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Abstract

With the amount of data being stored increasing rapidly, there is significant interest in exploring alternative
storage technologies. In this context, DNA-based storage systems can offer significantly higher storage densities
(petabytes/gram) and durability (thousands of years) than current technologies. Specifically, DNA has been found
to be stable over extended periods of time which has been demonstrated in the analysis of organisms long since
extinct. Recent advances in DNA sequencing and synthesis pipelines have made DNA-based storage a promising
candidate for the storage technology of the future.

Recently, there have been multiple efforts in this direction, focusing on aspects such as error correction for
synthesis/sequencing errors and erasure correction for handling missing sequences. The typical approach is to
use separate codes for handling errors and erasures, but there is limited understanding of the efficiency of this
framework. Furthermore, the existing techniques use short block-length codes and heavily rely on read consensus,
both of which are known to be suboptimal in coding theory.

In this work, we study the tradeoff between the writing and reading costs involved in DNA-based storage and
propose a practical scheme to achieve an improved tradeoff between these quantities. Our scheme breaks with
the traditional separation framework and instead uses a single large block-length LDPC code for both erasure
and error correction. We also introduce novel techniques to handle insertion and deletion errors introduced by
the synthesis process. For a range of writing costs, the proposed scheme achieves 30-40% lower reading costs than
state-of-the-art techniques on experimental data obtained using array synthesis and Illumina sequencing.

The code, data, and Supplementary Material is available at https://github.com/shubhamchandak94/LDPC_

DNA_storage.

1 Introduction

In recent years, the amount of data being generated and
stored is increasing at rapid rates. As a result of the
impending data crisis where generation exceeds reason-
able storage capacity, there has been significant interest
in exploring alternatives to solid state disks and mag-
netic tapes as data storage media. Interestingly, the
cost of DNA sequencing has been decreasing exponen-
tially in the past ten years. DNA is a robust method
of storing information as demonstrated by every living
organism and offers exceptionally high storage densities
(100s of Petabytes per gram [1]) and long-term durability
(1000s of years [2]). The longevity of DNA-based storage
makes it ideal as an archival medium to store the knowl-
edge gained by humanity over the millennia. Along with
high density data storage, DNA-based storage systems al-
low efficient duplication of data and random access using
PCR-based techniques [3][4].

DNA-based storage involves encoding data into DNA
sequences, synthesizing these sequences and later read-
ing them back using sequencing technologies. Since both
the DNA synthesis and sequencing processes are inher-
ently error-prone, error correction coding based on the

characteristics of this noise is critical for reliable decod-
ing of data. There has been a series of recent works on
DNA-based storage such as [1], [4], [5], [6], [7] and [8]
which focus on error correction and random-access re-
trieval, among other aspects.

Figure 1 shows a schematic of a typical DNA-based
storage system. Binary data is encoded in the form of
short DNA sequences (oligonucleotides) of length around
150 bases where each nucleotide belongs to the set {A,
C, G, T}. We assume that the binary data is a uni-
formly random stream, which can be obtained by loss-
less compression and encryption of the actual data. The
currently standard synthesis process generates millions
of copies of each oligonucleotide [9], possibly with er-
rors - substitutions, insertions and deletions. The first
step of the reading process involves amplification of the
synthesized DNA sequences using PCR [3]. The ampli-
fied product is then “sequenced” by randomly sampling
oligonucleotides and reading them, possibly with addi-
tional errors (usually substitutions for Illumina sequenc-
ing). The sequenced oligonucleotides are usually referred
to as “reads”. Ideally, the sampling can be modelled as
Poisson random sampling, but in practice there is addi-
tional sampling bias introduced in the synthesis as well
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as in PCR amplification performed before sequencing [10].
Due to skewed sampling or bias introduced through syn-
thesis and molecular amplification, some oligonucleotides
might be read multiple times while other oligonucleotides
might not be read at all. Furthermore, the ordering of
the oligonucleotides is completely lost in the process and
the synthesized oligonucleotides form an unordered set of
DNA sequences. The encoding and decoding algorithms
need to handle all these sources of error to recover the
data.

Encode PData

Pool of distinct 
short DNA sequences

(~150 nucleotides)

Synthesis , 
Storage &

Sequencing
P

Noisy “reads” 
sampled with 
replacement

Decode Data

Figure 1: Schematic for a DNA-based storage system. The
encoding process converts data to a pool of DNA sequences,
typically applying error correction techniques and appending
an index to the DNA sequences to store their order. These
sequences are then synthesized, stored for some duration and
sequenced back to give a pool of noisy reads from the encoded
pool. The decoder recovers the data from these noisy reads
using error correction techniques.

