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ABSTRACT 

Covalent inhibitors of the KRASG12C oncoprotein have recently been developed and are 

being evaluated in clinical trials. Resistance to targeted therapies is common and likely 

to limit long-term efficacy of KRAS inhibitors (KRASi). To identify pathways of 

adaptation to KRASi and to predict drug combinations that circumvent resistance, we 

used a mass spectrometry-based quantitative temporal proteomics and bioinformatics 

workflow to profile the temporal proteomic response to KRASG12C inhibition in 

pancreatic and lung cancer 2D and 3D cellular models. We quantified 10,805 proteins 

across our datasets, representing the most comprehensive KRASi proteomics effort to 

date. Our data reveal common mechanisms of acute and long-term response between 

KRASG12C-driven tumors. To facilitate discovery in the cancer biology community, we 

generated an interactive ‘KRASi proteome’ website 

(https://manciaslab.shinyapps.io/KRASi/). Based on these proteomic data, we 

identified potent combinations of KRASi with PI3K, HSP90, CDK4/6, and SHP2 

inhibitors, in some instances converting a cytostatic response to KRASi monotherapy 

to a cytotoxic response to combination treatment. Overall, using our quantitative 

temporal proteomics-bioinformatics platform, we have comprehensively characterized 

the proteomic adaptations to KRASi and identified combinatorial regimens to induce 

cytotoxicity with potential therapeutic utility.  

 

Keywords: KRASG12C, therapeutic resistance, pancreatic cancer, lung cancer, 

quantitative temporal proteomics, mass spectrometry 
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INTRODUCTION 

 KRAS is the most frequently mutated oncogene in tumors with 20% of all solid 

tumors containing oncogenic KRAS mutations (Singh et al., 2009) that drive 

tumorigenesis and tumor maintenance (Cox et al., 2014; Kimmelman, 2015). Chief 

among these tumors are non-small cell lung cancer (NSCLC) and pancreatic ductal 

adenocarcinoma (PDAC). Patients with these tumors have dismal survival rates and 

few available effective therapies; therefore, targeting oncogenic KRAS is a major 

priority for these patients and the clinicians that treat them. Until recently, efforts to 

pharmacologically target mutant KRAS directly have been unsuccessful, suggesting 

that oncogenic KRAS is “undruggable.” However, development of clinical grade 

KRASG12C inhibitors has now ushered in a new era of clinical trials testing the efficacy 

of direct pharmacologic inhibition of KRASG12C in patients with tumors harboring 

oncogenic KRASG12C driver mutations with early promising anti-tumor activity 

reported in Phase I trials (NCT03600883) (Fakih et al., 2019). A critical lesson from 

prior clinical experience targeting driver oncoproteins, such as HER2, EGFR, and 

BRAF, is the development of therapeutic drug resistance that limits efficacy 

(Piotrowska et al., 2015; Takezawa et al., 2012). Drug resistance to targeted therapy 

can be multifactorial and heterogenous between patients with the same tumor type and 

between different tumor types driven by the same oncogene (Konieczkowski et al., 

2018). 

Identifying mechanisms of drug resistance is a challenge with no one method 

capable of identifying mutational adaptations or non-mutational adaptations, such as 

alterations in protein levels, signaling pathways, or metabolic changes, that can all drive 

cancer cell survival despite inhibition of the main oncogenic driver protein. Successful 

identification of mechanisms of drug resistance in patients or in pre-clinical studies has 
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led to the development of useful strategies to prevent or circumvent resistance, such as 

next-generation targeted inhibitors that mitigate development of resistance or 

combination therapy that circumvents resistance (Bryant et al., 2019; Janne et al., 2015). 

Initial efforts at defining resistance to KRAS inhibition and identifying synthetic lethal 

interactions specific to oncogenic KRAS-driven cancers relied on models using genetic 

ablation of oncogenic KRAS, a situation distinct from pharmacological inhibition. For 

example, several genetic ablation studies have described how KRAS targeting leads to 

compensatory mechanisms (Chen et al., 2018; Kapoor et al., 2014; Muzumdar et al., 

2017; Santana-Codina et al., 2018; Viale et al., 2014; Ying et al., 2012). More recent 

efforts with pharmacologic KRASG12C inhibitors have included targeted investigation 

of specific collateral signaling pathways (Lito et al., 2016; Misale et al., 2018) and 

genome-wide combination KRASi with CRISPR/Cas9 screens to identify collateral 

dependencies (Lou et al., 2019).  

Our recent effort using multiplexed mass spectrometry-based quantitative 

proteomics to identify and target resistance to glutaminase inhibition (GLSi) in PDAC 

(Biancur et al., 2017) suggests an additional method for investigating the collateral 

dependencies or adaptations to pharmacologic KRASG12C inhibition. Using this 

approach, we identified enriched pathways and targeted these pathways in combination 

with GLSi demonstrating an effective combinatorial approach with GLSi and 

glutathione metabolism inhibition with buthionine sulfoximine (Biancur et al., 2017). 

The potential advantage of this proteomics-first approach to investigate mechanisms of 

resistance is the identification of specific upregulated proteins or pathways based on 

direct measurement of the levels of proteins, which are the ultimate target of most 

therapeutic agents. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 14, 2019. ; https://doi.org/10.1101/769703doi: bioRxiv preprint 

https://doi.org/10.1101/769703
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
	

Here, we applied our mass spectrometry-based quantitative proteomics to 

profile the temporal proteomic response to KRASG12C inhibition in cellular models of 

KRASG12C-driven PDAC and NSCLC with the ultimate goal of leveraging these results 

to identify useful combinatorial approaches that prevent or circumvent resistance. We 

identified and quantified 10,805 proteins across our proteomic datasets allowing us to 

gain a comprehensive understanding of the global proteomic response to KRASi. Based 

on these KRASi proteomic signatures, we identified candidate combination therapies 

to further inhibit pathways supported by KRAS or combination therapies to counteract 

compensatory survival pathways. We identified multiple combination therapies that 

prevented re-establishment of proliferation seen in long-term KRASi and in some 

instances converted cytostatic responses to cytotoxicity.  

Our work establishes a proteomic and bioinformatic workflow for identifying 

the proteomic adaptations to oncoprotein inhibition that can be targeted to improve 

therapeutic efficacy (Figure 1A). Finally, our temporal KRASi proteomic datasets 

constitute a significant new resource for the community of scientists studying 

oncogenic KRAS biology. We termed this resource the ‘KRASi proteome’ and 

developed an interactive website to aid in the exploration and discovery of new 

oncogenic KRAS biology (https://manciaslab.shinyapps.io/KRASi/).  

 

Experimental Methods 

Full details of experimentation are provided in the Supplemental Experimental 

Procedures. 
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Cell Culture. Cell lines were carefully maintained in a centralized cell bank, and 

routinely inspected for mycoplasma contamination using PCR. All cell lines were 

maintained at 37°C with 5% CO2 and grown in DMEM (Invitrogen 11965) or RPMI 

1640 (Invitrogen 11875), supplemented with 10% Fetal Bovine Serum (FBS) and 1% 

Penicillin/Streptomycin. Cells were grown on standard tissue culture plates for 2D 

culture or on ultra-low attachment plates for 3D culture. 

