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Abstract 

Attention Deficit/Hyperactivity Disorder (ADHD), Autism Spectrum Disorder (ASD), Obsessive-
Compulsive Disorder (OCD), and Tourette Syndrome (TS) are among the most prevalent 
neurodevelopmental psychiatric disorders of childhood and adolescence. High comorbidity rates 
across these four disorders point toward a common etiological thread that could be connecting 
them across the repetitive behaviors-impulsivity-compulsivity continuum. Aiming to uncover the 
shared genetic basis across ADHD, ASD, OCD, and TS, we undertake a systematic cross-disorder 
meta-analysis, integrating summary statistics from all currently available genome-wide association 
studies (GWAS) for these disorders, as made available by the Psychiatric Genomics Consortium 
(PGC) and the Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH). 
We present analysis of a combined dataset of 93,294 individuals, across 6,788,510 markers and 
investigate associations on the single-nucleotide polymorphism (SNP), gene and pathway levels 
across all four disorders but also pairwise. In the ADHD-ASD-OCD-TS cross disorder GWAS 
meta-analysis, we uncover in total 297 genomewide significant variants from six LD (linkage 
disequilibrium) -independent genomic risk regions. Out of these genomewide significant 
association results, 199 SNPs, that map onto four genomic regions, show high posterior probability 
for association with at least three of the studied disorders (m-value>0.9). Gene-based GWAS meta-
analysis across ADHD, ASD, OCD, and TS identified 21 genes significantly associated under 
Bonferroni correction. Out of those, 15 could not be identified as significantly associated based on 
the individual disorder GWAS dataset, indicating increased power in the cross-disorder 
comparisons. Cross-disorder tissue-specificity analysis implicates the Hypothalamus-Pituitary-
Adrenal axis (stress response) as possibly underlying shared pathophysiology across ADHD, ASD, 
OCD, and TS. Our work highlights genetic variants and genes that may contribute to overlapping 
neurobiology across the four studied disorders and highlights the value of re-defining the 
framework for the study across this spectrum of highly comorbid disorders, by using 
transdiagnostic approaches. 
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Introduction 

Attention Deficit/Hyperactivity Disorder (ADHD, 5.3%), Autism Spectrum Disorder (ASD, 1.4%), 
Obsessive Compulsive Disorder (OCD, 1-3%), and Tourette Syndrome (TS, 0.6-1%) are among 
the most prevalent developmental psychiatric disorders of childhood and adolescence (1–4). 
Although each of these disorders defines a distinct DSM diagnostic category, they are highly 
comorbid. For instance, up to 55 % of TS patients also present with ADHD symptoms, 50% have 
OCD, and up to 20% present with ASD (5–7). The high comorbidity rates across these disorders 
lend support to the hypothesis of a common etiological thread that connects them across an 
impulsivity-compulsivity spectrum (8). Transdiagnostic approaches may shed light on the biology 
underlying this symptom continuum and hold the promise to identify targets for the development 
of personalized treatments that are still lacking.  

ADHD, ASD, OCD, and TS all have a complex and highly heterogeneous genetic architecture 
with both common and rare genetic variants contributing to their etiology (4,9–12). Consequently, 
identifying and confirming genetic susceptibility factors has been challenging, demanding large 
samples for initial discovery and even larger samples for replication. Over the past few years, 
twelve genome-wide significant loci have been identified for ADHD (13), and five genome-wide 
significant loci were described for ASD (14,15). For OCD no genome-wide significant loci have 
been detected to date (16), while one genome-wide significant locus was recently reported for TS 
(17). 

Based on the hypothesis for a shared etiology across ADHD, ASD, OCD, and TS (18,19), so far, 
several cross-disorder analyses have evaluated the genetic overlap across these disorders revealing 
broad genetic correlations (20–25). Most recently, the Psychiatric Genomics Consortium (PGC) 
presented a meta-analysis of GWAS across eight common psychiatric disorders including ADHD, 
ASD, OCD, and TS, analyzed jointly with GWAS data for anorexia nervosa (AN), bipolar disorder 
(BD), major depression (MD), and schizophrenia (SZ) (20). The study reports significant genetic 
correlations for most pairs of studied disorders, suggesting a complex, higher-order genetic 
structure underlying psychopathology. Exploratory factor analysis revealed three correlated 
factors, which together explained 51% of the genetic variation in the eight studied neuropsychiatric 
disorders. Early-onset disorders including ADHD, ASD, and, TS fell in one of the three identified 
factors (together with MD) while TS was also found in another factor together with compulsive 
disorders including OCD and AN. Variant-level analyses with all eight disorders analyzed jointly, 
supported the existence of substantial pleiotropy, with nearly 75% of the 146 genome-wide 
significant Single Nucleotide Polymorphisms (SNPs) influencing more than one of the eight 
examined disorders. Two loci among the ones that were found significant from the eight-disorder 
analysis were also reported with high confidence association for the four disorders that are the 
focus of the current study (implicating genes DCC and RBFOX1). These results further support 
the existence of shared neurobiology across traditional diagnostic boundaries revealing genetic 
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loci that may have a pleiotropic effect across multiple psychiatric disorders. Thus studies that focus 
on cross-disorder etiology in finer detail are warranted. 

Motivated by the high comorbidity rates and existing hypotheses for shared etiology across ADHD, 
ASD, OCD, and TS we focus on cross-disorder GWAS meta-analysis among these specific 
phenotypes. We integrate all currently available genome-wide data for these disorders and perform 
systematic cross-disorder meta-analyses seeking to identify shared and divergent genetic factors 
across four disorders that are often observed comorbid in childhood and adolescence. Our work 
highlights variants and genes that may contribute to neurobiology across the impulsivity-
compulsivity spectrum of phenotypes. 