Previous work

Over the past years, DNA-based storage has been studied
both from practical and theoretical perspectives. In most
works, the data is split into short segments at some step
in the encoding process due to limits imposed by scalable
synthesis techniques. Since the ordering of these segments
is lost after synthesis, the typical approach involves ap-
pending an index to each oligonucleotide to recover its
position in the encoded data stream. Error correction
coding is performed to correct errors within each oligonu-
cleotide and to deal with missing oligonucleotides. Two
of the state-of-the-art works [1] and [4] use very distinct
schemes for the error correction and decoding and are
discussed below.

In [1], Fountain codes [11] are used to recover miss-
ing oligonucleotides, and Reed Solomon (RS) codes [12]
are used to correct errors within each read. Since the RS
code is applied on very short sequences, the scheme suf-
fers from limitations of short block length codes [13]. The
scheme also ignores reads with insertions and deletions,
which usually comprise around 30-50% of the reads [9].

The work in [4] uses large block length RS codes to
correct both erasures and errors. However the RS codes
operate on symbol-level errors (16-bit symbols in their
work) and hence are not optimal for single base errors
(i.e. substitutions) that may be introduced by Illumina
sequencing. To correct insertion and deletion errors, they
cluster the reads by similarity and then apply multiple
sequence alignment (MSA) [14] to obtain a consensus se-

quence. While the consensus allows them to handle some
reads with insertions and deletions, it requires multiple
reads for a given oligonucleotide and is suboptimal in
terms of the sequencing cost. They also attempt to re-
duce the synthesis error rate by avoiding repeated bases
(e.g., AA) using a run-length constraint on the oligonu-
cleotides. This run-length constraint also provides some
level of error detection at the oligonucleotide level, but it
is likely not the optimal code for this purpose, given that
it adds around 25% redundancy to the oligonucleotides.
We should note here that their scheme was tested for
both Illumina and nanopore sequencing, while this work
focuses on Illumina sequencing.

While previous works have proposed several cod-
ing schemes, there has been little understanding of
the optimal tradeoff between writing cost (bases syn-
thesized/information bit) and reading cost (bases se-
quenced/information bit). Recent work in [15] and [16]
studied the information-theoretic capacity of a DNA-
based storage channel, however the work has limited prac-
tical applicability due to various unrealistic assumptions
and the asymptotic nature of their results.

Our contributions

In this work, we first analyze the fundamental quantities
associated with DNA-based storage systems and under-
stand the associated tradeoffs by theoretical analysis and
simulations. Based on this assessment, we propose a prac-
tical and efficient scheme to achieve an improved tradeoff
between writing cost and reading cost by combining ideas
from modern coding theory such as large block length
LDPC codes [17] with heuristics to handle insertions and
deletions.

Section 2 motivates the proposed approach using a
simplified theoretical model. Building upon this, we
present the complete encoding and decoding algorithms
in Section 3. In Section 4, we present the results for real
data (data obtained from synthesis and sequencing exper-
iments) and also discuss the impact of various parameters
and synthesis/sequencing non-idealities using this data as
well as simulations.

2 Theoretical analysis

In this section, we consider a simplified model for DNA-
based storage to develop a better understanding of the
coding theoretic tradeoffs. While several previous works
such as [15], [16], [18] theoretically analyze various as-
pects of the DNA-based storage problem (such as the
information-theoretic capacity in the asymptotic setting
and the optimality of various techniques to recover the
order of the oligonucleotides), our main focus is to under-
stand the tradeoff between the writing and reading cost
associated with DNA-based storage and to motivate the
scheme described in Section 3.
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Model and notation

Figure 2 shows the simplified storage model where nL
message bits are encoded as ncw binary sequences of
length L bits each. We sequence ncr reads of length L
which are passed through a binary symmetric channel
with error probability ε. Here cw denotes the average
number of encoded bits synthesized per information bit
and cr denotes the average number of encoded bits read
per information bit for successful decoding. Clearly both
cw and cr must be at least 1.

Remark: Most previous works in DNA-based stor-
age use coverage (defined as the average number of bits
read per synthesized bit = cr/cw) as the metric instead
of the reading cost cr. We use cr because it captures the
actual cost of reading per information bit, unlike cover-
age which measures cost of reading per encoded bit and
hence coverage comparisons across systems with different
cw are not meaningful.