Cell Proliferation Assay. Cells were plated at 3000-5000 cells per well in 24-well 

plates. Cells were treated as indicated, fixed with 10% formalin, and stained with 0.1% 

crystal violet. Dye was extracted with 10% acetic acid, and relative proliferation was 

determined by measuring OD at 595nm.  

IC50 Assay. Cells were plated in 96-well plates at 2000 cells per well and treated with 

the indicated compounds. Cell viability was measured after 72 hours, using Cell-Titer 

Glo (Promega, G7570) assay.  

Cell death assay. Cells were plated, treated for 72 h with the indicated compounds, 

stained with Annexin-FITC and propidium iodide (PI) (BD Biosciences 556547), and 

analyzed using a Beckman Coulter Cytoflex.  

Western Blot Analysis. Cells were lysed in RIPA buffer. 30-50 µg of protein was 

resolved on 4-12% SDS-PAGE gels (Thermo Fisher, NP0322) and transferred to 

polyvinylidene difluoride (PVDF) membranes (Bio-Rad). Membranes were incubated 

with primary antibodies overnight at 4°C followed by incubation with peroxidase-

conjugated secondary antibody. Antibodies used are listed in the Supplemental 

Experimental Procedures.  
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Metabolomics. Steady state metabolomics experiments were performed as previously 

described (Son et al., 2013; Sousa et al., 2016).  

Quantitative Proteomics. Mass spectrometry-based quantitative proteomics were 

performed as previously described (Biancur et al., 2017; Paulo et al., 2017). Briefly, 50 

µg of digested peptides from each sample were labelled with TMT reagent (100 µg) 

and combined at a 1:1:1:1:1:1:1:1:1:1:1 ratio. Data were obtained using an Orbitrap 

Fusion Lumos mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) 

coupled with a Proxeon EASY-nLC 1200 LC pump (Thermo Fisher Scientific). Mass 

spectra were processed using a Sequest-based-in-house software pipeline as described 

previously (Paulo et al., 2015).  

Bioinformatic Analysis. Quantitative proteomics data was analyzed with the LIMMA 

software package (3.40.2) (Ritchie et al., 2015) in R. Pairwise comparisons were 

performed among experimental conditions, and p values were adjusted through the 

Benjamini-Hochberg method, which is referred to as false discovery rate (FDR). Gene 

set enrichment analysis (GSEA) of each comparison was performed with Broad GSEA 

software (3.0) (Subramanian et al., 2005) using the collection containing all canonical 

pathways (c2.cp.v6.2.symbols.gmt) in MSigDB for pathway annotation. Cytoscape 

3.7.0 software was used to generate Enrichment maps. To retrieve compound inhibitors 

with similar expression signatures, the top 150 up- and down-regulated proteins were 

selected and queried against the L1000 gene expression database in Connectivity Map 

(CMap) 2.0 (Subramanian et al., 2017). Meta-analysis of pathways and protein-protein 

interaction (PPI) enrichments were performed using Metascape (Zhou et al., 2019).  

Chemicals. ARS-1620 (Chemgood, C-1454), Compound 4 (Zeng et al., 2017), 17-

AAG (Cayman chemicals 75747-14-7), GDC-0941 (Selleckchem, S1065), (PF 
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2341066 (crizotinib, Cayman chemicals, 877399-52-5), Erlotinib hydrochloride 

(Cayman chemicals, 183321-74-6), CINK4 (CDK4/6 inhibitor, Cayman chemicals, 

359886-84-3), SHP099 hydrochloride (SHP2i, Selleckchem, S8278), CHIR-99021 

(GSK3α/βi, Selleckchem S1263).  

Statistics. All data except the proteomics (analysis described above) was analyzed 

using GraphPad PRISM software. No statistical methods were used to predetermine 

sample size. For comparison between two groups, Student’s t-test (unpaired, two-

tailed) was performed for all experiments. The level of statistical significance was 

declared at 0.05 for all analyses.  

 

RESULTS 

Defining mechanisms of adaptation to KRASi in PDAC by quantitative 

proteomics 

To elucidate mechanisms of adaptation to pharmacologic KRASi, we initially 

tested the sensitivity of a KRASG12C mutant pancreatic ductal adenocarcinoma (PDAC) 

cell line (MiaPaCa-2) to two compounds that selectively target KRASG12C: ARS-1620 

(Janes et al., 2018; Misale et al., 2018) and ‘Compound 4’ (Zeng et al., 2017). IC50 

measurements (Figure 1B) were in the range of previous studies of this cell line with 

ARS-1620 (Janes et al., 2018). Both KRASi compounds significantly reduced growth 

of MiaPaCa-2 cells (Figure 1C), although cells treated with IC50 doses were able to re-

establish proliferation at later time points (7 days). KRAS mediates activation of several 

downstream pathways, with the MAPK pathway being the main mediator of its 

tumorigenic effects in PDAC (Collisson et al., 2012; Santana-Codina et al., 2018; Ying 
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et al., 2012). To confirm efficient block of KRAS activity, we assessed MAPK and 

PI3K pathways by western blot (Figure 1D). KRASi induced an upward electrophoretic 

shift in the KRAS band as a consequence of covalent binding of the inhibitor to KRAS 

(Zeng et al., 2017), confirming target engagement. ERK1/2 phosphorylation 

(Thr202/Tyr204) was decreased, consistent with downregulation of the MAPK 

pathway (Figure 1D). We noted a progressive increase in AKT phosphorylation with 

long-term KRASi suggesting compensatory activation of the PI3K pathway (Figure 

1D) (Alagesan et al., 2015; Muzumdar et al., 2017; Santana-Codina et al., 2018).  

To define the global proteomic response to KRASi, we used multiplexed 

isobaric tag-based quantitative mass spectrometry (Biancur et al., 2017; McAlister 

et al., 2014). We compared proteomic changes induced by KRASi in MiaPaCa-2 

cells at 1 h, 4 h, 24 h, 72 h, 7 days, and 8 weeks (Figure 1E-F, Figure S1A, Table 

S1). The magnitude of changes at 1 h and 4 h were less pronounced than those 

observed at 24 h and longer time points, likely related to the lag in alterations in 

protein expression after mRNA level changes (Figure 1E, Figure S1A). Indeed, 

Principal Component Analysis (Figure 1G) showed a shift in PC1 and PC2 

components in late (72 h, 7 days, 8 weeks) versus early (1 h, 4 h) time points. Among 

the most downregulated proteins at the 24 h time point, we found proteins related to 

cell cycle and DNA repair (CDC20, CCNB1, EXO1) (Figure 1E). Upregulated 

proteins included those related to adhesion at 24 h (TJP3, CDH10) and 7 days 

(COL1A1, COL1A2, COL5A1) (Figure 1F).  

