negligible fraction of frames > 1.0 Å RMSD to either the closed or open 

state. Moreover, these decoy frames were included in the extracted clusters alongside the 

correct frames. These observations raise concerns about the fidelity that can be achieved with 

ensemble-averaged observables such as these. We therefore asked how similar these decoy 

structures are to those in the target ensemble. According to the root-mean-square fluctuation 

(RMSF) of the backbone atoms, both clusters exhibited minimal structural variance, with a 

maximum RMSF of 1.2 Å, excluding the N-terminal residue (Fig. S5), and well-defined 

backbone density when calculated across all structures in each cluster (Fig. 3C-D). Therefore, 

the inclusion of decoy frames in fact reflected conformationally-correlated frames, indicating 

that the reweighting identified key structural features of the target and, based on those 

features, created populations of the two conformational states in good agreement with the 

target ratio of 60:40. 

HDX ensemble reweighting with realistic peptide segments and sequence coverage 

The results so far demonstrate that HDX reweighting can successfully extract key structural 

features of the target ensemble using residue-resolved artificial HDX data and 100% sequence 

coverage. However, this level of information content is not representative of typical HDX-MS 

experiments, which report deuterated fractions for proteolytic fragments of a protein, while 

complete sequence coverage requires extensive optimization of experimental conditions. To 

evaluate the extent to which real-life HDX-MS data can be meaningfully interpreted with a 

quantitative method such as HDXer, we systematically degraded the information content of 

the artificial target data produced at single-residue resolution, while maintaining the 60:40 

ratio of closed and open states. First, the deuterated fraction values were averaged over 

peptides of increasing length, from 5 to 50 residues, while maintaining full sequence coverage. 

Second, using fragment lengths typical for HDX-MS, sequence coverage was reduced by 
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removing peptide segments from the target data. To compare ensembles obtained with 

different target datasets, for which g values are not directly comparable, we instead fixed the 

level of agreement with the target data at MSD = 10–6. 

Averaging the deuterated fractions over peptide segment lengths from 5 to 50 residues 

represents a loss of spatial resolution in the HDX-MS signal and increases the degeneracy of 

the structural information present in the data. When reweighting the reference ensemble, 

increasing the length of the segments progressively reduced the value of 𝑊app required to 

achieve the same level of agreement with the target data, which is also increasingly less 

resolved and thus more easily reproduced (Fig. 4A). That is, the smaller values of 𝑊app reflect 

a greater similarity between the initial and reweighted ensembles. However, this degradation 

of the target data translates into a reduced ability to discern between correct and decoy 

structures. Specifically, both the RMSD probability distributions and the structure-based 

clustering after reweighting (Fig. 4B, Table 1) show that increasing the fragment length 

reduced the ability of HDXer to discriminate between open and semi-open (RMSD ~ 1.7 Å) 

protein structures. Indeed, using ³ 20 residue-long segments, the semi-open state was still 

highly populated and was identified as a separate, unique cluster (Table 1). For long fragments 

such as these, therefore, a quantitative interpretation is not possible, unless information from 

overlapping (redundant) peptides is available (Fig. S6). Overall, however, for peptide lengths 

typical of HDX-MS experiments (5-20 residues), HDX reweighting correctly identified the 

trends in closed, open, and decoy state populations present in the target data. 

Even at low levels of amide resolution, the target data up to this point covered the entire 

length of the protein. Loss of sequence coverage also increases the degeneracy of the 

structural information present in HDX-MS data. We therefore investigated the effects of 

reducing coverage, using the 10-residue long segment dataset analyzed earlier, for which 

reweighting at 100% sequence coverage resulted in cluster populations of 58.9% and 26.6% 

for the closed and open states, respectively (Fig. 4B and Table 1). 