For simplicity, we work with bits instead of bases but
the results can be extended to an arbitrary alphabet. Fur-
thermore, we assume that the decoder has direct access
to the “index” of each read, i.e., the decoder knows the
position of the encoded sequence corresponding to any
given read (the numbers shown in Figure 2). This sim-
plifies the analysis considerably and can be achieved in
a practical system by attaching the index (possibly with
error correction) to each sequence (see Section 3). As the
theory of channels with insertions and deletions is not
adequately understood [19], we ignore insertion and dele-
tion errors in the theoretical analysis for simplicity. In
practice, we deal with insertions and deletions by con-
verting them to substitution errors/erasures using MSA
and synchronization markers (see Section 3). Finally, we
consider an ideal Poisson random sampling model. This
model does not capture the synthesis and sequencing bias
seen in practice, but while this assumption changes the
absolute values obtained in the analysis, it should not af-
fect the tradeoffs and comparisons. As we see below, we
can gain significant insights about the real system despite
these assumptions.
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Figure 2: Schematic for simplified storage model. Here L
denotes the length of synthesized sequences, cw denotes the
writing cost, cr denotes the reading cost and ε denotes the er-
ror rate. The index of each sequence is shown to its left, and
the decoder has direct access to the index in the simplified
model.

Theoretical bounds on read/write cost tradeoff

We first compute the optimal tradeoff between cw and cr
when ε = 0, i.e., the reads are error-free. In this case, for
large enough n, we can use the Poisson(λ) approximation
for the number of times each sequence is observed with
λ = cr/cw. Since the probability of seeing zero copies of
a sequence is e−λ, this gives us an erasure channel with
capacity 1− e−λ [20]. For reliable recovery, we need that
the rate 1/cw be less than the capacity. This gives us

cr ≥ cw loge
cw

cw − 1

We see that cr decreases monotonically with cw (Figure
4), implying a tradeoff between the reading and writing
costs. This tradeoff can be explained by the fact that
decoding nL message bits successfully requires at least n
reads of length L with distinct indices. As cw increases,
random sampling is less likely to produce repeated reads
and we need fewer reads to obtain n reads with distinct
indices.

When ε 6= 0, we can obtain lower bounds on the ca-
pacity by considering a memoryless approximation to the
channel where the input is a bit and the output is a tuple
(k0, k1) (kb is the number of times that the bit is read
as b). The transition probability for this channel is given
by

P ((k0, k1) | 0) =
e−λλk0+k1

(k0 + k1)!

(
k0 + k1
k0

)
(1− ε)k0εk1 (1)

which indicates the probability that a Poisson random
variable with parameter λ = cr/cw takes value k0 + k1
and that we have k1 errors (for input = 1, swap k0 and
k1). This is a binary input symmetric channel and hence
the capacity achieving distribution is the uniform distri-
bution on the inputs [20]. The capacity and the tradeoff
can be numerically computed (see Figure 4 for ε = 0.5%).
For higher cw and more powerful error correction, the de-
pendence on consensus decreases and we need fewer copies
of each sequence for successful decoding. Note that the
bound obtained here need not be tight since the bits are
read as entire sequences, not individually. The formu-
lation still provides an asymptotically achievable bound
for the simplified model since we can always shuffle the
bits at the encoder and the decoder to get a memoryless
channel.

Comparison of coding strategies

We consider two general strategies (shown in Figure 3):

1. Inner/outer code separation: Here we first seg-
ment the data, apply an erasure-correcting outer
code to the segments and then apply an error-
correcting/detecting inner code to each segment.
During decoding, we first collect the reads corre-
sponding to the same index and take a majority vote
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at each position. Then we apply the inner code de-
coding on each segment followed by the outer code
decoding to obtain the decoded data. Since L is
generally small (a few hundred bits), this strategy
suffers from the fundamental limits on short block
length codes [13] for the inner code. On the other
hand, near-optimal erasure-correcting outer codes
such as RaptorQ codes [21] are available since n
can be large.

2. Single large block code: Here we apply a single
code designed for the channel described in (1) to
the data and then segment the encoded data. The
decoding just collects the counts (k0, k1) at each
position using the index of the reads and applies
the decoding for the code. For a capacity-achieving
code, this strategy will approach the tradeoff curve
described earlier as n→∞.