To gain a more comprehensive understanding of the pathways altered in 

response to acute versus long-term KRASi, we performed Gene Set Enrichment 

Analysis (GSEA) on proteomes from KRASi-treated cells at 24 h (acute) and 7 days 

(long-term) (Figure 1H-J, Table S2). Enrichment map nodes associated with 
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upregulated proteins at 24 h included TCA cycle/pyruvate metabolism, fatty 

acid/lipid and amino acid metabolism as well as lysosomal processes (Figure 1H). 

These results are consistent with studies in genetically KRAS-ablated cells that 

demonstrated a compensatory metabolic response consisting of upregulated 

oxidative phosphorylation, autophagy, and lipid metabolism (Viale et al., 2014). 

Enrichment map nodes associated with downregulated proteins included cell cycle 

and translation/transcription pathways consistent with a decrease in proliferation 

(Figure 1H). To identify if deeper inhibition of oncogenic KRAS altered the 

landscape of proteomic changes, we analyzed the proteome after KRASi at an IC90 

dose level. In addition to pathways identified at the IC50 dose level, we identified 

downregulation in DNA damage associated pathways and upregulation of interferon 

signaling pathways and extracellular matrix (ECM) associated pathways (Figure 

S1B).  

Several of the biological processes upregulated at 24 h were consistently 

activated at 7 days including TCA cycle, amino acid and lipid metabolism (Figure 

1I). Interestingly, long-term KRASi induced down-regulation of mTOR signaling 

(Figure 1I) and upregulation of terms associated with lysosomal processes, 

consistent with recent evidence demonstrating ERK inhibition in PDAC activates 

autophagy thereby identifying a therapeutically useful combination of ERK 

inhibition and lysosome inhibition with hydroxychloroquine (Bryant et al., 2019). 

Notably, cell cycle pathways were no longer downregulated in the long-term, which 

aligns with reactivation of proliferation (Figure 1I). Comparative GSEA analysis of 

KRASi proteomes at 7 days versus 24 h to identify pathways reversed with long-

term inhibition compared to acute inhibition revealed relative upregulation of cell 

cycle, transcription and DNA repair pathways together with downregulation of stress 
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response signaling pathways (Figure 1J). GSEA of the 8-week KRASi proteome 

identified upregulation of ECM pathways, fatty acid metabolism and oxidative 

phosphorylation (oxphos) and a decrease in glucose metabolism, translation, protein-

folding and the PI3K-mTOR pathway (Figure S1C).  

Next, we selected the 15 top up and downregulated pathways at 24 h and 7 

days and analyzed their temporal response (Figure S1D-H). Among the most 

downregulated pathways at 24 h, we identified cell cycle and DNA repair which were 

reactivated at longer time-points (Figure S1D). Downregulated pathways at 7 days 

included RNA metabolism and translation as well as glucose and pentose phosphate 

metabolism or actin cytoskeleton (Figure S1E) which demonstrated a progressive 

downregulation over time. Among the upregulated pathways, TCA cycle, lipid and 

amino acid metabolism were upregulated at 24 h and maintained activation at 7 days 

(Figure S1F, G) while sphingolipid metabolism and ECM peaked at longer time-

points (Figure S1G). Finally, mTOR downregulation was inversely correlated with a 

temporal increase in lysosomal pathways (Bryant et al., 2019) (Figure S1H).  

Our results suggest that KRASi triggers a compensatory activation of several 

metabolic pathways. Indeed, oncogenic KRAS induces a metabolic reprogramming 

that consists of increased flux through glycolysis, the non-oxidative pentose 

phosphate pathway (PPP) and the hexosamine biosynthesis pathway (HBP) to 

support glycosylation and DNA synthesis (Santana-Codina et al., 2018; Ying et al., 

2012). To analyze the metabolic changes induced by KRASG12C inhibitors over time, 

we performed targeted liquid chromatography-tandem mass spectrometry (LC-

MS/MS) at 24 h, 72 h and 8 weeks after KRASi treatment. KRASi at 24 h revealed 

downregulation of glycolysis, non-oxidative PPP and nucleotide metabolism (Figure 

S2A-D), consistent with our previous studies (Santana-Codina et al., 2018; Ying et 
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al., 2012). Interestingly, despite ongoing KRASi treatment, at long-term time points 

these pathways were all reactivated (72 h and 8 weeks, Figure S2A-D), suggesting 

mechanisms to reengage the same metabolic dependencies in order to support 

proliferation.  

To assess phosphorylation-dependent signaling pathways after KRASi, we 

performed a global quantitative phosphoproteomic analysis identifying 21,048 

phospho-peptides (Table S3). KRASi induced minor differences in the 1 h and 4 h 

phosphoproteome (Figure S3A-B) but significant decreases in phosphorylated 

proteins after 24 h (Figure S3C-D). Substrates within the KRAS pathway (MAPK1, 

BRAF) were downregulated as early as 4 h consistent with repressed activation of 

the pathway. Likewise, FOSL1, a recently described downstream KRAS mediator 

that is preferentially phosphorylated and activated in KRAS mutant cells, showed a 

decrease in phosphorylation upon KRAS inhibition (Lou et al., 2019; Vallejo et al., 

2017). To identify the overall response pattern, we performed gene ontology (GO) 

enrichment analysis (biological processes) at 24 h, which revealed inhibition in DNA 

replication and cell cycle consistent with a cytostatic response (Figure S3E-F). To 

understand if differences in phosphorylation were driven only by translational 

changes, we selected the top up and downregulated phospho-peptides and 

normalized to protein expression filtering by relevance of phosphosite to cancer and 

therapeutic resistance (Figure S3G). Among the proteins that revealed decreased 

phosphorylation, we identified phosphosites that have been previously correlated 

with KRAS signaling in cell cycle checkpoint and DNA repair such as CDC20, RIF1, 

RB1, CLSCPN and EXO1 (Franco et al., 2016; Stuart et al., 2015) as well as more 

generally in lung and breast cancer (Kim et al., 2013; Schweppe et al., 2013; Yi et 

al., 2014). A small number of phospho-peptides were upregulated after KRASi such 
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as sites in adhesion molecules (TNS1, FAT4 and TJP3) (Britton et al., 2014; Mertins 

et al., 2014), cell cycle repressors (CDKN1B), immune regulators (TRAFD1), and 

mitochondrial components (NDUFAF3) (Figure S3C, G). Overall, the 

phosphoproteomics data were in accordance with pathways identified in the global 

proteomic profile and correlated with a decrease in KRAS signaling that 

downregulates cell cycle and increases adhesion molecules (Chen et al., 2018). 

Together, this work serves as the most comprehensive quantitative temporal 

proteomic evaluation of KRASi. Our data align with prior targeted studies of KRAS 

dependencies thereby highlighting the relevance of our dataset for further analysis 

as demonstrated below and for the KRAS research community. To extend our 

observations and identify commonalities in KRASi across tumor types, we 

subsequently profiled KRASG12C driven lung cancer cell lines. 

