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Abstract 13 

MetroNome is a web-based visual data exploration platform which integrates de-identified 14 
genomic, transcriptomic, and phenotypic data sets. Users can define and compare cohorts 15 
constructed from  multimodal data and share the data and analyses with outside tools. MetroNome’s 16 
interactive visualization and analysis tools allow researchers to quickly form and explore novel 17 
hypotheses. The deidentified data is linked back to the source biosample inventories in multiple 18 
biobanks, enabling researchers to further investigate new ideas using the most relevant samples. 19 

Introduction 20 

Biomedical research is producing a wealth of genomic data, some of it public [1]; though much is 21 
restricted to various consortia or project team members.  The restrictions are often necessary to 22 
comply with consents and regulatory policies. Analyses of complex multimodal patient-derived 23 
data—such as genome sequencing, clinical and pathological measures, environmental factors, and 24 
imaging—enables questions to be explored that would otherwise not be possible. For example, how 25 
can the same chromatin remodeling genes be associated with autism, schizophrenia, bipolar 26 
disorder, congenital heart defects, and digestive tract issues?  To achieve adequate statistical power 27 
for genomic research discoveries, different types of data — from different studies and diseases — 28 
must be integrated while assuring regulatory compliance with patient confidentiality and data use 29 
policies [2, 3, 4, 6]. The associated tools should be openly available and usable by a wide audience 30 
with different levels of expertise in genomics and biostatistics, while still ensuring responsible use of 31 
the data. Existing applications make it possible to integrate GWAS results with other data to 32 
prioritize variants by phenotype [7] or browse available individual-level genotype and sequence data 33 
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associated with phenotypic features [8]. However, these tools generally lack the capability to then 34 
generate lists of samples and subjects matching genomic and phenotypic criteria of interest, enabling 35 
access to the underlying de-identified data and samples across multiple biorepositories.  36 

MetroNome comprises a web-based suite of interactive data visualization tools, enabling users to 37 
combine their own data with other relevant public datasets and explore the results via linked graphs 38 
and diagrams. The system leverages human visuospatial cognitive abilities to reveal patterns and find 39 
connections. Researchers can segregate results along multiple dimensions, such as tissue source, 40 
quality control measures, whether specific variants are present, or any combination of ranges and 41 
categories in phenotypic and demographic dimensions. This enables easy comparisons between user-42 
defined cohorts via the visualization modules. Normalized analyses, such as gene expression z-scores, 43 
are calculated in real time, based on the user’s search parameters, to allow side-by-side visual 44 
comparisons which highlight critical differences between groups, e.g., cases and controls. 45 

 46 

Background 47 

MetroNome derives from two thus far distinct paths in data exploration. Genomic visualization 48 
tools such as cBioPortal [14] provide domain-specific visualizations such as variant diagrams and the 49 
oncoprint visualization. An earlier and orthogonal stream of work was the development of 50 
commercial “OnLine Analytic Processing” (OLAP) tools, which date to the 1970’s but gained 51 
traction in the 1990’s with tools such as Cognos (now IBM) [ www.ibm.com/Cognos/Analytics ], and 52 
Business Objects (now SAP) [www.businessobjects.com/ ]. These tools enabled multi-dimensional 53 
analysis of data, and dynamic filtering of commercial data along individual dimensions – although 54 
they were primarily tabular, not graphic. The second generation of OLAP, led by Tableau [ 55 
www.tableau.com]  introduced graphics and dashboards. Dashboards provide multiple visualizations 56 
on the same screen and the ability to filter on any one frame and propagate that filter to all other 57 
frames on the dashboard. This dynamic queries technique initially arose as an alternative to SQL for 58 
querying databases [5].  MetroNome unites these two directions: scientific and statistical 59 
visualizations, combined with dynamic filtering and filter propagation.   60 

Exploration of synthetic cohorts via multi-modal interactive data visualization 61 

 MetroNome presents genomic and transcriptomic data in the context of phenotypic attributes, 62 
relying on customized linked visualizations to enable exploration.  63 

Creating synthetic cohorts 64 
We allow the user to combine and display data from multiple sources, based on phenotypic or 65 

genotypic traits and user access rights to those datasets. We provide access to publicly available 66 
reference datasets, such as 1000 genomes [12] and TCGA tumor data [13] for use as comparators. To 67 
perform an analysis, the user starts by creating a query that selects data from one or multiple 68 
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sources. MetroNome’s query page presents a series of dynamically linked drop-down menus that can 69 
be combined into rules for selecting subjects. Rules for subject and sample criteria can include filters 70 
for any information available in the datasets that the user has selected for inclusion. Genomic rules 71 
can include the presence of variants in a list of genes or in a genomic region. Variants can be filtered 72 
by their predicted protein-coding impact as calculated by SnpEff [9], or their association with 73 
disease as recorded in ClinVar [10]. The search produces lists of subjects, samples, and variants that 74 
match the selected rules. 75 