Most previous works on DNA-based storage use the
separation strategy, sometimes incorporating elements of
the large block code strategy. The work in [11] follows
the separation strategy with Fountain codes as the outer
codes and RS codes as inner codes. The work in [4] com-
bines the two strategies to some extent by using a run-
length constrained code as the inner code (only error de-
tection) and RS code as the outer code that can handle
both errors and erasures. However, the run-length con-
straint in [4] is quite strict (25% added redundancy) and
thus the outer code is involved mostly in erasure correc-
tion. Also, the RS code in [4] handles errors at a 16-bit
block level which is suboptimal for point substitution er-
rors. Finally, there are some works [22], [23] using large
block codes such as LDPC codes in the context of DNA-
based storage, but they focus on applying LDPC codes
separately on each segment and hence follow the separa-
tion strategy.

Segment Outer Inner 

SegmentCode

Strategy 1: Inner/outer code separation

Strategy 2: Single large block code

Figure 3: Two general strategies for DNA-based storage. The
first strategy uses separate inner and outer codes for correct-
ing erasures of sequences and errors within sequences, while
the second strategy just uses a single large block code.

Figure 4 shows some simulations for the two strate-
gies along with the bound for ε = 0.5% (typical substitu-
tion rate for Illumina sequencing). We set the parameters
n = 1000 and L = 256 bits (corresponding to 128 bases).
For the separation strategy, we use BCH codes [24] as

the inner codes and Raptor codes [21] as the outer codes.
Both these codes are among the best known for the pa-
rameters in question. For the large block code strategy,
we use a LDPC code with a message block of 256,000
bits. We see that the large block code strategy is closer
to the bound and outperforms the separation strategy,
with close to 2x lower reading cost for low writing costs.
More details about these simulations are available in Sup-
plementary Material Section 2.
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Figure 4: Tradeoff between reading cost cr and writing cost cw
in the simplified model: theoretical bounds for 0% and 0.5%
error rates along with simulation results for two strategies
at 0.5% error rate: (i) inner/outer code separation strategy
(BCH+Raptor codes) and (ii) single large block code strategy
(LDPC code).

The analysis and simulations presented here for the
simplified model suggest that using a large block length
code can provide significant benefits as compared to
a inner-outer code separation strategy. In Section 3,
we build upon this idea to develop a DNA-based stor-
age framework that can handle the various non-idealities
mentioned earlier. The results in Section 4 show that the
basic intuition developed here holds true for real experi-
ments.

3 Methods

In this section, we present the methods used for real ex-
periments, combining ideas from the analysis in the pre-
vious section with additional techniques to handle the
errors in the DNA-based storage system. We add an
error-protected addressing index to each oligonucleotide
in order to determine its position in the encoded data.
To resolve the issue of missing oligonucleotides and sub-
stitution errors, we use a large block length LDPC code
[17]. Since the synthesis process also introduces inser-
tions and deletions, we use synchronization markers in
each oligonucleotide. We next describe the encoding and
decoding scheme in the proposed framework (shown in
Figure 5). The impact of some of these elements on the
performance are discussed in Section 4.1.
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Figure 5: Schematic for proposed scheme.

3.1 Encoding

• LDPC encoding: Our proposed scheme first en-
codes the binary data using a large block length
LDPC code (in blocks of 256K bits). We use
regular LDPC codes from https://github.com/

radfordneal/LDPC-codes with a parameter that
determines the percentage redundancy. Large block
length regular LDPC codes are known to achieve
near-optimal performance for a range of channels,
including substitution errors and erasures, espe-
cially at high rates. The parameters associated with
the LDPC codes and the process for encoding and
decoding are described in Supplementary Material
Section 2.1.

• Binary to DNA mapping: These binary blocks
are then segmented and mapped to the alphabet {A,
C, G, T}. We use the default mapping from 2 bits
to a base (00-A, 01-C, 10-G, 11-T). The size of these
segments is determined by the capability of the syn-
thesis technique (typically 150-200 bases). Other
works ([1], [4]) explored mappings that restrict ho-
mopolymers (e.g., AA) to reduce the synthesis er-
ror rate at the cost of higher redundancy. Instead,
we randomize the binary data itself by compressing
and encrypting it before the encoding. Even though
this doesn’t completely eliminate homopolymer se-
quences, we observed that this gives good synthesis
quality without increasing the writing cost.

• Synchronization marker: We then add a syn-
chronization marker (we use the sequence “AGT”)
to the center of each oligonucleotide. These mark-
ers are used to recover parts of the oligonucleotide
in cases of insertions and deletions as described in
Section 3.2.

