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Abstract

Mendelian randomization (MR) is a popular method in genetic epidemiology to estimate the

effect of an exposure on an outcome using genetic variants as instrumental variables (IV), with

two-sample summary-data MR being the most popular due to privacy. Unfortunately, many

MR methods for two-sample summary data are not robust to weak instruments, a common

phenomena with genetic instruments; many of these methods are biased and no existing MR

method has Type I error control under weak instruments. In this work, we propose test statistics

that are robust to weak instruments by extending Anderson-Rubin, Kleibergen, and conditional

likelihood ratio tests in econometrics to the two-sample summary data setting. We conclude

with a simulation and an empirical study and show that the proposed tests control size and

have better power than current methods.

Key words: Instrumental variables; Mendelian randomization; two-sample summary-data

Mendelian randomization; weak instrument asymptotics.

1 Introduction

Recently, Mendelian randomization (MR) is a popular method in genetic epidemiology to study

the effect of modifiable exposures on health outcomes by using genetic variants as instrumental

variables (IV). In a nutshell, MR finds instruments, typically single nucleotide polymorphisms

(SNPs), from publicly available genome-wide association studies (GWAS) and the instruments must

be (A1) associated with the exposure; (A2) independent of the unmeasured confounder; and (A3)
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independent of the outcome variable after conditioning on the exposure (Davey Smith and Ebrahim,

2003; Lawlor et al., 2008) Typically, two non-overlapping GWAS are used to find instruments, one

GWAS studying the exposure and another GWAS studying the outcome. Also, due to privacy,

when estimating the exposure effect, only summary statistics instead of individual-level data are

extracted for analysis. This setup is commonly known as two-sample summary-data MR (Pierce

and Burgess, 2013; Burgess et al., 2013, 2015).

The focus of this paper is on testing the exposure effect in two-sample summary-data MR

when (A1) is violated, or more precisely when the instruments are weakly associated with the

exposure. Many genetic instruments in MR studies only explain a fraction of the variation in the

exposure. Using these weak instruments can introduce bias and inflate Type I errors (Burgess

and Thompson, 2011). Weak IVs can also amplify bias from minor violations of (A2) and (A3)

(Small and Rosenbaum, 2008). Unfortunately, many popular MR methods and software assume

instruments are strongly associated with the exposure; many go one step further and assume

that the correlation between each instrument and exposure has no sampling error (Bowden et al.,

2016b). For example, methods such as the inverse-variance weighted estimator (IVW) (Burgess

et al., 2013), MR-Egger regression (Bowden et al., 2015), weighted median estimator (W.Median)

(Bowden et al., 2016a) and the modal estimator (Hartwig et al., 2017) typically assume that each

instrument’s correlation to the exposure of interest is measured without error. In Section 4, we

numerically demonstrate the seriousness of making such assumptions in MR by “stress-testing”

these methods’ performance on a real MR data set, akin to an exercise done by Bound et al. (1995)

in econometrics for single-sample, individual-level data.

Many works in econometrics have dealt with weak instruments; see Stock et al. (2002) for an

overview. In particular, the Anderson-Rubin (AR) test (Anderson et al., 1949), the Kleibergen (K)

test (Kleibergen, 2002), and the conditional likelihood ratio (CLR) test (Moreira, 2003) provide

Type I error control regardless of instruments’ magnitude of association to the exposure, also called

instruments’ strength. More formally, the three methods satisfy the necessary requirement for valid

1−α confidence intervals with weak instruments, where the confidence interval adapts and becomes

infinite in the presence of weak IVs to maintain 1− α coverage (Dufour, 1997). However, all these

methods assume that individual-level data is available to compute the test statistics and the data

comes from the same sample. In GWAS and MR, one rarely has access to individual-level data

due to privacy concerns and is forced to work with anonymized summary statistics from multiple

GWAS. To the best of our knowledge, no methods in two-sample summary-data MR provide Type

I error control when the relationship between the exposure and the instruments is weak, even

irrelevant.

Our contribution is to propose weak instrument robust tests for two-sample summary-data MR.