 

Methods 

Data sources 

Analyses were conducted using summary statistics from GWAS for ADHD, ASD, OCD, and TS 
as made available by the PGC. For ADHD, samples were collected by iPSYCH and PGC, with 
most of the samples genotyped using the Illumina PsychArray. Only samples of European ancestry 
were included in our analyses, comprising 19,099 cases and 34,194 ancestry-matched controls. In 
total, 8,047,421 variants overlapping across all cohorts after imputation were analyzed (13).  

For ASD, we acquired the summary statistics of 18,382 cases and 27,969 ancestry-matched 
controls of European ancestry collected by iPSYCH and PGC. Most of the samples were 
genotyped with the Illumina PsychChip. After meta-analysis, 9,112,387 variants overlapping 
across sample sources were available (15).  

For OCD, we used results from a meta-analysis of GWAS from two consortia: International 
Obsessive Compulsive Disorder Foundation Genetics Collaborative (IOCDF-GC) (26) and OCD 
Collaborative Genetics Association Studies (OCGAS) (27), which led to a total of 2,688 affected 
samples and 7,037 ancestry-matched controls from Europe. Samples were genotyped with multiple 
different Illumina’s BeadChip arrays. After meta-analysis, 8,409,517 variants were found overlap 
and used for our study (16).  

For TS, we combined results from the first GWAS on TS, conducted by Scharf et al. (28) and 
newly collected cases and controls. In total, 4,232 cases and 8,283 ancestry-matched controls were 
used for the analysis, which resulted in 8,868,895 variants overlapping in the meta-analysis. These 
summary statistics correspond to the GWAS carried out by Yu et al. (17), without samples from 
the Tic Genetic Consortium.  

For all data obtained from the PGC, Ricopili pipeline (https://github.com/Ripkelab/ricopili/wiki) 
or comparable quality controls were carried out.  
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Linkage disequilibrium (LD)-score regression to estimate genetic correlation across 
disorders 

LD-score regression analysis was carried out using the LDSC package (29). Only common SNPs 
(MAF > 0.01) with an imputation quality (INFO) score > 0.9 and matched with the provided 
HapMap3 SNPs reference were analyzed. LD scores estimated for the European samples from the 
1000 Genomes phase 3 (30) were used as both the independent variable and the weight for the 
regression.  

GWAS meta-analysis  

To investigate the genetic variants underlying the observed overlap, cross-disorder meta-analysis 
was carried out for all four disorders combined, as well as for each individual pair of disorders that 
we found to be significantly correlated. SNP-based GWAS meta-analyses was performed using 
ASSET (31), which takes into account dependency across studies due to sample overlap (32). For 
each study, the variants’ effect sizes were measured by the logarithm of the odds ratio (OR). The 
possibility of inflation of results was investigated through observed λ as well as the sample size -
corrected value λ1000. Variants with meta-analysis p-values below the genome-wide significance 
threshold (p < 5 x 10-8) were considered significant. To further highlight SNPs that contribute to 
risk across multiple phenotypes, we estimated the posterior probability of association (referred to 
as the m-value) with each disorder using a Bayesian statistical framework as implemented by 
MetaSoft (33). An m-value threshold of 0.9 has been recommended to predict with high confidence 
that a particular SNP is associated with a given disorder. 

Gene-based cross-disorder GWAS analysis 

Gene-based cross-disorder GWAS analysis was carried out using the MAGMA plug-in on the 
FUMA GWAS annotation platform (34,35). For this analysis, variants were mapped onto genes 
based on their exact physical positions without extended windows and aggregated association p-
values were calculated for each gene. Analysis was carried out under a SNP-wise (mean) model. 
Considering the sample composition, a European ancestry reference from 1000 Genomes phase 3 
was used as the reference panel. Analysis was done with the summary statistics of each disorder 
individually as well as all meta-analysis results obtained. Significance thresholds were set applying 
Bonferroni correction for each analysis, corresponding to the number of genes being tested.  

Gene-property analysis for tissue specificity 

To investigate phenotypic tissue specificity, a gene-property analysis testing for the relationship 
between tissue-specific gene expression and phenotype for associated genes was carried out using 
MAGMA for meta-analysis results with both GTEx v7 30 and 53 general tissue type expression 
atlas (36). Significant thresholds for these analyses were p-value < 1.67 x 10-3 and p-value < 9.43 
x 10-4, respectively, under Bonferroni correction. The analysis was done for both the four-disorder 
and all the significantly correlated disorder pairs. 
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Gene-set analysis 

Gene-set analysis was also performed using MAGMA under a default competitive test. Gene sets 
and gene ontology (GO) terms tested were obtained from MsigDB v 6.1 
(http://software.broadinstitute.org/gsea/msigdb), which contains 10,655 gene sets consistent 
across multiple sources. Bonferroni correction was applied to calculated association p-values to 
determine significance.  