• Addressing index: Finally we add an ad-
dressing index to each oligonucleotide. The in-
dex is protected with a BCH code [24] (using
the code provided at https://github.com/jkent/
python-bchlib) that can correct up to 2 bit er-

rors (for the default setting). In our case, the
BCH code requires 6k bits of redundancy to cor-
rect k bit errors. It is known that sequences with
long homopolymer sequences (e.g., GGGGGG) and
abnormal GC content have issues with synthe-
sis/sequencing [1]. To avoid having multiple prob-
lematic sequences in the same LDPC block, we also
apply a pseudorandom permutation to each index
before encoding.

Figure 6 shows the schematic of the encoded oligonu-
cleotides and typical sizes for each component.

Index BCH Payload PayloadAGT

10 bp 6 bp 84 bp

Figure 6: Schematic for the encoded oligonucleotides showing
the index with BCH error protection, the payload, and the
synchronization marker (AGT) along with their typical sizes.

3.2 Decoding

• Index decoding: During the decoding process, we
first attempt to decode the index of each read using
the BCH code. If the decoding fails, we attempt
to recover from a single insertion or deletion error
in the index. The recovery succeeds when a unique
single insertion or deletion error leads to a noise-
less BCH codeword. This additional step typically
recovers another 5-10% indices (see Section 4.1.4).

• MSA: Next, we use Kalign 2 [14] to perform mul-
tiple sequence alignment (MSA) for the subset of
reads corresponding to each index. As opposed to
[4] where the reads are clustered based on similar-
ity, we cluster reads based on their index which is
computationally more efficient. If the consensus se-
quence does not have the correct length, we attempt
to recover part of the oligonucleotide using the syn-
chronization marker. For example, if the synchro-
nization marker is shifted left by 1 base, then we
retain only the right half of the sequence and con-
sider the left half as an erasure for the next step in
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Exp. LDPC File size No. of Average error rates Normalized Writing cost Reading cost
No. redundancy oligonucleotides Substitution Deletion Insertion coverage variance (bases/bit) (bases/bit)
1 50% 160 KB 11,710 0.39% 0.86% 0.05% 1.97 0.91 2.73
2 10% 224 KB 12,026 0.36% 0.53% 0.05% 1.57 0.67 3.82
3 50% 192 KB 13,716 0.35% 0.88% 0.05% 3.36 0.89 3.45
4 30% 192 KB 11,892 0.47% 0.85% 0.05% 3.53 0.78 4.46
5 10% 192 KB 10,062 0.44% 0.80% 0.05% 3.19 0.66 8.11

Table 1: Results for selected experiments. The first two experiments were synthesized in separate 12K pools while the remain-
ing three were synthesized as part of a larger 90K pool, leading to differences in the coverage variance. The error rates, reading
and writing costs are measured excluding the primers. The normalized coverage variance is computed by first subsampling
to mean 5x coverage and then normalizing the coverage variance by the variance for ideal Poisson sampling. For ease of
comparing results across experiments, only aligned reads were used here (see Section 4.1.2 for details).

the decoding. This allows us to work with very low
coverages where we obtain a single erroneous read
for a significant fraction of the oligonucleotides.

• LDPC decoding: The MSA step provides the
counts of 0’s and 1’s for each position in the oligonu-
cleotide. Rather than using just the consensus
sequence, we utilize the counts for LDPC decod-
ing by converting the counts into log-likelihood ra-
tios (LLR) using an appropriate probabilistic error
model. Denote the substitution error rate as ε and
the counts of 0’s and 1’s at a particular position as
k0 and k1, respectively. Using this notation, we can
compute the log-likelihood ratio as follows (based
on (1)):

LLR(k0, k1) = ln
P ((k0, k1) | 0)

P ((k0, k1) | 1)
= (k0−k1) ln

1− ε
ε

The substitution error rate ε should be set accord-
ing to the error rate after consensus, and was set to
4% for our experiments. This is higher than typical
substitution error rates from synthesis/sequencing
to handle cases like one insertion and one deletion
in a single read leading to multiple erroneous bits.