 

Defining mechanisms of adaptation to KRASi in NSCLC by quantitative 

proteomics 

 As KRASG12C is the mutant genotype in 44% of all KRAS mutant NSCLC 

tumors (Cox et al., 2014), we analyzed proteomic adaptations to KRASi in a 

KRASG12C lung cancer cell line, H358 (Figure 2A-B). We confirmed target 

engagement by upward mobility shift in KRAS on immunoblot (Figure 2C) and 

pathway block by decreased MAPK signaling at acute time points (24 h). Notably, 

pERK levels partially recovered at 72 h and 7 day timepoints (Figure 2C) and there 

were no major differences observed in pAKT activation (Figure 2C).  
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Next, we performed quantitative KRASi proteomic analysis at acute (24 h) 

and long-term (7 days) time points (Figure 2D-E). GSEA identified similar pathway 

alterations to those identified in MiaPaCa-2 cells, including upregulation of fatty 

acid metabolism (24 h, Figure 2F, Table S4) and oxidative phosphorylation (7 days, 

Figure 2G) and downregulation of cell cycle and mRNA processing. Comparative 

GSEA of KRASi treated cells at 7 days versus 24 h revealed a relative increase in 

cell cycle, mRNA metabolism and DNA repair consistent with reactivation of 

proliferation. Furthermore, the MAPK signaling pathway was upregulated (Figure 

2H).  

To identify the overlap between MiaPaCa-2 and H358 datasets, we performed 

a pathway and protein-protein interaction (PPI) enrichment and clustering analysis 

using the top 300 upregulated proteins at 24 h and 7 days time points using 

Metascape (Tripathi et al., 2015). Despite minimal specific protein overlap at 24 h 

(Figure 3A) and 7 days (Figure 3D) between the two cell lines, we observed 

considerable overlap in the GO terms associated with altered protein expression, 

suggesting a convergence of pathways in the set of upregulated proteins. Analysis of 

overlapping functions between cell lines at acute timepoints (24 h) included 

pathways like metabolism (pentose phosphate and lipid metabolism), cytokine 

signaling and activation of the PI3K/AKT signaling pathway (Figure 3B-C), while 

long-term adaptation was associated with alterations in antigen presentation, 

response to oxidative stress, and lysosomal pathways (Figure 3E-F), in accordance 

with a general metabolic rewiring that likely involves autophagy and a shift toward 

mitochondrial metabolism. To identify PPI clusters at 24 h and 7 days, we applied 

the Molecular Complex Detection algorithm (MCODE, see Methods). We identified 

PPI clusters involved in signaling pathways including the RAS-MAPK and 
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PI3K/AKT pathways, glycolysis and PPP (Figure 3G) and PPIs associated with cell 

cycle and ECM in long-term KRASi (Figure 3H). The same analysis for the top 300 

downregulated proteins revealed pathways related to cell cycle, DNA repair and 

transcription as commonly decreased in the acute setting (data not shown).  

We were further interested in correlating our proteome data to recent large 

scale efforts identifying KRAS collateral dependencies in the context of 

pharmacologic KRASG12C inhibition. We compared our H358 KRASi proteome 

datasets (24 h and 7 days) to a recent CRISPR interference (CRISPRi) functional 

genomic screen with KRASi (Lou et al., 2019) (Figure S4A-B). While this analysis 

showed poor correlation between datasets on a gene by protein basis, likely given 

the differential biological and technical approaches used, overall, both analyses 

identified dependencies in pathways such as cell cycle, cytoskeleton/cell adhesion 

and lipid biosynthesis (Lou et al., 2019).  This suggests that proteome analysis and 

combination CRISPR/Cas9 screens can provide complementary outputs towards a 

similar goal of identifying compensatory pathways to target for effective 

combination therapy. To investigate the correlation between proteome and 

transcriptome alterations in response to pharmacologic KRASi, we compared 

MiaPaCa-2 and H358 datasets (KRASi 24 h) with transcriptome profiling in H358 

cells treated with KRASi for 24 h (Janes et al., 2018). We observed a positive 

correlation between these datasets as shown by clustering analysis and comparison 

of relevant GSEA hallmarks, including ERK signatures and KRAS dependency 

genes (Janes et al., 2018) (Figure S4C-D).  

Our H358 and MiaPaCa-2 proteomics data suggests there are shared 

proteomic responses to KRASi between different tumor types. To understand whether 

similarly cytostatic targeted agents produce a conserved proteomic signature, we 
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compared our MiaPaCa-2 KRASi proteomic datasets to a GLSi proteomics analysis 

performed in a different PDAC cellular model (Biancur et al., 2017). Comparative 

GSEA analysis revealed a number of shared proteomic responses (Figure S4E-H). 

Shared pathways associated with downregulated proteins at 24 h and 72 h included 

cell cycle and translation consistent with a cytostatic response. Furthermore, protein 

folding pathways were downregulated in both KRASi and GLSi proteomes 

consistent with upregulation of the endoplasmic reticulum (ER) stress pathways 

(Biancur et al., 2017; Genovese et al., 2017). Interestingly, fatty acid metabolism and 

TCA cycle were similarly upregulated at 72 h and long-term, suggesting that 

activation of oxidative pathways may be a common mechanism of response to 

cytostatic drugs. Proteins associated with lysosomal processes were upregulated at 

24 h and long-term, suggesting autophagy activation as a common response to acute 

and long-term inhibition with cytostatic drugs. Overall, these results suggest that 

drugs that induce cytostasis may induce shared mechanisms of proteomic adaptation. 

Therefore, targeting of these adaptive pathways may be an effective method to 

overcome resistance induced by any cytostatic drug. Indeed, several of the 

combination therapies explored below were also effective in combination with GLSi, 

e.g. ER stress induction (Biancur et al., 2017).  

 

Targeting adaptation to KRASi  

To further understand the functional response to KRASi and identify drug 

combinations that could bypass or mitigate KRASi resistance, we used the Connectivity 

Map (CMap version 2.0) (Subramanian et al., 2017) database which contains 

expression profiles in response to 19,811 compounds and 7,494 genetic perturbations 
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(Table S5). By identifying the compounds that induce a pattern of response positively 

or negatively correlated to the KRASi proteome, these compounds can be tested in 

combination with KRASi. The hypotheses are that 1) pushing cells further down a 

response pathway with a positively correlated compound may lead to cytotoxicity and 

2) reversing a proteomic adaptive response by treating with a compound negatively 

correlated with the KRASi proteome may reverse adaptation to induce cytotoxicity. 

This strategy has been successfully applied in the setting of GLSi (Biancur et al., 2017). 