Multi-modal visualization and refinement of cohorts 76 
The query results display multiple types of data simultaneously in linked panels, such as whole 77 
genome or exome variants, RNA expression, copy number variations, structural variants, and 78 
phenotypic data, to facilitate visual exploration of associations among different data types. The 79 
visualization controls enable users to refine queries in an intuitive and dynamic fashion while 80 
exploring relationships in the data. Researchers can alter results along multiple search dimensions—81 
for subject, sample, and genomic criteria — without rerunning their query — by refining the 82 
visualizations to samples with specific variants, or combinations of ranges and categories in 83 
phenotypic and demographic dimensions. As the user changes the extent of any one category, that 84 
change is projected to all other displayed data. 85 

Scientists can use their intuition to generate hypotheses, then quickly look for initial 86 
confirmation, and readily refine the direction of their search to pursue a suspected causal effect. The 87 
resulting synthetic cohorts resolve to a set of individual subjects and samples, and the contents of 88 
that set can be extracted for further analysis. A frequent current use case comes from our 89 
collaboration with the Target ALS Multicenter Human Postmortem Tissue Core [11]: ALS 90 
researchers can identify decedent biosamples of specific interest to their research using 91 
MetroNome’s data exploration capabilities, and then work with Target ALS Core directors to 92 
rapidly obtain the specific blinded sample sets culled from multiple academic centers necessary for 93 
rigorous follow-up experiments.   94 

 95 

Comparison of cohorts 96 
We provide the ability to view two cohorts side-by-side, to allow comparisons of traits that might 97 

influence results and warrant further study. Visually comparing datasets is one way to determine 98 
whether given cohorts are of interest, and whether specific dynamic filters better isolate features of 99 
interest. Cohort-normalized values, such as gene expression z-scores, are recalculated on the fly, 100 
based on the user’s search parameters, to accurately represent critical differences between groups, 101 
e.g., cases and controls.  102 

 103 

Example use case 104 
To illustrate the utility of MetroNome, we can use examples from ALS research: Figure 1 is a 105 

comparison between patients with (left) and without (right) C9ORF72 repeat expansions, showing 106 
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gene expression patterns for the gene FIG4. The neuro axis diagrams present clear differences 107 
between the two groups in the primary motor cortex and, for the cohort with repeat expansions 108 
(left), the motor cortex vs. occipital cortex, an uninvolved region. In the relationship diagrams, this 109 
cohort is also marked by shorter duration of the disease.  110 

 111 
Figure 2 shows a query for samples with variants in the gene PFN1, requested by a researcher who 112 

had seen white matter abnormalities in mouse spinal cords. The neuro axis diagram clearly shows 113 
higher PFN1 expression in the spinal cord, and particularly in the thoracic spinal cord, which is 114 
interesting because the thoracic cord has a higher proportion of white matter compared to cervical 115 
and lumbar. In addition, the RNA heatmap indicates that there are a couple of specific samples with 116 

Figure 1: Comparison of cohorts with C9ORF72 repeat expansions (left) and without (right), showing gene expression 
patterns for the gene FIG4 in an anotomogram (top), and variants (bottom).  
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very high cortical PFN1 expression. These specific decedent tissues and slides can be selected for 117 
further benchtop experiments, and correlation with phenotypic information.  118 

 119 

 120 
 121 
These types of searches can be performed instantly and without the need for prior bioinformatics 122 

training. Lists of subjects, samples, and variants can be downloaded for further analysis and used to 123 
identify and request tissues/biofluids/slides meeting specific criteria (such as gene expression 124 
patterns, QC measures, or specific variants) from participating biorepositories for further benchtop 125 
experimentation. 126 

Figure 2:  a query for samples with variants in the gene PFN1. The neuro axis diagram (top) clearly shows higher 
PFN1 expression in the spinal cord, and particularly in the thoracic spinal cord. The RNA heatmap (bottom), besides 
showing generally higher expression in the spinal cord samples, reveals a couple of samples with very high cortical levels.  
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Infrastructure to support cross-study dynamic visualization 127 

In addition to the visualization tools themselves, a great deal of data infrastructure is needed to 128 
realize the outlined goals.  These infrastructure tools center on integrating data with available 129 
standards and with other data across multiple studies. We outline here three areas we have found 130 
necessary to address:   131 

• Data harmonization: We harmonize data where possible, which is currently a manual process. 132 
Fields with different names in different datasets must be changed to the same standard names in 133 
each. The values of those fields must be converted to the same vocabulary, the same numeric 134 
ranges, and the same units. Values that are in reference to a specified or assumed range, such as 135 
values from some laboratory tests that have varying ranges by instrument used, must be recorded 136 
along with the reference range.  Missing values must be handled, whenever possible, without 137 
discarding the entire record.   138 