4 Experimental results and dis-
cussion

To test the performance of the proposed algorithm, we
performed nine experiments with different parameters
over a period of five months. The synthesis was done
by CustomArray (http://www.customarrayinc.com/).
The first two experiments were done on separate 12K
oligonucleotide pools, while the remaining seven exper-
iments were done in a single 90K pool. The 150 length
oligonucleotides consisted of primers of length 25 on ei-
ther end, which are used for PCR amplification and can
also be used for random access. These were then se-
quenced with Illumina iSeq technology (considering only
the first read in a read pair). The detailed experimental
procedure is described in Supplementary Material Sec-
tion 4. Before running the decoder, we used FLEXBAR
[25] to remove the primers and detect reverse comple-
mented reads. We encoded a variety of files in these

experiments, including random files, an image file (Fig-
ure 7) and texts such as the UN declaration of human
rights, Darwin’s Origin of Species and Feynman’s speech
“There’s Plenty of Room at the Bottom” [26]. To avoid
long repeats/homopolymers in the oligonucleotides, the
files were randomized using compression and encryption.
Details about the experimental parameters and the en-
coded files are available in Supplementary Material Sec-
tion 3. The code is available at https://github.com/

shubhamchandak94/LDPC_DNA_storage.

Figure 7: The Horse in Motion image (https://www.loc.
gov/pictures/item/97502309/) encoded in the DNA oligonu-
cleotides.

Table 1 shows the results for selected experiments.
The remaining experiments explored the impact of sec-
ondary parameters such as the BCH code and synchro-
nization marker, and are described in the Supplementary
Material. For each experiment, we randomly subsam-
ple the reads and find the minimum number of reads for
which decoding succeeds in 20 out of 20 trials (multiple
trials conducted to ensure robustness - also see Section
4.1.5). The last two columns show the writing cost (bases
synthesized/information bit) and reading cost (bases se-
quenced/information bit). Since a base can represent at
most 2 bits, both of these quantities are lower bounded
by 0.5. As discussed in Section 2, reading cost represents
the actual cost of sequencing more accurately than cover-
age (bases sequenced/bases synthesized), especially when
comparing across different writing costs.

Table 1 also reports the error rates and the normalized
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coverage variance for the experiments (see Section 4.1.1
for details). The error rates vary slightly across the exper-
iments, with deletions and substitutions being the most
common forms of errors. The normalized coverage vari-
ance represents the deviation from Poisson random sam-
pling, with 1 being ideal and higher values representing
more variation in the coverage of oligonucleotides. The
coverage variance is usually due to a combination of syn-
thesis bias and PCR bias, and can depend on the specifics
of the synthesis process [10]. The first two experiments
were synthesized separately from the rest and have lower
coverage variance. We also note that the first two ex-
periments were conducted before the conception of the
synchronization marker idea and thus have slightly dif-
ferent parameters, but we still include the results since
they provide valuable insights into the impact of cover-
age variance and error rates on the performance of the
scheme.

From Table 1, we see that as we reduce the LDPC
redundancy, the writing cost decreases but the reading
cost increases. This is supported by the theoretical anal-
ysis done in Section 2. Based on the results, we observe
that the higher redundancy (50%) LDPC code is much
more resilient to higher coverage variance and error rates
as compared to the lower redundancy (10%) LDPC code.
This is expected because the 10% LDPC code can cor-
rect fewer errors and erasures and hence is impacted more
severely if some fraction of oligonucleotides are missing or
erroneous.

Previous File size No. of Writing cost Reading cost
work oligonucleotides (bases/bit) (bases/bit)

RS+RLL [4] 200.2 MB 13.4 M 0.91 4.55
Fountain+RS [1] 2.11 MB 72,000 0.65 6.80

Table 2: Results for selected previous works.
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Figure 8: Comparison of results from Tables 1 and 2. The
results for this work show variation across experiments due to
differences in coverage variance and error rates. In most cases,
the proposed approach achieves a better read/write cost trade-
off than the previous works in spite of higher deletion rates.

Table 2 shows the results for two previous works which
focused on error correction and reduced writing/reading
costs. We note that a direct comparison of our work
with the previous works is difficult as the works use dif-
ferent oligonucleotide synthesis providers, encode differ-
ent amounts of data and use different oligonucleotide
lengths. In particular the deletion rate reported in [4]
is 0.2% which is significantly lower than the rates in our
experiments (around 0.8%). However, experimental re-
sults along with the theoretical analysis do suggest that
the proposed scheme offers a better tradeoff between the
writing and reading costs. In particular, comparing the
first two rows of Table 1 with the results in Table 2, we
observe that proposed scheme requires 40% lower read-
ing cost at comparable writing costs (also see Figure 8).
While the proposed scheme has been tested with smaller
file sizes on real datasets, the technique itself is scalable to
larger datasets. We discuss the scalability of the proposed
technique in Section 4.1.7.