Results annotation 

SNP-based annotation and gene mapping were carried out for significant SNPs with ANNOVAR 
(37), including functional predictions for all significant non-synonymous mutations using SIFT 
(38) and PolyPhen-2 (39) plug-ins of ANNOVAR. Regional plots for the top-variants were created 
for 400 kb windows using the LocusZoom platform (40). For all significant results from our SNP-
based and gene-based meta-analyses, we looked up previously reported associations in the GWAS 
catalog (41). Aggregate functional information and tissue expression levels of the genes were 
acquired from the GeneCards database (42), the GTEx Portal (43), and the Expression Atlas (44). 
Annotation of independent genomic risk loci from the FUMA GWAS platform was also adopted 
under parameters LD r2 < 0.6 for SNPs with association p < 5 x 10-5 and within 1000 kb away 
from the significant lead-SNP (p < 5 x 10-8). GO-annotation and the over-representation tests were 
performed using the R package ClusterProfiler v3.0.4 (45). Genes were mapped onto GO-terms 
based on org.Hs.eg.db (46). Enrichment of GO-terms was evaluated through a hypergeometric test 
(47). Network plotting was carried out using the built-in function of ClusterProfiler.  

Transcriptome-wide association study 

Association between the studied disorders and gene expression levels in the brain was evaluated 
through summary-data-based Mendelian Randomization. The SMR software was used and 
analysis was performed for each individual disorder as well as using results from our GWAS meta-
analyses (48). We used GWAS summary statistics for each studied disorder (as described above), 
the LD structure from from 1000 Genomes European reference panel and summary statistics from 
brain expression quantitative trait loci (eQTL) analysis (49), which quantified the effect of SNPs 
over gene expression levels in brain tissue (36,50). Only variants showing a consistent allele 
frequency (pairwise MAF difference between datasets no more than 0.20) across all three datasets 
(GWAS summary statistic, 1000 Genome reference, and eQTL summary statistic) were included 
in the analysis. All transcript probes with at least one cis-eQTL site showing peQTL< 5 x 10-8 were 
taken into consideration. SNPs affecting the same probe with LD r2 > 0.9 or < 0.05 were pruned 
out from the analyses. Significance thresholds were based on Bonferroni correction for the number 
of probes tested.  

To further verify that the effect of a probe on the trait was mediated by shared causal variants 
affecting both its expression and the trait rather than different variants in LD, we also carried out 
the HEterogeneity InDependent Instruments (HEIDI) test to evaluate the heterogeneity in the 
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effect sizes of SNPs over trait and expression for each probe, evaluated as pHEIDI. As a default of 
the software, only SNPs with peQTL < 1.5654 x 10-3 were taken forward for this analysis. Up to top 
20 independent SNPs in the cis-eQTL region were used for each tested probe to optimize the test 
power. A pHEIDI > 0.05 indicates the existence of a shared cause underlying the expression level of 
a transcript probe and the trait, suggesting dysregulation of the transcript is functionally relevant 
to the trait. 

 

Results 

Genetic correlation across ADHD, ASD, OCD, and TS 

First, we evaluated the extent of genetic overlap across ADHD, ASD, OCD, and TS using LD-
score regression (Table 1). Results were in concordance with previous estimates (20). High genetic 
correlations were observed between all pairs of disorders, except for ASD and OCD. The highest 
genetic correlation was found between OCD and TS (rg = 0.3846, p = 0.0002), while a negative 
genetic correlation was observed between ADHD and OCD (rg = -0.1695, p = 0.0216). All 
regression intercepts for individual disorder heritability estimations were close to 1 (ADHD: 
1.0334 (0.0101); ASD: 1.0084 (0.0096); OCD: 0.9928 (0.0068); TS: 1.0125 (0.0066)), indicating 
no signs of inflation.  
Table 1. LD score regression analysis showing pairwise genetic correlation across ADHD, ASD, OCD, and TS. #SNPs 
= number of overlapping SNPs used in the analysis; Rg = genetic correlation; SE, P = standard error and p-value for 
Rg; Intercept (SE) = Intercept for genetic correlation and corresponding standard error. 

 

		

Disorder pairs 

ADHD/ASD ADHD/OCD ADHD/TS ASD/OCD ASD/TS OCD/TS 

#SNPs 1042563 1030018 1062415 1012959 1044625 1100873 

Rg 0.3459 -0.1695 0.2555 0.1185 0.177 0.3846 

SE 0.0511 0.0738 0.06 0.0827 0.0638 0.1042 

P 1.33E-11 0.0216 2.05E-05 0.1517 0.0055 0.0002 

Intercept 
(SE) 

0.3626 
(0.0073) 

0.0082 
(0.006) 

0.0136 
(0.0064) 

-0.0003 
(0.0063) 

0.0045 
(0.0056) 

0.0728 
(0.005) 

 

Cross-disorder meta-analysis of ADHD, ASD, OCD, and TS GWAS  

In order to identify genetic loci that are associated with patient phenotype across the spectrum of 
ADHD, ASD, OCD, and TS, we performed meta-analysis of available GWAS datasets. Combining 
all four datasets described above, 93,294 non-overlapping samples (including 51,311 controls) 
were available for analysis. After all filtering and cross-datasets alignment (as described in 
methods), 6,788,510 variants were retained. We found λADHD-ASD-OCD-TS = 1.185, corrected λ1000 = 
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1.0040, showing little sign of inflation (Figure 1). We observed 297 genome-wide significant 
variants mapping onto six LD-independent genomic risk regions (Figure 1, Table S1, S2). 177 of 
the significant SNPs showed same direction of effect in all four disorders. Although we did not 
identify any SNP with m-value > 0.9 in all four disorders, all significant results had m-value > 0.9 
in at least two of the disorders, and 199 were associated with m-value > 0.9 in three of the four 
disorders (Table S1). These 199 SNPs correspond to four genomic regions as shown in Table 2. 
The top result of the ADHD-ASD-OCD-TS GWAS meta-analysis was rs2144782 on chromosome 
20, gene KIZ/KIZ-AS1. Three of the studied disorders (ADHD, ASD, and OCD) showed strong 
probability of association with this particular SNP (p = 4.18 x 10-10, mADHD = 1, mASD = 1, mOCD = 
0.911, mTS = 0.672). Furthermore, two significantly associated SNPs in this region had m-values > 
0.8 in all four disorders indicating high probability for a cross-disorder effect (rs12625304, p = 
8.12 x 10-9, mADHD = 0.986, mASD = 1, mOCD = 0.918, mTS = 0.881 and rs57080033, p = 2.90 x 10-