• Use of metadata and provenance: the data needed for analyzing results for a single study are 139 
often insufficient for integrating that data with information from other sources. Where the 140 
metadata and provenance data exist, we use such information to more accurately present 141 
combined data. We flag uncertainties to minimize misleading results.  142 

• Reference data: to enable as much data integration as possible, we maintain significant types 143 
of reference data, including target sets for standard exome kits. ClinVar [clinvar.org] 144 
annotations are used to filter for pathogenic variants. Ensembl transcript-level and protein 145 
domain annotations provide information on protein-coding impact and high-impact variants, 146 
when disease significance is still unknown. 1,000 Genomes and TCGA somatic data are 147 
maintained, primarily as sources of additional data for sparse datasets. These reference data are 148 
used for comparisons, for interpretation of metadata, and for annotation of the synthesized 149 
cohorts generated in MetroNome. Note that full data integration to enable further analysis is a 150 
much more extensive problem that we have yet to address. Our work here is focused on enabling 151 
integrated and comparative visualizations.  152 

Privacy and security 153 

Privacy and security are major concerns when we are supporting limited-access datasets. 154 
Authorization to access a particular dataset is determined by the owner of that dataset. The NYGC 155 
Data Privacy Committee must review the owner’s approval before access is granted within 156 
MetroNome. While this is a somewhat burdensome process, we feel it necessary to ensure that we 157 
can host private data without risk of unintentional disclosure. If a user is approved for access, they 158 
can grant members of their lab further access without review.  This last case happens most often 159 
when a user is part of a consortium, and the official owner of the data is their institution. The one 160 
exception to that rule is that we allow users to upload any dataset to which they already have access, 161 
limited to personal access only, and combine it with other MetroNome datasets they can access. 162 
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The MetroNome backend adds a clause to every database query to restrict the query to the set of 163 
samples to which the user has access.  Currently, users can access public data without logging in. If 164 
they do so, the backend defaults to the “public” user, with associated access rights, and limits all 165 
queries to public data only.  Thus, no query or request can bypass the front end and avoid the 166 
privacy checks.    167 

The MetroNome front-end runs in an isolated subnet, accessible from outside the firewall.  The 168 
database and middle tier run behind the firewall, and all data thus resides internally.  There is a 169 
single connection through that firewall, restricted to a single machine address.  Authentication is 170 
performed for each connection established.  171 

Technical implementation 172 

Architecture and technologies used 173 
MetroNome is built on a column-oriented database, Vertica, that holds all data (variants, gene 174 
expression, phenotypic, demographic, and sample-related data). An application server, written in 175 
Java, processes requests to the database and prepares results for display in the UI. The frontend is 176 
written in JavaScript, using the React framework and D3 visualization library, and is hosted in a 177 
TomCat web server. 178 

System requirements 179 
The system is designed to operate on Linux virtual machine nodes running CentOS 7 and can be 180 

scaled to meet demands. The current database, Vertica, requires a cluster of dedicated nodes with 181 
matching specifications for best operation; that is, each node of the cluster should be similar in 182 
CPU, clock speed, number of cores, memory, and operating system version. 183 

Source code and availability 184 
The source code is currently being converted to open source and will be made available on 185 

GitHub: https://github.com/nygenome/metronome. 186 
The MetroNome installation hosted at the New York Genome Center is publicly available at 187 

https://metronome.nygenome.org 188 

Current use: Target ALS 189 

The Target ALS Resource Cores were conceived to accelerate ALS therapy development by 190 
providing the necessary highly curated biosamples and data resources broadly and rapidly to the 191 
entire ALS research community. Given the numerous failures in translating laboratory results into 192 
clinically effective therapies, a crucial aim was to address the substantial unmet need for high quality 193 
patient-derived biosamples – such as brain, spinal cord, and muscle tissue samples from patients who 194 
died from ALS and controls, and biofluids and stem-cell lines collected during disease progression.   195 

We perform centralized Whole Genome Sequencing (WGS), and RNA-Seq for multiple central 196 
nervous system regions at the New York Genome Center on every autopsy performed at one of the 197 
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academic centers comprising the federated Target ALS Postmortem Tissue Core. After passing QC, 198 
the clinically annotated genomic and transcriptomic data is ingested into MetroNome and remains 199 
linked to the tissue samples and de-identified metadata via Global Unique Identifiers (GUIDs). The 200 
WGS and RNA-Seq raw data files (in multiple formats) are also made immediately available without 201 
embargo or IP concerns – via an online form and established data transfer workflow. 202 