We extend the three aforementioned weak-instrument robust tests in econometrics, AR test, the
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K test , and the CLR test, to work with two-sample summary data by leveraging recent work

by Choi et al. (2018) who worked with two-sample, but individual data. We show that under

the two-sample summary-data model and weak-IV asymptotics of Staiger and Stock (1997), these

modified tests, which we call mrAR, mrK, and mrCLR, asymptotically control Type I error for

testing the exposure effect. In the supplementary materials, we also introduce point estimators

based on these tests, most notably the MR limited information maximum likelihood estimator

(mrLIML) based on taking the minimum of the mrAR test. mrLIML is similar to the original

limited information maximum likelihood (LIML) estimator (Anderson et al., 1949) and we show an

equivalence relationship between mrLIML and the recent profile-likelihood estimator proposed by

Zhao et al. (2018). We conclude with a simulation and a prototypical MR data example concerning

the effect of body mass index (BMI) on systolic blood pressure (SBP).

2 Setup and Method

2.1 Review: Two-Sample Summary Data in MR

We review the data generating model underlying MR. Suppose we have two independent groups of

people, with n1 and n2 participants each of the two groups. For each individual i in sample l = 1, 2,

let Yli ∈ R denote his/her outcome, Dli ∈ R denote his/her exposure, and Zli ∈ RL denote his/her

L instruments. Single-sample individual data MR assumes that for one sample l, Yli, Dli, Zli follows

a linear structural model common in classical econometrics (Lawlor et al., 2008).

Yli = βint +Dliβ + εli, Dli = γint + Zᵀ
liγ + δli, E[εli, δli | Zli] = 0 (1)

The parameter of interest is β and has a causal interpretation under some assumptions (Holland,

1988; Kang et al., 2016; Zhao et al., 2019). Two-sample individual-data MR assumes the same

underlying structural model (1) for both samples. But, for sample l = 1, the investigator only

sees (Y1i, Z1i) and for sample l = 2, the investigator only sees (D2i, Z2i) (Pierce and Burgess,

2013; Burgess et al., 2013); this is identical to the setup in Angrist and Krueger (1992). Finally, in

two-sample summary-data MR, only summarized statistics of (Y1i, Z1i) and (D2i, Z2i) are available.

Specifically, from n1 samples of (Y1i, Z1i), we obtain (i) Γ̂ ∈ RL where Γ̂j is the estimated association

between IV Z1ij and Y1i and (ii) Σ̂Γ ∈ RL×L, the estimated covariance of Γ̂. Similarly, from n2

samples of (D2i, Z2i), we obtain (i) γ̂ ∈ RL where γ̂j is the estimated association between IV Z2ij

and D2i and (ii) Σ̂γ ∈ RL×L, the estimated covariance of γ̂. We assume that the summary statistics

(Γ̂, Σ̂Γ, γ̂, Σ̂γ) used in the analysis satisfy the following assumptions:

Assumption 1. The IV-exposure effect γ̂ and the IV-outcome effect Γ̂ are independent, γ̂ ⊥ Γ̂.
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Assumption 2. The two effect estimates are distributed as γ̂ ∼ N(γ,Σγ) and Γ̂ ∼ N(γβ,ΣΓ)

Assumption 3. We have n1(Σ̂Γ−ΣΓ)
p→ 0, n2(Σ̂γ −Σγ)

p→ 0 and n1ΣΓ
p→ Σ1, n2Σγ

p→ Σ2, where

Σ1,Σ2 are deterministic positive-definite matrices.

Assumption 4. For some constant C ∈ RL, we have γ = C/
√
n1

Assumption 1 is typically satisfied in MR by having two GWAS that independently measure

SNPs’ associations to the exposure and outcome (Pierce and Burgess, 2013). Assumption 2 is

reasonable in publicly-available GWAS where the effect estimates are based on running ordinary

least square (OLS) between each instrument and exposure/outcome and since the sample size for

each GWAS is on the order of hundreds or thousands, the normality of OLS estimates is plausible.

Assumption 3 states that the estimated standard errors converge to their asymptotic variances.

Assumption 3 is plausible since the covariance matrices are estimated from OLS residual errors

and most of MR assumes that the SNPs are independent of each other. Overall, Assumptions 1-3

are common in two-sample summary-data MR (Zhao et al., 2018). Finally, Assumption 4 is also

known as weak-IV asymptotics (Staiger and Stock, 1997) and it provides an asymptotic framework

to study the behavior of IV estimators when instruments are weak.

We remark that the literature also assume the instruments are independent to each other, which

we do not explicitly impose here. Also, to focus on our contributions to weak IVs in two-sample

summary-data MR, we assume that the instruments are valid (e.g. the exclusion restriction holds).