As expected, gradual degradation of the sequence coverage also reduced the value of 𝑊app 

required to match the target data, e.g. with MSD = 10–6 (Fig. 5A), for the same reasons 

discussed above for the increased peptide lengths. The effect in terms of structural 

interpretation was also similar: reducing coverage incorrectly increased the contribution of 

semi-open states relative to 100% coverage (Fig. 5B). This effect was particularly marked when 

the coverage was ≤ 40% (Table 2). 
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Figure 4 – Effects of segment averaging on ensemble reweighting. (A) Decision plot showing 
the work applied during reweighting, against the MSD of the reweighted ensemble to target 
HDX data. Circles indicate independent reweighting experiments. (B) RMSD probability 
distributions, with reference to the closed TeaA structure, before (cyan) and after ensemble 
refinement to MSD = 10–6. In both panels, reference data from reweighting performed with 
individual residue deuterated fractions is shown in dark brown, while the data obtained by 
increasing the peptide segment lengths is shown using gradual color variation from light 
brown to orange to yellow. 

Table 1 – Cluster populations after ensemble reweighting with segment-averaged target data. 

Segment 
length 

Closed 
(%) 

Open 
(%) 

Semi-open 
(%) 

Outliers 
(%) 

1 59.1 34.4 – 6.4 
5 59.5 31.0 – 9.5 

10 58.9 26.6 – 14.6 
15 59.1 24.9 – 16.0 
20 59.5 21.0 15.6 3.9 
50 61.2 10.3 22.8 5.7 

Populations are measured as percentage by weight of the total ensemble. Predicted 
deuterated fractions from the reweighted ensembles fit the target data with MSD = 10–6. The 
data for segment length = 1 represents a reweighting with residue-resolved target data. 

It is perhaps surprising that even at 20% coverage, HDXer produced a 10-fold enrichment of 

the population of the open state, i.e., in qualitative agreement with the target data. Inspection 

of the peptides included in this set (Fig. S2) shows that at least one peptide spanning the a9 

helix was included at all coverage levels. Because the conformational change in helix a9 

correlates strongly with the open-to-closed transition, peptides in this helix likely include 
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crucial target observables that allow our method to correctly discern between states of TeaA. 

In actual HDX experiments, this correlation might not exist for any one peptide fragment 

among those available, in which case 20% coverage would not likely be sufficient to derive a 

clear interpretation.  

 
Figure 5 – Effects of reduced sequence coverage on ensemble reweighting. (A) Decision plot 
and (B) RMSD probability distributions after reweighting with reduced sequence coverage in 
the target HDX-MS data, using target data with 10-residue segments. See legend to Fig. 4 for 
more details. In both panels, reference data from reweighting performed with full coverage is 
shown in dark brown, while the data obtained by decreasing sequence coverage lengths is 
shown using gradual color variation from light brown to orange to yellow. 
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Table 2 – Cluster populations after ensemble refinement with target data covering smaller 
proportions of the protein.  

Coverage 
(%) 

Closed 
(%) 

Open 
(%) 

Semi-open 
(%) 

Outliers 
(%) 

100 58.9 26.6 – 14.6 
80 58.8 23.9 13.5 3.8 
60 56.6 22.2 17.5 3.7 
40 55.7 17.4 22.4 4.5 
20 55.5 16.2 23.6 4.8 

Populations are measured as percentage by weight of the total ensemble. Predicted 
deuterated fractions from the final ensembles fit the target data with MSD = 10–6. Peptide 
segments were 10 residues long, so the data presented for 100% coverage represents the 
same final ensemble as segment length = 10 in Table 1. 