8, mADHD = 0.999, mASD = 1, mOCD = 0.83, mTS = 0.911). This top region on chromosome 20 has 
also been previously highlighted by the ASD individual GWAS as well as results from the Cross-
Disorder GWAS on eight different psychiatric disorders, although it was not reported among the 
most broadly pleiotropic ones (SNP rs6047287, p = 2.72 x 10-10) (Cross-Disorder Group of the 
Psychiatric Genomics Consortium et al., 2019).   
Table 2. Cross-disorder ADHD-ASD-OCD-TS GWAS meta-analysis: Genetic risk loci hosting SNPs with m-value > 
0.9 in at least three disorders (SNPs showing m-value>0.9 in at least 3 disorders that has the lowest P value in each 
region are shown). 

 

SNP CHR BP P Region Gene(s) 
ADHD m-

value 
ASD m-

value 
OCD m-

value 
TS m-
value 

rs2144782 20 21176604 4.18E-10 20p11.23 KIZ-AS1, KIZ 1 1 0.911 0.672 

rs325506 5 104012303 4.85E-10 5q21.2 Intergenic 1 1 0.13 0.981 

rs324895 5 87913831 6.22E-09 5q14.3 LINC00461 1 0.999 0.419 0.935 

rs7318041 13 78857224 2.64E-08 13q22.3 RNF219-AS1 1 1 0.264 0.908 

 

In order to investigate cross-disorder relationships in finer detail, we performed pairwise SNP-
based GWAS meta-analysis for those pairs of disorders that were significantly correlated (Table 
1). Across ADHD and ASD, 8,093,883 overlapping variants were analyzed (λADHD-ASD = 1.195, 
λ1000 = 1.0052). In this case, 374 SNPs surpassed the significance threshold (Figure 2, Table S1). 
These corresponded to seven independent genomic risk regions, one of which has not been 
previously reported as associated with either disorder, (gene MANBA, Table S2). The top-result of 
the ADHD-ASD GWAS meta-analysis was rs1222063 (p = 7.61 x 10-11, mADHD = 1, mASD = 1), an 
intergenic SNP on chromosome 1, residing between LOC102723661 (distance = 114,004 bp) and 
LINC01787 (distance = 117,185 bp). All 374 variants shared the same direction of effect and had 
m-values > 0.9 for both disorders indicating high probability for cross-disorder effect. 
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Across ADHD and OCD we analyzed 6,817,924 shared variants that passed the heterogeneity filter 
(λADHD-OCD = 1.2020, λ1000 = 1.0071). 152 variants in six independent genomic regions were 
genome-wide significant, with one of them not identified in either ADHD or OCD individual study 
but showing m > 0.9 for both disorders here (Figure 2, Table S1, S2). As expected due to the 
negative genetic correlation uncovered between ADHD and OCD, 48 out of 152 significant SNPs 
showed opposite direction of effects in the two disorders and were driven by the ADHD GWAS 
(Table S1). Accordingly, only five of the variants showed m-value > 0.9 in both disorders, which 
can be mapped onto three independent risk loci (gene SPAG16, FOXP2 and intergenic region on 
4p16.3, table S1, S2). The top-association in the ADHD and OCD meta-analysis was found at 
rs113551349 (p = 5.25 x 10-11, mADHD = 1, mOCD = 0.795) on chromosome 1, an intronic region of 
gene SLC6A9. On the other hand, the top SNP showing m-value > 0.9 in both disorders was 
rs9677504 (p = 8.04 x 10-10, mADHD = 1, mOCD = 0.995) on chromosome 1, gene SPAG16. 

 
Figure 1. Cross-disorder ADHD-ASD-OCD-TS GWAS SNP-based meta-analysis. A. Manhattan plot and QQ plot 
for ADHD-ASD-OCD-TS GWAS meta-analysis. Genes harboring genome-wide significant SNPs are shown. An 
asterisk (*) indicates genes hosting SNPs with m-value > 0.9 in at least three disorders.; B. Forest plots for the top 
three SNPs; C. Forest plots for SNPs with m-value > 0.8 in all studied disorders; D. Regional plot for top three 
independent genetic loci. 
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Analysis across ADHD and TS was performed over 6,815,758 overlapping variants (λADHD-TS = 
1.2230, λ1000 = 1.0074), showing no sign of inflation. A total of 372 significant SNPs were 
identified (Figure 2, Table S1). The significant SNPs fell onto 16 independent genomic regions, 
six of which were novel (including variants at genes CD160, NBPF10, NBPF19, NBPF20, 
FBXL17, MALRD1, and PIDD1) (Table S2). All significant SNPs shared the same direction of 
effect, with almost half them (n=162) associated with m-values > 0.9 for both disorders studied 
and corresponding to as many as 12 different regions (Table S1, S2). The top-result was located 
on chromosome 1, rs112361411 and was possibly driven by the ADHD GWAS (p = 2.30 x 10-12, 
mADHD = 1, mTS = 0.477). This variant resides within a non-coding RNA gene LOC101929592 and 
was also detected in the individual GWAS on ADHD. On the other hand, the top result with high 
probability of shared effect across ADHD and TS was rs4660740 (p = 4.07 x 10-12, mADHD = 1, 
mTS = 0.909) on chromosome 1, gene KDM4A. This locus has been previously associated with 
ADHD.  