2.2 Weak-IV Robust Tests for the Exposure Effect β

Consider the null hypothesis H0 : β = β0 and the alternative Ha : β 6= β0. We define two statistics

S(β0) ∈ RL and R(β0) ∈ RL from the summary statistics (Γ̂, Σ̂Γ, γ̂, Σ̂γ).

S(β0) =
(

Σ̂Γ + β2
0Σ̂γ

)−1/2 (
Γ̂− β0γ̂

)
, R(β0) = (β2

0Σ̂−1
Γ + Σ̂−1

γ )−1/2
(

Σ̂−1
Γ Γ̂β0 + Σ̂−1

γ γ̂
)

(2)

The statistics S(β0) and R(β0) are similar to the independent sufficient statistics of β and π in the

traditional econometric setting (i.e. one-sample individual-data setting) (Moreira, 2003) or in the

two-sample individual data setting (Choi et al., 2018). A key difference is that (2) are computed

with two-sample summary data. While not exactly sufficient for β and π in our setting, S(β0) and

R(β0) is asymptotically independent as the following Lemma shows.

Lemma 1. If Assumptions 1-4 hold and n1/n2 → c ∈ (0,∞), (S(β0), R(β0))
p→ (S∞(β0), R∞(β0))

where

S∞ ∼ N [(Σ1 + cβ2
0Σ2)−1/2(β − β0)C, IL]

R∞ ∼ N [(β2
0Σ−1

1 + c−1Σ−1
2 )−1/2(β0βΣ−1

1 C + c−1Σ−1
2 C), IL]
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and S∞ and R∞ are independent.

The asymptotic independence is crucial as it allows us to follow Moreira (2003) and Andrews

et al. (2006) and use S(β0) and R(β0) to construct AR, K, and CLR tests for two-sample summary-

data MR.

TmrAR(β0) = QS(β0) (3)

TmrK(β0) = Q2
SR(β0)/QR(β0) (4)

TmrCLR(β0) =
1

2

(
QS(β0)−QR(β0) +

[
{QS(β0) +QR(β0)}2 − 4

{
QS(β0)QR(β0)−Q2

SR(β0)
}] 1

2

)
(5)

Here, QS(β0) = ST(β0)S(β0), QSR = ST(β0)R(β0), and QR = RT(β0)R(β0). Suppose χ2
k(1 − α)

is the 1 − α quantile of a Chi-square distribution with k degrees of freedom and CDFχ2
k
(x) is

the cumulative distribution function of a Chi-square distribution with k degrees of freedom. The

following theorem shows that TmrAR(β0), TmrK(β0), and TmrCLR(β0) have asymptotically pivotal

distributions under the null H0 : β = β0.

Theorem 1. Suppose Assumptions 1- 4 and H0 : β = β0 hold. For any α ∈ (0, 1), as n1, n2 →
∞, n1/n2 → c ∈ (0,∞), we have

P
(
TmrAR > χ2

L(1− α)
)
→ α, P

(
TmrK > χ2

1(1− α)
)
→ α, P (w(TmrCLR;QR) < α)→ α,

where

w(x; y) = 1−
2G
(
L
2

)
√
πG
(
L−1

2

) 1∫
0

CDFχ2
L

(
x+ y

1 + y z
2

x

)
(1− z2)

L−3
2 dz

and G(·) is the gamma function.

Theorem 1 shows that under H0 : β = β0, the two-sample summary data versions of the AR,

K, and CLR tests converge to the classical null distributions for the three tests under the single-

sample individual data setting. In particular, like the original CLR test, mrCLR test requires

solving the integral w(x; y) to obtain critical values; this integral can be computed by using off-the-

shelf numerical integral solvers. We can also use the duality between tests and confidence intervals

to derive asymptotically valid 1− α confidence intervals for each test.