We initially interrogated the MiaPaCa-2 KRASi proteome at 24 h and identified 30 

perturbagen classes that positively correlated (CMap > 90) (Figure 4A). Among these 

perturbagen classes, we found drugs that target downstream elements in the KRAS 

pathway, such as MEK and RAF inhibitors (Figure 4A). We also identified drugs that 

have been used in combination with KRASG12C inhibitors, such as PI3K inhibitors 

(Engelman et al., 2008; Misale et al., 2018) and those used with KRAS-MAPK pathway 

inhibitors, including HSP90 (Acquaviva et al., 2012), SRC (Rao et al., 2018), HDAC 

(Ischenko et al., 2015), IGF1 (Molina-Arcas et al., 2013), mTOR (Fritsche-Guenther et 

al., 2018), BRAF (Dietrich et al., 2018) and PDGFR/Kit inhibitors (Sahu et al., 2017) 

(Figure 4A). Connectivity Map analysis also revealed inhibitors of pathways identified 

by KRASi GSEA, such as cell cycle (CDKi, DNA synthesis inhibitor) and an inverse 

correlation with tubulin inhibitors, consistent with altered extracellular matrix noted on 

GSEA and an increased resistance to actin polymerization inhibitors in KRAS-pathway 

inhibited cells (Chen et al., 2018). Finally, we identified inhibitors with no prior KRASi 

GSEA association including VEGFR, EGFR, topoisomerase, ribonucleotide reductase 

and IMPDH pathway inhibition (Figure 4A). These data show that the proteomic profile 

of KRASG12C inhibition is similar to the profile of KRAS (WT/mutant)-MAPK 

signaling pathway inhibition and more broadly correlates with the profile of inhibitors 
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that can similarly induce cytostasis. Furthermore, several of these highly correlated 

compounds have been previously described as useful combinatorial approaches with 

KRAS pathway inhibition suggesting that our approach may identify further high 

priority combinations for evaluation.  

We also performed this combinatorial proteomic CMap analysis using the 7-

day KRASi proteome. Here, we identified a smaller number of positively correlated 

drugs, namely mTOR, PI3K and IGF1 inhibitors (Figure 4B). These results align with 

re-establishment of proliferative capacity but sustained inhibition of mTOR signaling 

demonstrated in GSEA analysis (Fig. 1I).  

To identify useful KRASi combination therapies, we evaluated combinations of 

KRASi with drugs identified in the CMap analysis in long-term proliferation assays. 

KRASG12C inhibitors in combination with PI3K inhibitors (GDC0941, Figure S5A) 

were able to inhibit growth long-term (Figure 4C), in agreement with previous studies 

(Misale et al., 2018; Muzumdar et al., 2017). Combination with a HSP90 inhibitor (17-

AAG) inhibited long-term proliferation (Figure 4D). 

In addition to the CMap analysis as a method for identifying combinatorial 

therapies, we examined upregulated proteins for those with FDA-approved drugs 

(DrugBank Version 5.1.4) and upregulated cell surface proteins for potential future 

target investigation (Table S6). Interestingly, in MiaPaCa-2 cells several upregulated 

druggable proteins were involved in pathways identified in GSEA such as signaling 

(MET, TGFBR1), lipid metabolism (LDLR) and autophagy (CLU) (Table S6). As the 

MET pathway is known to be increased in KRAS-mutant lung cancer after MAPK 

inhibition (Kim et al., 2016) and also after treatment with KRASi in our experiments 

(Figure S5B), we tested a MET inhibitor (crizotinib) in combination with KRASi, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 14, 2019. ; https://doi.org/10.1101/769703doi: bioRxiv preprint 

https://doi.org/10.1101/769703
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
	

which led to a block in proliferation in MiaPaCa-2 cells (Figure 4E). Finally, we 

identified two upregulated druggable proteins that overlapped between MiaPaCa-2 and 

H358 cells: BIRC5 (Survivin) (24 h) (Werner et al., 2016) and P2RX4 (7 days).  

As KRASi are generally cytostatic, we checked the ability of the evaluated 

combinations to induce cytotoxicity. Acute combinatorial treatment induced some level 

of cell death for multiple combinations (Figure 4F). Of note, combination with a mTOR 

inhibitor, also identified in the CMap analysis, did not induce differential cell death 

(data not shown).  

CMap analysis of KRASi-treated H358 cells revealed an almost complete 

overlap with pathways obtained for MiaPaCa-2 cells (Figure 5A, B), confirming a 

common activation of mechanisms that mediate KRASi effects between different tumor 

types. We tested the potency of these combinations in long-term growth assays with 

three of the drugs identified as positive correlators by CMap analysis (Figure S5C). 

PI3K inhibitors (GDC0941, Figure 5C), HSP90 inhibitors (17-AAG, Figure 5D) and 

EGFR inhibitors (erlotinib, Figure 5E) were able to block regrowth of KRASi treated 

cells efficiently when used in combination with KRASi. Furthermore, combination 

with KRASi led to some level of cytotoxicity in all combinations (Figure 5F). These 

data strengthen the finding that quantitative proteomics followed by GSEA and CMap 

analysis are able to predict useful therapeutic drug combinations that overcome 

cytostasis and induce cytotoxicity.  

 

Identifying mechanisms of adaptation to KRASi in 2D vs. 3D growth conditions 
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 Use of two-dimensional (2D) cultures to model adaptive responses to therapy 

can be a useful initial approach; however, three-dimensional (3D) models may better 

recapitulate in vivo physiology and drug sensitivity in some situations (Breslin and 

O’Driscoll, 2016; Imamura et al., 2015; Jacobi et al., 2017). Indeed, a subset of 

KRASG12C-driven NSCLC cellular models demonstrate a differential sensitivity to 

KRASi in 2D versus 3D growth conditions and 3D growth conditions are more 

reflective of in vivo KRASi sensitivity (Fujita-Sato et al., 2015; Janes et al., 2018; 

Patricelli et al., 2016). To test the difference in drug response in 2D versus 3D, we 

chose two NSCLC cell lines (HCC44 and H2030) and confirmed at least 20-fold 

increased sensitivity to KRASi in 3D compared to 2D growth conditions (Janes et al., 

2018) (Figure 6A, Figure S6A). Interestingly, basal pERK, pAKT and KRAS levels 

were all decreased in 3D versus 2D growth conditions (Figure 6B). KRASi induced 

further prominent decreases in pERK and pAKT, especially in the 3D condition (Figure 

6B) (Janes et al., 2018; Riedi et al., 2017).  

 To identify differences in the baseline 2D versus 3D proteome and response to 

KRASi, we performed proteomic analyses of HCC44 cells treated with KRASi for 72 

h (2D: 10 µM, 3D: 0.5 µM). Despite using growth condition-specific doses, KRASi in 

3D growth conditions induced a larger number of significant proteomic alterations 

compared to 2D (Figure 6C-D, Table S7). GSEA of KRAS-inhibited 2D-HCC44 

proteomes demonstrated an upregulation in the MAPK/mTOR pathway and antigen 

presentation (El-Jawhari et al., 2014) (Figure 6E) and downregulation of DNA 

replication/transcription/repair and TCA cycle (Figure 6E) all consistent with 

MiaPaCa-2 and H358 2D KRASi proteomic data. KRASi-treated 3D-HCC44 

proteomes exhibited downregulation in cell cycle, a consistent response throughout all 
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our datasets. In contrast to 2D data, KRASi in 3D-HCC44 led to upregulation in lipid 

and amino acid metabolism, TCA cycle and extracellular matrix pathways (Figure 6F).  