ASD and TS available GWAS datasets shared 7,499,503 SNPs. We found λASD-TS = 1.1440, λ1000 
= 1.0052, showing no sign of inflation. A total of 15 SNPs were genome-wide significant (Figure 
2, Table S1). Four independent genomic risk regions were highlighted, one of which (at gene 
KANSL1) was not identified in either individual disorder GWAS (Table S2). The top-result, which 
had also been detected in the ASD GWAS, was rs1000177 (p = 1.79 x 10-9, mASD = 1, mTS = 0.758) 
on chromosome 20. It is found in an intergenic region nearby KIZ (distance = 5,940 bp). As stated 
earlier here, this gene was also among the top- results of our four-disorder combined meta-analysis 
as well as the ADHD-ASD meta-analysis. All the significant SNPs had the same direction of effect 
in both disorders. Eight of the significant SNPs had m-values > 0.9 for both ASD and TS 
corresponding to two genomic risk regions (Table S1). Highest probability of shared effect for 
both ASD and TS was found for rs325506 (p = 9.42 x 10-9, mASD = 1, mTS = 0.984) which lies on 
an intergenic region of chromosome 5. 

Across the OCD and TS GWAS, 8,112,469 overlapping variants were available for analysis (λOCD-

TS = 1.0020, λ1000 = 1.0002). No genome-wide significant SNP had been identified in the individual 
GWAS of OCD, and only a limited number of significant variants were revealed in the TS GWAS. 
In the meta-analysis across TS and OCD, we found 21 genome-wide significant variants (top-
result rs140347666 (p = 5.64 x 10-9, mOCD = 0.999, mTS = 1); Figure 2, Table S1, S2); all significant 
SNPs were located in the same genomic risk region (chromosome 2, non-coding RNA gene 
LINC01122) and had the same direction of effect. All 21 SNP showed m-values > 0.9 for both TS 
and OCD, indicating high homogeneity across both disorders.  
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Figure 2. Manhattan plots and QQ plots for pairwise cross-disorder GWAS meta-analyses. An asterisk (*) indicates 
genes hosting SNPs with m-value > 0.9 in both disorders.  A. ADHD-ASD GWAS meta-analysis; B. ADHD-OCD 
GWAS meta-analysis; C. ADHD-TS GWAS meta-analysis; D. ASD-TS GWAS meta-analysis; E. OCD-TS GWAS 
meta-analysis.  
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Cross-disorder gene-based association and tissue-specificity analysis 

We proceeded to perform gene-based and tissue-specificity analysis across ADHD, ASD, OCD, 
TS. With 18,450 protein-coding genes tested, the significance threshold for our gene-based 
analysis for the four-disorder combined meta-analysis (ADHD, ASD, OCD, TS) was 2.71 x 10-6 
after Bonferroni correction. Our gene-based analysis highlighted 21 genes as significantly 
associated in the ADHD-ASD-OCD-TS meta-analysis. Out of those, 15 could not be identified as 
significant based on analysis of the individual disorder GWAS dataset, indicating increased power 
in the cross-disorder comparisons (Table S3). The top-result was XRN2 (p = 2.08 x 10-9) on 
chromosome 20 (Figure 3, Table S3). The full list of significant results from our gene-based 
analysis for all four disorders as well as comparisons to results from the pairwise meta-analyses 
can be found in Figure 4 and Table S3. No gene was significant across all six meta-analyses while 
eight genes were found significant in three or more analyses (Table S3).  

 
Figure 3. ADHD-ASD-OCD-TS cross-disorder gene-based GWAS meta-analysis. Manhattan plot (A) and QQ plot 
(B).  

 

In order to better visualize our results while investigating the pathways and interactions among the 
top risk genes across ADHD, OCD, ASD and TS, we constructed GO-based networks for the top 
200 genes from each gene-based association analysis as well as genes annotated from the SNP-
based GWAS meta-analyses. Results are shown in Figure 5 and Figure S1-S5. Pathways related 
to neuronal development, axonogenesis, and synaptic structure and organization were highlighted 
among the most significant in our analysis. These results were further strengthened by gene-
property analyses, which showed enrichment of our top associated loci in genes expressed in brain 
tissues (Figure 6). In the tissue specificity analysis based on the ADHD-ASD-OCD-TS GWAS 
meta-analysis results, significant enrichment was found for genes expressed in the basal ganglia, 
hypothalamus, areas of the frontal cortex, and in the anterior cingulate cortex (Table S4). 
Additional brain regions implicated by our analysis were frontal cortex, cerebellum, amygdala, 
and hippocampus (Table S4). Furthermore, enrichment for genes expressed in the pituitary was 
also found among the top implicated regions from the ADHD-ASD-OCD-TS, ADHD-ASD and 
ADHD-TS GWAS meta-analyses. Intriguingly, besides showing enrichment of gene expression  
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Figure 4. Manhattan plots for pairwise gene-based GWAS meta-analyses. A. ADHD-ASD gene-based analysis; B. 
ADHD-OCD gene-based analysis; C. ADHD-TS gene-based analysis; D. ASD-TS gene-based analysis; E. OCD-TS 
gene-based analysis. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 16, 2019. ; https://doi.org/10.1101/770222doi: bioRxiv preprint 

https://doi.org/10.1101/770222
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 15 