In the supplementary materials, we extend these results and construct a point estimator based

on minimizing the mrAR test statistic. We show that when the estimated covariance matrices Σ̂Γ

and Σ̂γ are diagonal, β̂mrLIML is equivalent to the estimator proposed by Zhao et al. (2018).
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3 Simulations

We conduct simulation studies to study the performance of our test statistics. The data is generated

from the structural model in (1) with n1 = n2 = 100, 000, on the same order as the sample size in the

data analysis section 4. The random error (δ1i, δ2i) is generated from a bivariate standard Normal

and the random error εli is equal to εli = ρδli + (1− ρ2)1/2eli; the term eli is from an independent

standard Normal and ρ = 0.1. We remark that ρ signifies the endogeneity between the outcome and

the exposure. The L = 10 instruments take on values 0, 1, 2, similar to how SNPs are recorded in

GWAS, and are generated independently from a Binomial distribution Binom(2, pj), j = 1, · · · , L
with pi drawn from a uniform distribution Unif(0.1, 0.9). After generating individual-level data,

we compute the summary statistics for sample l = 1, Γ̂ and Σ̂Γ, by running an OLS regression

between Y1i and Z1ij for each instrument j and extracting the estimated coefficient and standard

error. Similarly, we compute the summary statistics for sample l = 2, γ̂ and Σ̂γ , by running an OLS

regression between D2i and Z2ij for each instrument. The simulation varies the exposure effect β

and the IV-exposure relationship γ. The simulation is repeated 1, 000 times.

We examine the power of our proposed tests, TmrAR, TmrK, and TmrCLR and the power of existing

tests in MR, specifically tests based on the IVW estimator, MR-Egger regression, the W.Median

estimator, all implemented in the software Mendelianrandomization (Yavorska and Burgess, 2017),

and MR-RAPs without the robust loss function (Zhao et al., 2018). Figure 1 shows the power curves

when the null hypothesis is H0 : β = 0 (left panel) or H0 : β = 1 (right panel); significance level is set

at α = 0.05. The top panels shows the case when γ ranges from {(r−0.5)/n1}1/2 to {(r+0.5)/n1}1/2

and r = 1 the bottom panel shows the case when r = 4; the value r approximately corresponds to

the first-stage F-statistic test typically used to test instrument strength. Under H0 : β = 0, all tests

correctly control Type I error under r = 1 and r = 4. But, our three tests, IVW, and MR-RAPs

have power under r = 1 and r = 4 cases, with TmrCLR having the best power among them; this is in

agreement with Andrews et al. (2006) who showed that the CLR test in the single-sample individual

data setting is nearly optimal. Under H0 : β = 1, none of the pre-existing methods except MR-

RAPs have Type I error control when instruments are weak. In contrast, our tests always maintain

Type I error control. Also, our tests have power under the alternative, with TmrCLR having the

best power among them. In fact, in the supplementary materials, we show that tests based on the

IVW estimator, weighted median estimator, and MR Egger regression only locally control Type I

error at the null H0 : β = 0 when the instruments are weak.
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Figure 1: Power curves under different null and IV strength. The left panel is under H0 : β0 = 0 and the
right panel is under H0 : β = 1. The top panel sets instrument strength to r = 1 and the bottom panel sets
instrument strength to r = 4; r approximately corresponds to the first-stage F-statistic test for IV strength.

4 Data Analysis

We validate our proposed tests by considering a prototypical MR study on the relationship between

BMI and systolic blood pressure where the exposure effect is known to be positive. We use the data

set prepared by Zhao et al. (2018) where the authors used three independent GWAS, one from the

UK Biobank GWAS (SBP-UKBB) and the other two from GWAS by the Genetic Investigation of

ANthropometric Traits (GIANT) consortium (Locke et al., 2015). The BMI-MAL and SBP-UKBB

datasets provide summary statistics of the IV-exposure and IV-outcome statistics, respectively.

The BMI-FEM dataset is a selection GWAS containing summary statistics of the IV-exposure

relationship and is used to pre-screen for strong and uncorrelated IVs.

We conduct two types of analysis with the data. First, we use the data as provided and examine

differences between the IVW, weighted median, MR-Egger estimator, MR-RAPS with a robust loss

function, and our methods when either L = 25 or L = 160 instruments are used. The results are

in Table 1.

We see that almost all methods provide similar 95% confidence intervals. Even though the

weighted median, MR-RAPS, and MR-Egger are robust to invalid instruments, their confidence

intervals are similar to confidence intervals from TmrK and TmrCLR, which are not robust to invalid
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Table 1: MR study concerning the effect of body mass index on systolic blood pressure. Parentheses
represent 95% confidence intervals.