To understand the basal differences in 2D versus 3D growth conditions and how 

this may have impacted response to KRASi (Figure S6B), we analyzed differential 

pathways by GSEA in basal 3D versus 2D proteomes (absent KRASi) (Figure S6C). In 

comparison to 2D, 3D growth conditions were associated with upregulation of antigen 

presentation, innate immune response, signaling pathways, carbohydrate metabolism 

and extracellular matrix, the latter two pathways likely upregulated as a result of 

increased HIF-1α stability in 3D growth conditions (Gagliano et al., 2016; Longati et 

al., 2013). Proteins associated with transcription and RNA metabolism pathways were 

downregulated in 3D versus 2D conditions. To identify KRASi responses independent 

of basal differences in 2D versus 3D conditions, we performed a comparative GSEA of 

3D KRASi / 3D DMSO vs. the corresponding 2D conditions (Figure 6G). In response 

to KRASi, lipid/sphingolipid metabolism, TCA cycle and protein metabolism were 

differentially upregulated in 3D conditions while immune response/antigen 

presentation, growth factor/insulin signaling, cell cycle and RNA metabolism were 

downregulated. Interestingly, PI3K signaling was differently downregulated in 3D 

conditions, confirming the western blot data and previous studies with MAPKi showing 

a deeper inhibition of these pathways in 3D versus 2D growth conditions (Riedi et al., 

2017). Overall, our data suggest that the mechanisms of adaptation are different in 2D 

versus 3D growth conditions. Given the high correlation observed between 3D culture 

conditions and in vivo susceptibility to drugs, identification of mechanisms of 

adaptation in 3D might have a greater therapeutic relevance.  

Next, we performed CMap analysis to identify drugs that correlated with the 

proteomic profile in 2D and 3D growth conditions. HCC44-2D analysis revealed 
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similar compounds as in MiaPaCa-2 and H358 KRASi treated cells, including MEKi, 

IMPDHi, HSP90i, EGFRi, and HDACi (Figure 6H). In the HCC44-3D analysis, 

HSP90i were enriched, in common with 2D analyses. Specific to the 3D KRASi, we 

identified a positive correlation with CDKi and topoisomerase inhibitors (Figure 6I). 

Interestingly, glycogen synthase kinase inhibitors (Kazi et al., 2018) positively 

correlated with 3D-KRASi (Figure 6I) but were negatively correlated with the 2D-

KRASi (Figure 6H), suggesting these inhibitors might have opposite effects in 3D 

versus 2D growth conditions. We next performed CMap analysis of DMSO treated cells 

in 3D vs 2D conditions as well as 3D KRASi to DMSO vs. 2D KRASi to DMSO 

(Figure S6D), which reinforced the positive correlation with GSK3i response in 3D-

KRASi.  

Finally, we tested the efficacy of select KRASi combinations in 2D and 3D 

growth conditions (SHP2i, GSK3i, CDK4/6i). We tested SHP2i given reactivation of 

MAPK signaling as determined in our GSEA and positive results of combination SHP2i 

with MEKi (Wong et al., 2018). Interestingly, SHP2i alone was effective in 3D 

compared to 2D growth conditions across multiple cell lines (Figure 6J, Figure S6E) 

and the combination with KRASi induced a further response in 3D conditions. GSK3i 

(CHIR-99021) was also more effective in 3D versus 2D conditions in HCC44 cells but 

not in H2030 highlighting the importance of testing candidate combinations in multiple 

cellular models (Figure 6K, Figure S6F). Finally, as predicted by GSEA and CMap 

analysis, KRASi combined with CDK4/6 inhibition had more potent effects on cell 

growth inhibition in 3D compared to 2D across multiple cell lines (Figure 6L, Figure 

S6G). These results suggest that quantitative proteomics can identify differential 

mechanisms of adaptation to KRASi in 2D versus 3D growth conditions.  
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DISCUSSION 

After years of considering oncogenic KRAS an undruggable target, new small-

molecule inhibitors targeting KRASG12C are showing potent target engagement and 

efficacy in early phase clinical trials. Despite these exciting preliminary results, driver 

oncoprotein targeted drug efficacy is usually limited by tumor heterogeneity and by 

compensatory adaptive mechanisms. Here, we modeled the effects of acute and long-

term KRASG12C inhibition to investigate non-mutational mechanisms of adaptation in 

KRASG12C mutant PDAC and NSCLC cellular models. We identified shared acute and 

long-term KRASi proteomic signatures associated with persistent cell survival and 

designed rational combinatorial strategies to induce cytotoxicity thereby laying the 

foundation for in vivo pre-clinical testing. Our results suggest that deep quantitative 

temporal proteomics combined with bioinformatic analyses is one useful method to 

identify new combination therapies to circumvent or prevent development of resistance 

to targeted therapies.  

The shared overarching acute and long-term response to KRASi as determined 

by our proteomic and phosphoproteomic analyses and confirmed by decades of prior 

work consists of first, an acute cytostatic response with downregulation of cell cycle, 

transcription, translation, and pro-growth signaling pathways concurrent with 

upregulation of compensatory stress response and metabolic pathways (Fig. 7). In 

cellular models that are able to re-establish proliferation despite ongoing KRASi, our 

long-term KRASi proteomic signatures revealed upregulation of cell cycle pathways, 

transcription, and DNA repair relative to acute KRASi. Furthermore, the long-term 

KRASi proteomic signature was marked by altered cellular metabolism (upregulation 

of mitochondrial respiration) with a prominent decrease in mTOR signaling with 

coincident upregulation in lysosomal metabolism, which likely correlates with a 
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compensatory activation of autophagy also described in ERK-treated PDAC (Bryant et 

al., 2019). The fact that oncogenic KRAS remodels cellular metabolism is well known 

(Bryant et al., 2014) and our data is in agreement with studies of genetic ablation of 

KRAS in PDAC which leads to a shift towards mitochondrial metabolism and 

autophagy (Viale et al., 2014). Long-term KRASi also altered extracellular matrix 

pathways likely related to enhanced adherence and dependence of adhesion in KRAS-

ablated cells (Chen et al., 2018) (Tape et al., 2016).  

The large number of pathway alterations in response to KRASi is unsurprising 

given the dependence on oncogenic KRAS to support tumor proliferation and survival. 