MetroNome enables researchers with very little background in genetic analysis to access the data 203 
set in a meaningful way, with relevance to their personal research interests. When researchers are 204 
interested in a specific pathway or target, they can use MetroNome to search for cases with specific 205 
mutations or variants, explore new hypotheses by comparing different cohorts defined by anatomical 206 
regions or subject groups, and then directly request tissue samples from those cases. For virtually 207 
every research project utilizing human biosamples, MetroNome can be used to refine slide and 208 
sample sets, and direct further analysis. As examples, MetroNome  209 
can be used to  210 

• identify relevant tissue samples or slides for further benchtop experiments; 211 
• find variants or RNA expression changes in specific targets; 212 
• provide “clean controls” that do not possess mutations or unknown variants; 213 
• compare spatial expression patterns with published imaging biomarker data meant to 214 

quantify relevant pathways; 215 
• examine whether gene expression patterns are consistent with activation of pathways 216 

modulated by potential new drug candidates; 217 
• identify whether specific patient subgroups display gene signatures that might inform 218 

patient selection for clinical trials (Figure 3); 219 
• segregate patients based on spatial gene expression patterns and correlate with fast/slow 220 

progressors, site of onset, or specific neuropathological metadata; 221 
• design further collaborative analysis of the genetic raw data and samples, such as whether 222 

subject groups with distinct genetic patterns might correlate with biomarker profiles in 223 
fluids or peripheral tissues.  224 

 225 
The MetroNome visual data exploration platform has proven critical to the continued success, 226 
expansion, and evolution of the Target ALS Postmortem Core and associated efforts. It has 227 
supported over 100 different academic and industry labs, facilitating more than 135 different ALS 228 
research projects in 16 countries across 4 continents. This often includes multiple different projects 229 
in each lab. MetroNome has become part of a scientific ecosystem that includes clinics, research 230 
labs, and industry. 231 

General use 232 

MetroNome is unbiased towards specific disease areas and can accommodate genomic and 233 
phenotypic data from any study. Figure 3 shows an example from an esophageal cancer study, 234 
indicating presence of single-nucleotide variants, copy number variations, and structural variations 235 
for a matrix of genes and samples. 236 
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 237 

Future work 238 

New releases will include some additional critical features:  239 

• Download images from our visualizations, along with the metadata about the cohort 240 
being used and the filters applied.  241 

• Automate the process for users to upload their own datasets, visible only to them.   242 

• Improve reproducibility: users will be able to save queries, to rerun them in a later 243 
session, or share them with other users. The ability to save results, and access them later, 244 
should underlying data change in the interim, is planned.  Finally, tracking the steps a 245 
user executes in a session, displaying that history and allowing a user to return to a 246 
previous state is a feature we believe to be very useful in this context. 247 

• Add support and visualizations for new data types, such as repeat expansions and splice 248 
junctions. We expect the types of data to expand continually.  249 

• Automate harmonization using HPO terms [15]. 250 

• Pedigree relationships, including flagging filtered de novo or recessive homozygous 251 
variants in the probands.  Our structure allows subjects to be considered probands in one 252 
study and relatives in others.  253 

Figure 3: Sortable gene/sample matrix for genes from the Cancer Gene Census, shown in rows; columns represent 
samples. The grey callout shows details for one gene in one sample. Single-nucleotide variants are identified as high or 
moderate impact. Copy number changes and structural variants are identified by special glyphs and colors. Sorted by 
default to show genes and samples with the most impactful variants, this matrix can be used to select samples and genes 
(yellow area), e.g., to create a synthetic cohort prioritizing highly mutated samples. 
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• To aid evaluation of results, we want to integrate statistical analysis tools.  We may link 254 
out to R, to BioConductor tools [www.bioconductor.org], or to tools such as DeepSea 255 
[16]. 256 

• APIs to allow MetroNome to exchange both data and compute with other repositories.  257 
These APIs are essential to users who wish to use the MetroNome resources with their 258 
automated analyses, rather than through our visualization interface.  259 

• Develop user interfaces for longitudinal data 260 

Summary 261 

Synthesizing cohorts by integrating data from multiple studies presents numerous challenges.  262 
Providing this functionality as part of an interactive phenotype-genotype visualization platform 263 
enables data integration as a fundamental part of the platform. Not only does this approach enhance 264 
integrated multi-modal analysis, it provides a framework that reduces the work each researcher must 265 
perform to obtain a clean cohort that meets their research needs.  Using this visual data integration 266 
platform to generate and explore hypotheses is a further important contribution, with the potential 267 
to accelerate the work of scientists anywhere by eliminating the bioinformatics bottleneck during 268 
genesis of ideas. Researchers can then follow up only the best leads with their computational colleagues 269 
for thorough analysis. 270 
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