25 Instruments 160 Instruments
mrK (0.205, 0.530) (0.377, 0.771)
mrCLR (0.211, 0.524) (0.415, 0.731)
mrAR (∅) (∅)
IVW 0.332 (0.063, 0.600) 0.317 (0.101, 0.534)
W.Median 0.520 (0.280, 0.759) 0.522 (0.318, 0.726)
MR-Egger 0.622 (0.101, 1.143) 0.452 (0.112, 0.792)
MR-RAPS 0.354 (0.097, 0.610) 0.378 (0.141, 0.615)

instruments. This suggests either that invalid instruments play a minimal role in this data or, as

Small and Rosenbaum (2008) suggests, in the presence of invalid IVs, the first-order bias comes

not from invalid IVs, but from weak IVs. This is also based on the observation that mrK produced

two split intervals, one in the negative region (-14.375, -10.905) (when L = 25) or (-10.376, -6.447)

(when L = 160) and the other in the positive region. We only report the positive region in Table

1 since we know a priori that the effect is positive; when the exposure effect direction is unknown,

we recommend taking the union of the intervals. Surprisingly, TmrAR produces an empty interval.

This behavior may be an indication that the model is incorrect or that the test lacks power; we

plan on investigating this property of TmrAR in future work.

Second, inspired by Bound et al. (1995), we “stress-test” the pre-existing methods and replace

each of the original IV-exposure effect γ̂j in BMI-MAL and the IV-outcome effect Γ̂j in SBP-UKBB

by the values generated below.

γ̂new
j ∼ N(Kγ̂j , Σ̂γ,j), Γ̂new

j ∼ N(Kγ̂jβ, Σ̂Γ,j)

Here, β is the true exposure effect and is set to be 0.5 and 1.5. The parameter K controls IV

strength and ranges from 0 to 1. Under K = 1, the new IV-exposure and IV-outcome effects are

essentially the original effects, but with a known exposure effect value β. But, as K decreases

to 0, the IV becomes weaker than the original ones. In the extreme case when K = 0, there is

no way to consistently estimate β; the new IV-exposure and IV-outcome effects look statistically

indistinguishable if the true exposure effect is β = 1 or β = 1000.

An ideal confidence interval should be able to (i) simultaneously and automatically detect the

lack of identification of the exposure effect β by producing an infinite confidence interval whenK = 0

and a bounded confidence intervals as K moves away from zero and (ii) for all values of K, provide

95% coverage. As Figure 2 shows, when we run the existing MR methods, none of them achieve
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Figure 2: Coverage probability under different IV strength. The left panel sets the true causal effect β to
be 0.5 and the right panel sets β to be 1.5.

these two goals. At K = 0, they always produce bounded confidence intervals, even though there is

no way to identify the exposure effect from data. Specifically, when K = 0, β = 0.5, the confidence

interval given by Weighted median, IVW, MR-Egger and MR-RAPS are (-0.624, 0.321), (-0.411,

0.265), (-0.527, 0.624), and (-0.460, 0.020), respectively. They are bounded and only the confidence

interval generated from MR-Egger covers the true effect β = 0.5. But TmrAR, TmrK, TmrCLR produce

unbounded confidence intervals. We observe a similar phenomena when K = 0 and β = 1.5: the

confidence intervals generated from Weighted median, IVW, MR-Egger and MR-RAPS are (-0.385,

0.547), (-0.312, 0.330), (-0.826, 0.317), and (-0.575, 0.942), respectively. All of them are bounded

and fail to cover the true causal effect, but our tests produce unbounded confidence intervals. Also,

when K is near zero so that the IV-exposure is sufficiently weak, all methods except MR-RAPS

fail to achieve 95% coverage. In contrast, our tests always satisfy the two criterions (i) and (ii).

They automatically produce infinite confidence intervals when K = 0 to alert the researcher about

lack of identification and produce bounded intervals as K moves away from zero. They also always

maintain 95% coverage for any value of K. In short, our proposed tests adapt to the data and

always produce honest intervals regardless of the underlying instrument strength.

5 Conclusion

In this paper, we propose weak-IV robust test statistics for two-sample summary data in MR. We

extend the existing AR, Kleibergen, and CLR tests in econometrics and show that it has the same

Type I error control under weak instrument asymptotics. The numerical results show that the

proposed tests, especially the mrCLR test, have better size control and power compared to current

methods when the instruments are weak. Additionally, when we stress-test different methods, our
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methods, especially the CLR test, adapts to the underlying instrument strength and provides valid

95% coverage. In practice, we recommend MR investigators use the mrCLR test to test exposure

effects as it provides valid confidence intervals regardless of IV strength. The code to implement

our tests is in the supplementary materials.
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