Interestingly, in comparing the proteomic signature of KRASi with a distinct treatment 

(GLSi) that likewise causes an acute cytostatic response with eventual re-establishment 

of proliferation, a large number of pathways were found in common at both acute and 

long-term timepoints. For instance, KRASi and GLSi (Biancur et al., 2017) both lead 

to an induction of a differential metabolic rewiring consisting in activation of 

mitochondrial respiration, lipid metabolism and lysosomal function. This suggests that 

despite vastly different targets and mechanisms of action, many aspects of the 

proteomic response to treatments that induce cytostasis are shared. Indeed adaptation 

to pharmacologic KRASi correlated with a long-term reactivation of cell cycle and 

DNA repair as well as MYC levels, all pathways also activated in gemcitabine-resistant 

(Seth et al., 2019), ERKi-resistant, and genetic KRASi-resistant cells (Santana-Codina 

et al., 2018; Vaseva et al., 2018). This finding is further highlighted by results from our 

CMap analysis that identify a large number of shared signatures with KRASi at acute 

time points. While several of these shared signatures are due to inhibition of 

downstream aspects of the KRAS pathway (MEKi), the unrelated drug classes and 

sheer number of shared responses suggests that the shared CMap signature is at least in 
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part due to a generalized cytostatic response. One hypothesis based on these results is 

that co-targeting pathways that share an overall compensatory response signature 

associated with cytostasis may overwhelm these shared or parallel compensatory 

pathways and tip the balance from cytostasis to cytotoxicity. To evaluate this 

hypothesis, we tested a number of KRASi combinations and demonstrated potentially 

useful therapeutic combinations that prevented re-establishment of proliferation.  

Successful KRASi combinations across multiple cellular models included 

combination with PI3Ki, HSP90i, CDK4/6i, and SHP2i. Co-targeting KRASG12C with 

PI3Ki reduced proliferation in long-term growth assays and induced cytotoxicity, in 

agreement with multiple previous studies (Alagesan et al., 2015; Engelman et al., 2008; 

Misale et al., 2018; Muzumdar et al., 2017) and validating the efficacy of our approach. 

Given the toxicity and poor response of patients with combinatorial targeting of 

KRAS/MEK and PI3K pathways (Janne et al., 2017; Pettazzoni et al., 2015; Will et al., 

2014), we also evaluated multiple additional combinations. KRASi in combination with 

HSP90i (17-AAG) also induced cytotoxicity in multiple KRASG12C-driven cellular 

models. This is consistent with increased sensitivity to ER stress induction in KRAS-

resistant PDAC cells (Genovese et al., 2017), likely due to efficient block of the 

reported pERK surge after 17-AAG treatment (Zhang et al., 2010). This combination 

is particularly promising for future pre-clinical in vivo testing as it targets a completely 

distinct pathway from canonical downstream KRAS signaling. Finally, CDK4/6i and 

SHP2i worked in combination with KRASi in multiple 3D cultures supporting recent 

studies that tested its potential in combination with MEKi (Haines et al., 2018; Mainardi 

et al., 2018; Ruess et al., 2018). Indeed, in vivo pre-clinical evaluation of CDK4/6i in 

combination with KRASi showed promising results (Lou et al., 2019). Overall, our 
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approach was able to predict useful combinations with KRASi and drugs targeting 

multiple pathways that will benefit from further evaluation in pre-clinical models. 

Given the robust nature of our KRASi proteomics data that correlates in full 

with decades of research, the unique temporal proteomics aspect, and 2D versus 3D 

growth condition proteomic comparisons, we have generated an interactive KRASi 

proteome database accessible via an easy to use website 

(https://manciaslab.shinyapps.io/KRASi/). This a resource for the oncogenic KRAS 

biology community that allows for systematic search by gene name, cell line or time of 

treatment within our KRASi proteomics datasets (Figure S7). With KRASG12C 

inhibitors now being tested in clinical trials with promising results and more being 

developed targeting different mutant forms (Kessler et al., 2019), anticipating the 

potential mechanisms of resistance and developing useful combination therapies is 

critical. Our study uncovers a large number of compensatory proteomic responses to 

KRASi that at first suggest a daunting amount of collateral survival pathways employed 

by oncogenic KRAS dependent pathways. However, with combination targeting of 

these pathways, this suggests that this large number of compensatory pathway 

activations actually reveal a large number of liabilities for combination targeting. 

Although more studies are required to understand the potential translatability of our 

findings using in vivo pre-clinical models, our proteomics platform has the capacity to 

define the proteomic response to any drug and facilitate the design of rational 

combinatorial treatment that might ultimately represent a new therapeutic approach for 

patients.  
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FIGURE LEGENDS 

Figure 1. Quantitative temporal KRASG12C inhibitor proteomics in PDAC cells 

identifies up- and downregulated pathways (A) Schematic model of the quantitative 

temporal proteomic-bioinformatic workflow: Cancer cells treated with a targeted 

inhibitor (Drug 1) at different timepoints are analyzed using multiplexed Tandem Mass 

Tag (TMT) quantitative proteomics (9 samples shown here, this can now be expanded 

to 16 samples). Samples labeled with TMT reporter tags are analyzed by LC-MS 

followed by MS2/MS3 fragmentation for relative quantitation. Volcano plot illustrates 

protein abundance differences in treated cells. Red and blue: up-and downregulated 

proteins. Enrichment map of dysregulated pathways. Relative proliferation of cell line 

treated with Drug 1 in combination with Drug 2 to suppress or circumvent resistance.  

(B) Cell proliferation dose-response curves for MiaPaCa-2 cells treated with KRASG12C 

inhibitors (left: ARS-1620, right: Compound 4). Error bars represent s.d. of 4 technical 

replicates (representative of 3 (ARS-1620) and 5 (Compound 4) independent 

experiments). (C) Relative proliferation of MiaPaCa-2 cells treated with KRASi. Error 

bars represent s.d. of 6 technical replicates (representative of 3 independent 

experiments). Significance determined with t-test. ***p<0.001. (D) Immunoblot of 

lysates from MiaPaCa-2 cells treated with ARS-1620 for the indicated times. (E-F) 

Volcano plots illustrate statistically significant protein abundance differences in 

MiaPaCa-2 cells treated with KRASi for 24 h (E) and 7 days (F). Volcano plots display 

the -log10 (P value) versus the log2 of the relative protein abundance of mean KRASi 

treated to mean control (DMSO) samples. Red circles represent significantly (adjusted 

p value/FDR < 0.05) upregulated proteins (FC ≥ 2) while blue circles represent 

significantly downregulated proteins (FC < 0.5). Data are from three independent plates 

from a representative experiment of 2. (G) Principal Component Analysis of KRASi 
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treated proteomes (1 h, 4 h, 24 h, 72 h, 7 days and 8 weeks) represented in a two-

dimensional space. Ratio of KRASi vs DMSO is used as the data input. (H-J), 

Enrichment map of gene set enrichment analysis (GSEA) of KRASi-treated MiaPaCa-

2 cells versus DMSO at 24 h (H) and 7 d (I) or 7 d KRASi compared to 24 h KRASi 

(J). FDR< 0.01, Jaccard coefficient>0.25, node size is related to the number of 

components identified within a gene set and the width of the line is proportional to the 

overlap between related gene sets. GSEA terms associated with upregulated (red) and 

downregulated (blue) proteins are colored accordingly and grouped into nodes with 

associated terms.	