 

 
Figure 5. Gene networks for top genes in cross-disorder ADHD-ASD-OCD-TS GWAS meta-analysis. A. Top ten 
gene networks based on top 200 genes from SNP-based ADHD-ASD-OCD-TS meta-analyses results. B. Top ten gene 
networks based on top 200 genes from ADHD-ASD-OCD-TS gene-based analyses.  
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in the brain (including hypothalamus, Figure S6), and pituitary, the four-disorder combined cross-
disorder analysis also identified an enrichment of gene expression in the adrenal gland thus 
pointing to involvement of the Hypothalamus-Pituitary-Adrenal gland axis across ADHD, ASD, 
OCD, and TS (Figure 6, S6 and Table S4).  

 
Figure 6. ADHD-ASD-OCD-TS cross-disorder tissue specificity analysis testing 30 general tissue types from GTEx 
v7 tissue expression atlas. Red bar indicates significant enrichment of gene expression in corresponding tissue under 
Bonferroni correction (p < 1.67 x 10-3). Panel on top right corner of each figure shows detailed statistics for 
significantly enriched tissue. A. ADHD-ASD-OCD-TS cross-disorder tissue specific expression enrichment; B. 
ADHD-ASD cross-disorder tissue specific expression enrichment; C. ADHD-OCD cross-disorder tissue specific 
expression enrichment; D. ADHD-TS cross-disorder tissue specific expression enrichment; E. ASD-TS cross-disorder 
tissue specific expression enrichment; F. OCD-TS cross-disorder tissue specific expression enrichment.  
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Transcriptome-wide association results 

Next, we incorporated eQTL information into our meta-analyses and performed transcriptome-
wide association analyses, aiming to identify genes with expression levels associated across the 
studied disorders. For the ADHD-ASD-OCD-TS combined transcriptome-wide analysis, we used 
a total of 6,710,493 SNPs from the meta-analysis summary statistics which also presented in both 
1000Genome and the eQTL summary statistics. In total 7,295 transcript probes were analyzed, 
corresponding to a significance threshold of pSMR < 6.85 x 10-6. Under this threshold, five transcript 
probes were significant, all located on chromosome 17. Two of them also satisfied the pleiotropy 
hypothesis, which indicates the existence of variants with a shared effect over both gene expression 
level and trait. Among all significant transcripts, the top-result was from the LRRC37A4P probe 
(pSMR = 2.20 x 10-6, pHEIDI = 0.0843). This corresponds to the transcript of a pseudogene in region 
17q21.3, localizing near KANSL1. The two significant, pleiotropic transcripts also turned out to be 
significant in the ASD-TS pairwise analysis we performed. Comparison of significant results 
obtained from all meta-analyses can be found in Table 3.  
Table 3. Significant results from Transcriptome-wide association analyses. pSMR = p-value for transcriptome-wide 
association analysis; PHEIDI = p-value for heterogeneity in dependent instruments (HEIDI) test. PHEIDI > 0.05 indicates 
a pleiotropic SNP effect over both the trait and the probe expression. 

 

CHR Gene 
ADHD-ASD-OCD-TS ADHD-TS ASD-TS 

Beta SE pSMR PHEIDI  Beta SE pSMR PHEIDI  Beta SE pSMR PHEIDI  

11 AP006621.1     0.0491 0.0109 6.67E-06 5.63E-01     

11 AP006621.5     0.0540 0.0110 9.73E-07 1.42E-01     

17 LRRC37A4P -0.0333 0.0070 2.20E-06 8.43E-02     -0.0561 0.0112 5.58E-07 1.68E-01 

17 RP11-707O23.5 0.0308 0.0067 3.90E-06 8.45E-02     0.0536 0.0106 3.83E-07 8.53E-02 

17 RP11-798G7.6         0.1239 0.0268 3.78E-06 4.87E-01 

17 KANSL1-AS1         0.0487 0.0104 3.09E-06 5.26E-02 

17 RP11-259G18.2         0.0512 0.0104 9.33E-07 1.48E-01 

18 MPPE1                 -0.0632 0.0139 5.89E-06 1.76E-01 

 

We also ran transcriptome-wide association analyses for each individual disorder. After 
Bonferroni correction, significant results were only observed for ADHD and ASD. For ADHD, 
out of 7,295 probes tested, one was found significant (with pSMR < 6.85 x 10-6 as significance 
threshold) without showing heterogeneity of effect over expression and trait (pSMR = 6.25 x 10-6, 
pHEIDI = 0.136). This probe tags PIDD on chromosome 11. For ASD (7,445 probes tested, with 
pSMR < 6.72 x 10-6 as significance threshold), probes for LRRC37A4P (pSMR = 2.22 x 10-6, pHEIDI = 
0.110) and RP11-259G18.2 (pSMR = 4.37 x 10-6, pHEIDI = 0.277) on chromosome 17 were 
significant. 
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Discussion 

To our knowledge, this is the first study focusing on the detailed investigation of the shared genetic 
basis across ADHD, ASD, OCD and TS. Using available GWAS summary statistics for each 
individual disorder, we uncovered clues to the potential etiological overlap that may underlie the 
studied phenotypes. Pairwise LD-score regression results were concordant with previous PGC 
analysis (20), indicating high genetic correlations across the spectrum of studied phenotypes with 
two exceptions that have also been previously reported (20): the genetic correlation between ASD 
and OCD was not significant and there was a negative genetic correlation between ADHD and 
OCD. The lack of significant correlation between ADHD and OCD could potentially be due to the 
limited sample size of the OCD dataset. On the other hand, the negative genetic correlation 
between ADHD and OCD indicates that genetic variants operate in opposite directions in the 
development of these two disorders. From a clinical perspective, this is quite intuitive since ADHD 
and OCD may be thought of as lying at opposite extremes of the impulsivity-compulsivity 
continuum. 