4.1 Discussion

In this section, we discuss the error characteristics of the
data and the impact of various parameters on the per-
formance of the approach. We also discuss its scalability
and perform simulations for stress testing the code with
higher error rates. Additional details are available in the
Supplementary Material.

4.1.1 Error and coverage profile
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Figure 9: Error rates vs. read position for experiment #3.

Figure 9 shows the substitution, insertion and deletion
error rates per position of the 150 length read for experi-
ment #3. These were computed by aligning the reads to
the original sequences and include both the synthesis and
sequencing errors. The error rate in the primers (first
25 and last 25 bases) is lower because the primers are
synthesized separately for performing PCR amplification
of the synthesized oligonucleotides. The variation in the
deletion rate around positions 60 and 90 are most likely
due to the impact of a common synchronization mark-
ers across oligonucleotides on the synthesis process (two
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symmetric peaks due to reverse complementation). The
other experiments had similar error profile, although the
overall error rate varied a little. On average, most of the
experiments had total error rate around 1.3% (substitu-
tion: 0.4%, deletion: 0.85%, insertion: 0.05%). Based on
the typical error rates for Illumina sequencing and experi-
ments on paired-end data as in [9], the substitution errors
are primarily caused by the sequencing and the insertion
and deletion errors are primarily from the synthesis.
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Figure 10: Coverage histogram for ideal Poisson sampling and
for experiments #2 and #5 at mean coverage 5.

Figure 10 shows the histogram of the coverage of the
oligonucleotides for experiments #2 and #5 when the
mean coverage was set to 5 by subsampling. Here cover-
age of an oligonucleotide denotes the number of times the
oligonucleotide is seen in the subsampled set of reads. The
figure also shows the coverage histogram for ideal Pois-
son sampling at the same mean coverage. We see that
the experiments have a larger spread as compared to the
ideal sampling and also that experiment #5 had a higher
spread than experiment #2 (as seen in the normalized
coverage variance from Table 1). In particular, experi-
ment #5 has a significant fraction of oligonucleotides with
zero coverage and hence needed a higher reading cost than
experiment #2 even though they used the same LDPC
redundancy (Table 1). Overall we see that the coverage
variance plays a major role in the decoding performance,
especially for codes with lower redundancy. We refer the
readers to [10] for a detailed analysis of coverage variance
in the context of DNA-based storage.

4.1.2 Unaligned reads in decoding

The sequenced data usually includes some number of
reads that do not align properly to the original oligonu-
cleotides. This can be due to synthesis/sequencing errors
or due to PhiX spike-in (known PhiX virus DNA added
to the sequencing pool for quality control purposes). The
decoding algorithm identifies and removes such reads dur-
ing the primer removal step and the index decoding step.
Since the fraction of unaligned varies from experiment
to experiment, the results in Table 1 included only the
aligned reads for the sake of comparison. If the decoding
is performed using all reads, the reading cost increases

depending on the percentage of unaligned reads. For ex-
ample, the first experiment in Table 1 included roughly
13% unaligned reads and the reading cost increases from
2.73 bases/bit to 3.16 bases/bit when these are included
in the decoding process.

4.1.3 Impact of BCH code parameter

BCH Writing Reading
parameter cost cost

0 1.20 3.80
1 1.16 3.20
2 1.12 2.50
3 1.07 2.50

Table 3: Simulation results for various settings of the BCH
parameter with realistic error rates. Writing and reading cost
are in bases/bit.

To understand the impact of the BCH code parameter on
the performance of the scheme, we conducted real exper-
iments exploring a range of these parameters. Unfortu-
nately, due to the differences in the coverage variance and
error rate across experiments, we were unable to reach
any definite conclusion from these experiments (results
available in Supplementary Material Section 3). Here
we provide some simulation results for these parameters.
Simulations are performed with LDPC redundancy 50%,
file size 224KB, error rate 1.3% (substitution: 0.4%, dele-
tion: 0.85%, insertion: 0.05%) and with 15% reads being
random sequences (to simulate unaligned reads). Table 3
shows the results, where the BCH parameter represents
the number of bit errors the BCH code can correct. We
use 2 bit error correction because it offers the best bal-
ance between writing and reading cost for this error rate.

4.1.4 Impact of insertion and deletion correction
heuristics

LDPC Writing Reading cost when Reading cost when
redundancy cost correcting a single correcting no

insertion or deletion insertions or deletions
50% 0.89 3.45 3.58
30% 0.78 4.46 4.73
10% 0.66 8.11 8.57

Table 4: Results with and without heuristic for correction of a
single insertion or deletion error in the index, for experiments
#3-5. Writing cost and reading cost are in bases/bit.