 

Overall, however, we conclude that the ability of our method to identify open and closed 

states from the initial sample, based only on similarity with target HDX data, does not critically 

depend on peptide segment length, nor does it require complete coverage. Thus, provided 

that the relevant conformational states are present in the reference ensemble (as has been 

assumed so far), HDXer will reveal the major conformational states reflected by the target 

HDX data, and their approximate populations, even when the HDX data is of limited spatial 

resolution or sequence coverage. This finding underscores the potential of the proposed 

method to generate structure-based interpretations of experimentally-determined HDX-MS 

data that are not only quantitative and objective, but also mechanistically informative. 
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Discussion 

Broad applicability and label-free sample preparation have made HDX-MS an increasingly 

attractive biophysical technique to study global biomolecular structure and dynamics under 

native conditions, as demonstrated by the variety of reported applications on both globular 

and membrane proteins and frequently-updated reviews (3, 4, 62). The major challenge, 

however, has been how to objectively translate the HDX data into structural information, so 

as to be able to derive quantitative mechanistic insights. The methodology introduced here, 

named HDXer, facilitates this structural interpretation by reweighting the distribution of 

conformations in a pre-existing ensemble, obtained for example with MD simulations, so that 

calculated ensemble-averaged deuteration levels match a given set of target data. Further 

analysis of the resulting reweighted ensemble, for example through clustering, thus provides 

the desired structural interpretation of the input HDX data.  

As noted, the target data used to evaluate the HDXer method were artificially generated. Two 

factors motivated this deliberate choice. First, we aimed to focus our evaluation on the 

reweighting method itself, leaving aside other factors that contribute to the prediction of HDX 

data. By using the same empirical model of Pi (Eqn. 1) and EX2-like kinetics, both in the 

generation of the artificial HDX data and in the calculation of weights (Eqn. 4), we ensure that 

potential inaccuracies in this model do not influence our assessment. Similarly, by using a pre-

existing configurational ensemble with a pre-defined population of states to generate the 

artificial data, we ensure that there is a correct answer against which our methodology can be 

evaluated. 

The second advantage of artificial data is that it can be arbitrarily degraded, in ways that 

reflect the limitations of actual measurements, so as to judge the usability of the technique 

for structure determination. Indeed, HDX-MS studies vary greatly in terms of the level of 

peptide coverage and redundancy, and a priori there is no guarantee that an observed set of 

peptides will contain sufficient information to allow a clear structural interpretation. Our 

method performs optimally the better the coverage and resolution of the data, as one should 

expect. However, it is worth noting, and is very promising, that even with incomplete 

sequence coverage or lengthy peptide segments, well beyond those typically attained in well-

optimized HDX-MS experiments, our re-weighting method can qualitatively identify the major 

conformational states contributing to the target set (Tables 1-2). It is also promising that 

estimates of the typical technical precision of HDX-MS measurements (63) suggest that 

achieving an ‘agreement’ with the experimental data of up to an MSD ~ 10–6 (or 0.01 Da error 

per 10-residue peptide) is not an unreasonable goal. Our reweighting method can achieve this 
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level of tight agreement, provided the relevant structural states are present in the initial 

reference ensemble, even as minority populations. Taken together, these observations lead 

us to conclude that HDXer will successfully provide structural insights when used to interpret 

actual experimental data exhibiting typical coverage and noise. 

Notwithstanding these reasons for optimism, it should be noted that the ability of this or any 

other computational method to facilitate the interpretation of measured HDX data will 

depend of the fidelity of the empirical model used to calculate the residue protection factors, 

Pi, for a given structural snapshot. Our results imply that the model formulated by Best & 

Vendruscolo is sensitive to large conformational changes and assigns similar deuterium 

exchange levels to structurally correlated frames (Fig. 3), which are positive features well 

suited to ensemble reweighting. Nevertheless, no HDX prediction model has yet been shown 

to be uniformly accurate across different biomolecular systems (64–66), and model error 

could certainly lead to erroneous interpretations even after reweighting against experimental 

target data. 