We successfully uncovered 297 genome-wide significant variants from six LD-independent 
genomic risk regions in the ADHD-ASD-OCD-TS GWAS cross-disorder meta-analysis. 
Interestingly, out of all the significant SNPs, as many as 261 could not be identified as significant 
at a genome-wide level based on any of the individual disorder GWAS datasets, indicating a 
boosted statistical power through the meta-analysis. All the significant results showed evidence of 
shared effect in at least two of the disorders, and 199 SNPs (mapping onto four genomic regions), 
showed high probability of association in three of the four disorders (as defined by m-value>0.9). 
The top-significant genomic risk locus showing also high probability for association across the 
studied disorders was region 20p11.23. Our top genomic risk locus had also been previously 
identified as significant in the individual ASD GWAS (15) and was also found significant in all 
our meta-analyses described here with the ASD GWAS involved. Furthermore, this region was 
also found significant in the eight psychiatric disorder meta-analysis carried out by the Cross-
Disorder Group of the Psychiatric Genomics Consortium (20) with leading SNP rs6047287, p = 
2.72 x 10-10). Gene KIZ hosts many of the top significant SNPs uncovered by our cross-disorder 
meta-analysis. It is widely expressed in diverse human tissues and is involved in cell mitosis. It is 
a core gene in the Polo-Like Kinase 1 (PLK1) pathway and is critical for regulating human spindle-
pole formation (51,52). Previous work has shown that neurogenesis and the earliest phases of 
neuronal differentiation are compromised by spindle misorientation (51). Furthermore, KIZ is 
associated with systemic lupus erythematosus (53), and peanut allergy (54). These associations 
indicate a possible role of KIZ in immune response, a mechanism which is also implicated in TS 
etiology (55). Our ADHD-ASD-OCD-TS cross-disorder GWAS meta-analysis also highlighted 
the role of genomic regions 5q21.2 and 5q14.3 with significant effects contributed by ADHD, 
ASD, and TS. Duplication of the 5q21.2 region has been previously reported as a clinically 
significant copy number variation (CNV) in schizophrenia (56) 
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The top result from our four-disorder gene-based analysis was XRN2 (ADHD/OCD/ASD/TS-p = 
2.08 x 10-9, ADHD/ASD-p = 2.24 x 10-9, ASD/TS-p = 8.11 x 10-9). This gene is widely expressed 
in various human tissues and encodes an essential nuclear 5’→3’ exoRNase with many functions 
in the processing and regulation of RNA molecules (57). It has been previously associated with 
ASD (15,58). Furthermore, a recent large-scale transcriptome association study in ASD identified 
significant differential expression and splicing of XRN2 in ASD, further suggesting a functional 
role of XRN2 in this neurodevelopmental disorder (58).  

SORCS3 (ADHD/OCD/ASD/TS-p = 2.56 x 10-9, ADHD/ASD-p = 1.04 x 10-9, ADHD/OCD-p = 
2.82 x 10-8, ADHD/TS-p = 3.51 x 10-9) was the second top-gene in the four-disorder gene-based 
meta-analysis. This gene encodes a member of the vacuolar protein sorting 10 (VPS10) receptor 
family, which controls intracellular protein signaling in neurons and regulates neuronal viability 
through many pathways (59). It is highly expressed in brain tissues (36), and it has been previously 
implicated in neurological disease including ADHD and ASD etiology (13,15). Multiple studies 
indicate a relationship between SORCS3 and the accumulation of amyloid, which is linked to 
Alzheimer disease (60,61). It is also associated with major depression in individuals of European 
descent (62). Moreover, its interaction with postsynaptic proteins, such as PICK1, indicates that 
the product of SORCS3 regulates glutamate receptor function (63,64). As one of the major 
neurotransmitters in the human brain, the glutamate pathway has long been hypothesized to 
underlie abnormalities in ADHD, ASD, OCD, and TS and is a possible therapeutic target for these 
disorders (65–68).  

Several of our top findings, including the SORCS3 region on chromosome 10, the KIZ region on 
chromosome 20, and an intergenic region on chromosome 5, were also reported as genomewide 
significant in the recent GWAS meta-analysis of the PGC seeking pleiotropic loci across a broad 
spectrum of eight psychiatric disorders, including the four that are the focus of our study here (20). 
In fact, SORCS3 and region chr5: 103,791,044-104,055,261 were reported among those genomic 
regions with broad cross-disorder association across the eight psychiatric disorders analyzed (20), 
indicating that they may have a general effect over neuropsychiatric disorders rather than specific 
for the disorders of high comorbidity and high prevalence in childhood and adolescence that we 
analyzed here. On the other hand, the two regions (region 18q21.2, gene DCC and region 16p13.3, 
gene RBFOX1) that were revealed as the most broadly pleiotropic in the PGC cross-disorder 
analysis were not found genomewide significant here, possibly due to differences in sample 
composition. Note however, that DCC is indeed revealed as one of the nodes in the gene-network 
analysis of the top 200 genes annotated from the SNP-based analysis for ADHD-ASD-OCD-TS, 
ADHD-OCD, ADHD-TS and network obtained from top 200 genes of the gene-based analysis for 
ADHD-ASD that we performed (Figure 5, Figure S2). 