As discussed in Section 3, we use a couple of heuristics
to handle reads with insertions and deletions without re-
lying on consensus. During index decoding, we attempt
to correct a single insertion or deletion error with a BCH
code which typically can only correct substitution errors.
For most files, we observed that this step is able to cor-
rect 5-10% additional indexes. Table 4 shows the results
with and without this step. We see that this step reduces
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the reading cost by around 5% for all three LDPC codes
without affecting the writing cost.

We also use a synchronization marker to recover part
of the read if the consensus length is incorrect. We con-
ducted real experiments with and without a marker, but
as described in Section 4.1.3 the results were not con-
clusive due to differences in the coverage variance and
error rate across experiments. In simulations, we did see
that using a marker leads to around 10% improvement in
the reading cost while having little impact (2-3%) on the
writing cost.

4.1.5 Probability of decoding failure

For most of this work, we have reported the reading cost
at which 20 out of 20 sampling trials were successful. This
was done for the sake of comparisons and due to compu-
tational constraints. In this section, we study the prob-
ability of decoding failure as the reading cost is varied.
We performed realistic simulations with a single LDPC
block (32 KB) and computed the fraction of unsuccessful
trials at each reading cost (simulation error model as in
Section 4.1.3). Figure 11 shows the plots for three LDPC
redundancies. We see that the failure probability falls
rapidly from 1 after the reading cost exceeds a thresh-
old, where this threshold is lower for codes with higher
redundancy/writing cost. This is consistent with the typ-
ical behavior seen in coding theory [17] and suggests that
the scheme offers high reliability once the reading cost
exceeds the threshold value.

Figure 11: Probability of decoding failure vs. reading cost for
realistic simulations for three LDPC redundancies. ∗ denotes
that all of the 10,000 trials were successful, suggesting that
the failure probability is below the marker shown.

4.1.6 Stress testing

To stress test the framework, we performed simulations
at increased error rate of 6% (substitutions, deletions, in-
sertions 2% each) along with 15% reads being random
sequences (to simulate unaligned reads). We encoded
a 224KB file with 50% redundancy LDPC code and a
BCH code capable of correcting 3 errors (writing cost

1.07 bases/bit). Given the high error rate, the ε parame-
ter for the LDPC decoding (see Section 3) was set to 10%
instead of the default value of 4%. The decoding suc-
ceeded at a reading cost of 10.5 bases/bit showing that
the framework can be used even at relatively high error
rates, although it might not be optimal in this setting.

4.1.7 Performance and scalability

The current implementation is written in Python with the
libraries for LDPC codes, BCH codes, barcode removal
and multiple sequence alignment written in C/C++. All
experiments were done on a server with 40-core Intel
Xeon processor (2.20GHz) and 256 GB RAM. For the
50% redundancy LDPC code (experiment #3), encoding
224 KB of data takes 1m30s and uses 4.1 GB of RAM.
Decoding the corresponding reads takes 56s and uses 190
MB of RAM. Most of the resources are consumed by the
single-thread implementation of LDPC encoding and de-
coding, which can be efficiently implemented in hardware
as is done for communication applications. Since the code
works in blocks, the time consumption is linear in the file
size and the memory consumption of the LDPC coding is
constant. Therefore, the proposed scheme is scalable to
large files.

5 Conclusions and future work

In this work we propose practical and efficient error cor-
recting codes for Illumina sequencing-based DNA-based
storage that achieve a better tradeoff between the writ-
ing cost and reading cost as compared to previous works.
The proposed scheme utilizes ideas from modern coding
theory and combines them with heuristics to handle in-
sertion and deletion errors. We believe that the tools,
analysis and insights obtained in this project can be use-
ful beyond DNA-based storage to understand the error
characteristics of synthesis/sequencing platforms and in
developing better bioinformatics algorithms.

Possible future work includes utilizing large block
codes optimized for the DNA-based storage channel in-
stead of the regular LDPC codes and using marker codes
[27] to handle insertions and deletions in a more system-
atic way. The improved insertion and deletion correction
can extend the applicability of the framework to sequenc-
ing platforms such as nanopore sequencing [28] which
have higher insertion and deletion error rates. Another
interesting direction is to incorporate ideas from [18] and
[29] to reduce the inefficiency of index error correction.
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