In addition to potentially uninformative data and model error, it is entirely possible that the 

initial reference ensemble may not include any of the structural states reflected by the HDX-

MS measurements. In the case of MD sampling, this situation might arise due to sampling-

time inadequacies and force-field errors. For other molecular-modeling approaches, the 

inherent simplifications of the energy function can be problematic. Given these different 

sources of potential error, it is crucial to be able to assess the reweighting process in absolute 

terms, i.e., to discern when the optimal solution is less than realistic. The HDXer method is 

equipped to do so, specifically through the calculation of the 𝑊app required to achieve a given 

MSD. 𝑊app, and other metrics of reweighting robustness, such as the Kish effective sample 

size (51, 67), may be used to identify situations in which the relevant structural states are not 

part of the reference ensemble. For the TeaA model system, this situation can be exemplified 

by removing all the closed-state conformations from the reference ensemble before applying 

the HDXer method exactly as above, i.e., targeting a data set reflecting a 60% population of 

that state (Fig. 6A). The resultant decision plot (Fig. 6B) clearly shows that the fit cannot be 

improved beyond MSD » 10–4, in contrast to the MSD < 10–7 attained when closed-state 

structures are present in the reference ensemble. Concomitantly, the 𝑊app values increase 

rapidly to > 10 kJ mol–1 as 𝛾 is increased, indicating poor overlap between the reference and 

reweighted ensembles, i.e., only a handful of configurations have predicted HDX values in 

agreement with the target data. Encountering this characteristic output when using 

experimental data would motivate the use of enhanced-sampling methods to improve the 
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reference pool of structures (68–71). Note that along a similar vein 𝑊app and MSD may also 

be used as metrics to rank results obtained using alternative empirical models for the 

protection factor, so as to evaluate and improve their accuracy. 

 
Figure 6 – Effect of missing data on the relationship between g, 𝑊app, and the agreement with 
the target data during HDX reweighting. A reference ensemble without closed TeaA structures 
was created by removing all frames < 1.5 Å Ca RMSD to the closed reference frame. 
Reweighting experiments were then compared between the full reference ensemble (black) 
or the degraded reference ensemble (orange) (A) The mean square deviation (MSD) between 
the predicted and target HDX values is consistently larger without closed TeaA structures and 
does not improve below MSD » 10-4. (B) The lack of closed TeaA structures in the degraded 
reference ensemble can be identified by a rapid and substantial increase in the decision plot 
of 𝑊app against MSD. Comparatively low 𝑊app values are required to improve agreement with 
the target data when the reference ensemble shows adequate sampling (black). All 
reweighting was performed using the target HDX dataset with 10-residue segments. 
 
Finally, the HDXer method could be straightforwardly applied to cross-validate the HDX data 

itself. Deuteration levels measured at different timepoints could be separated into training 

and validation sets, and inconsistencies in the resultant reweighted ensembles may reveal 

sources of experimental error. However, as has been extensively discussed for other ensemble 
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refinement methods (50, 51, 57, 58, 67), disentangling the exact sources of error in a given 

set of reweighting results is a challenging proposition and likely to require comparison and 

cross-validation with multiple reference ensembles and experimental datasets.  

On a technical note, it is worth underscoring that, in contrast to the canonical maximum-

entropy reweighting approach, which enforces exact agreement with an experimental 

observable, we use a parameter 𝛾 to control the degree of fitness to the target – and thereby 

account for all uncertainties involved. Consequently, HDXer shares some of the theoretical 

underpinnings of Bayesian approaches used to optimally recreate experimental observables, 

either through ensemble reweighting or on-the-fly biased-sampling (50, 57, 72). We would 

argue, however, that biased sampling might not be an appropriate strategy to interpret HDX 

data, given the empirical nature of HDX prediction models and their imperfect correlation with 

experiment (64–66), and more generally, our incomplete understanding of the structural 

determinants of exchange across different biomolecular systems. Thus, post-hoc reweighting 

seems the most effective approach. 

In conclusion, we have developed an effective maximum-entropy-based method to derive a 

structural-level interpretation of HDX-MS experiments via reweighting of conformational 

ensembles. We anticipate that HDXer will contribute to more systematic, quantitative 

analyses of HDX prediction methodologies, and aid studies of individual proteins and their 

functional mechanisms via objective structural interpretation of experimental HDX-MS 

measurements. 
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