 

Figure 2. Quantitative temporal KRASG12C inhibitor proteomics in NSCLC cells 

identifies up- and downregulated pathways. (A) Cell proliferation dose-response 

curves for H358 cells treated with KRASG12C inhibitors (left: ARS-1620, right: 

Compound 4). Error bars represent s.d. of 4 technical replicates (representative of 2 

experiments). (B) Relative proliferation of H358 cells treated with KRASi. Error bars 

represent s.d. of 3 technical replicates (representative of 3 independent experiments). 

Significance determined with t-test. ***p<0.001. (C) Immunoblot of lysates from H358 

cells treated with ARS-1620 for the indicated times. (D-E) Volcano plots illustrate 

statistically significant protein abundance differences in H358 cells treated with KRASi 

for 24 h (D) and 7 d (E) as in Fig. 1E. (F-H) Enrichment map of GSEA of KRASi-

treated H358 cells versus DMSO at 24 h (F) and 7 days (G) or 7 d KRASi compared to 

24 h KRASi (H) as in Fig. 1H-J.  

 

Figure 3. KRASi proteomes from distinct cancer types show similar pathway 
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enrichment (A and D), Circos plots (see methods) showing overlap of top 300 

upregulated proteins and associated gene ontology (GO) terms between MiaPaCa-2 and 

H358 KRASi proteomes at 24 h (A) and 7 days (D). The outside arc color identifies 

each cell line by color. The inside arc represents the top 300 proteins from each 

proteome: dark orange bars represent the proteins shared between datasets with purple 

lines linking them, light orange bars represent non-overlapping proteins. Blue lines 

connect proteins from the same GO term. (B and E), Network shows pathway 

enrichment at 24 h (B) and 7 days (E). Each term is identified by color and size of 

clusters is proportional to the number of input proteins included in the term. (C and F) 

Network of enriched terms represented as pies show contribution of each input list to 

each term at 24 h (C) and 7 d (F). (G, H) Protein-protein interaction analysis of input 

proteins. The center node represents the full interactome and the surrounding nodes are 

identified according to the representative functions included. Each node is colored 

according to cell line contribution (red, H358 and blue, MiaPaCa-2). 

 

Figure 4. Design of combinatorial pharmacological strategies to overcome 

adaptation to KRASi. (A and B), Connectivity map analysis for 24 h (A) and 7 d (B) 

KRASi MiaPaCa-2 proteomes. Perturbagen classes with mean connectivity scores 

>90% or <-90% and FDR<0.05 are displayed. (C-E) Relative proliferation of 

MiaPaCa-2 cells treated with KRASi (2 µM) or DMSO with or without GDC0941 (2 

µM) (C), 17AAG (5 nM) (D) or crizotinib (400 nM). (F) Annexin V-FITC and 

propidium iodide-based flow cytometry analysis of cell death in MiaPaCa-2 cells 

treated with DMSO/KRASi (2 µM) together with GDC0941 (2 µM), crizotinib (1 µM) 

or 17-AAG (30 nM) (average of 2 or 3 experiments as indicated). Significance 
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determined with t-test. All comparisons to DMSO except when indicated showing 

comparison to each drug. *p<0.05, **p<0.01, ***p<0.001. 

 

Figure 5. Design of combinatorial pharmacological strategies to overcome 

adaptation to KRASi in a NSCLC cell line. (A and B), Connectivity map analysis 

for KRASi H358 proteomes at 24 h (A) and 7 days (B) as in Fig. 4A. (C-E), Relative 

proliferation of H358 cells treated with KRASi (1 µM), or DMSO with or without 

GDC0941 (2 µM) (C), 17-AAG (7 nM) (D) and erlotinib (200 nM) (E). Error bars 

represent s.d. of technical replicates (one representative of 2 experiments). DMSO and 

ARS-1620 data are shared between (C) and (E) as the combination experiments 

displayed were done side-by-side with the same ARS-1620 and DMSO controls. (F), 

Annexin V-FITC and propidium iodide-based flow cytometry analysis of cell death in 

H358 cells treated with DMSO/KRASi (1 µM) together with GDC0941 (2 µM), 

erlotinib (1 µM) or 17-AAG (50 nM)  (average of 2 or 3 experiments as indicated). 

Significance determined with t-test. **p<0.01, ***p<0.001. 

 

Figure 6. Quantitative proteomics of KRASi in 2D versus 3D growth conditions. 

(A) Cell proliferation dose-response curves for HCC44 cells treated with ARS-1620 

(left: 2D, right: 3D). Error bars represent s.d. of 4 technical replicates (representative 

of 2 experiments). (B) Immunoblotting of lysates from HCC44 cells treated with 

KRASi (72 h) in 2D and 3D. (C-D) Volcano plots illustrate statistically significant 

protein abundance differences in HCC44 cells treated with KRASi in 2D vs. 3D for 72 

h as in Fig. 1E. (E-G) Enrichment map of gene set enrichment analysis (GSEA) of 

KRASi-treated HCC44 cells versus DMSO in 2D (E) and 3D (F) or 3D compared to 
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2D (G) as in Fig. 1H. (H and I) Connectivity map analysis for 2D (H) and 3D (I) 

KRASi HCC44 proteomes as in Fig. 4A. (J-L) Relative cell growth for HCC44 cells 

treated with ARS-1620 vs. DMSO with or without SHP2i (J), GSK3i (K) and CDK4/6I 

(L) in 2D vs. 3D. Data are from three independent replicates from a representative 

experiment of 3. The data used for SHP2i, GSK3i and CDK4/6i alone are the same 

within each 2D and 3D grouping and the bars are replicated for ease of comparison at 

the two different ARS-1620 dose levels. ARS-1620 alone data are the same between 

(K) and (L) as the GSK3i and CDK4/6i experiments were done side-by-side with the 

same ARS-1620 alone control. Significance determined with t-test vs. ARS-1620. 

*p<0.05, **p<0.01, ***p<0.001. 

 

Figure 7. KRASi acute and long-term adaptation. Oncogenic KRAS-driven cells 

acutely treated with KRASi or after developing long-term adaptation to KRASi were 

analyzed using quantitative proteomics. Bioinformatic analyses determined significant 

up- and downregulated pathways at each timepoint. Acute adaptation consists of a 

cytostatic response with downregulated cell cycle, transcription, translation and pro-

growth signals and concomitant alteration of metabolic pathways with upregulation of 

lipid metabolism, TCA cycle and lysosomal processes. Long-term adaptation consists 

of re-established proliferation coincident with increased cell cycle, transcription, DNA 

repair and mitochondrial metabolism together with consistent downregulation of 

mTOR signaling and increased lysosomal processes. Subsequent bioinformatic 

analyses nominated high-priority KRASi combinatorial drug strategies. KRASi 

combinations with HSP90i (17-AAG) and cell cycle inhibitors (CDK4/6i) efficiently 

blocked growth in 2D and 3D culture models. 
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