Among the top genes that we found associated in the ADHD-ASD-OCD-TS GWAS meta-analysis, 
we observed enrichment for genes expressed in the brain. Our results provide further support for 
the involvement of the basal ganglia across all disorders analyzed here. Dysfunction of the basal 
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ganglia has been observed in all four studied disorders (69–72). Interestingly, our analyses also 
implicate the involvement of the hypothalamus-pituitary-adrenal (HPA) axis, in accordance with 
previous studies implicating this system in multiple childhood-onset psychiatric traits including 
ADHD and TS (73–77). The HPA axis plays a critical role in human stress response through the 
regulation of cortisol secretion (78). Low-cortisol responsivity to stress was proposed as a 
biomarker for certain types of ADHD, indicating a possibly altered HPA axis activity in this 
disorder (79). Altered cortisol levels among TS individuals have also been reported, with a 
negative correlation between evening cortisol and patients’ tic severity and higher cortisol levels 
in response to stress. Both observations further support the potential involvement of the HPA axis 
(80). 

Gene ontology analyses highlighted the involvement of pathways related to neuronal development, 
cell adhesion, axonogenesis, synaptic structure, and synaptic organization. Furthermore, many of 
our top associated genes had been previously associated with intelligence (81), cognitive abilities 
(82), depressive symptoms (83), neuroticism (84), and neurological disorders such as Parkinson 
disease (85). Based on the observation that enriched gene expression was found in brain tissues 
for most of the disorder combinations we also investigated, transcriptome-wide association 
analysis was carried out to highlight genes for which a variation in brain gene expression may be 
causally linked to phenotypes of interest. Our results highlight the role of genomic region 17q21.3 
as a locus shared by all four disorders. This region was also identified as an independent genomic 
risk region from our annotation for SNP-based analyses. The top result of our four-disorder 
combined transcriptome-wide analysis was from transcript of LRRC37A4P. Even though it is a 
pseudogene, altered transcription levels of this probe have been observed in multiple neurological 
conditions, including Alzheimer disease and ASD (86–89). Furthermore, the implicated region has 
been previously found as contributing to various neurodevelopmental or neurodegeneration 
processes (90–94).  

Although we provide results on the largest available combined dataset across ADHD, ASD, OCD, 
and TS, available datasets varied in size for each of the studied disorders. The unbalanced sample 
size across the studied datasets is one of the limitations of our study with results sometimes driven 
by the larger studies and greater difficulty in uncovering loci of importance for under-represented 
disorders. In order to mitigate this problem, we ran analyses using different pairwise combinations 
of disorders and we placed emphasis on investigating and reporting the SNP posterior probability 
of association (m-value) for each disorder in order to allow better interpretation of results and 
provide higher confidence for shared effect across multiple disorders. Existing overlap across the 
studied samples was another challenge (< 6% case overlap in the datasets that we studied). In order 
to tackle this problem, we used ASSET, which takes into account known sample overlap to control 
the inflation in meta-analysis results. 

In conclusion, through a series of systematic genome-wide association meta-analyses we 
uncovered multiple loci that may underlie biological mechanisms across ADHD, ASD, OCD, and 
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TS. Our results provide further support for the hypothesis of a common etiological basis across 
this spectrum of often comorbid neurodevelopmental phenotypes. Both the SORCS3 region and 
the intergenic region 5q21.2 that were picked up by our study on the four related disorders, were 
also highlighted as highly pleiotropic loci in the eight-disorders study by the Cross-Disorder Group 
of the Psychiatric Genomics Consortium (20), indicating a broader functional impact of these 
regions across multiple psychiatric disorders. However, here we also identify many additional 
genes and genomic risk loci that could play a more specific role across the spectrum of the ADHD, 
ASD, OCD, TS phenotypes. The existing evidence for a common genetic background across these 
highly comorbid disorders highlights what seems to become a recurrent theme across the studies 
on neuropsychiatric disorders: the importance of thinking across diagnostic boxes when attempting 
to understand neurobiology. Towards this end, large well-characterized cohorts of patients will be 
necessary as well as the harmonization of existing clinical databases spanning the disorder 
spectrum. Analyzing across a spectrum of intermediate phenotypes may hold the promise to 
identify novel targets for improved therapies focusing on an individual patient rather than a broadly 
defined diagnostic category. 

 

Supplementary Material 

Supplementary Tables – Legends 

 

Table S1. Summary statistics for all significant results from SNP-based GWAS meta-analyses 
across ADHD, ASD, OCD, TS (four-disorder and pairwise analysis, each in corresponding 
worksheet). m-value = Posterior probability for association for each individual disorder; 
SIFT/Poly1/Poly2 = functional prediction for nonsynonymous exonic SNPs; HetISq = 
heterozygosity I2 statistic; HetChiSq = heterozygosity chi-square statistic; HetPVal = 
heterozygosity test p-value; disorder-OR/P = odds ratio statistic and p-value in the original 
individual disorder GWAS study. 

Table S2. Full annotation of top genomic risk regions from SNP-based GWAS meta-analyses. An 
asterisk (*) indicates novel LD regions not been reported associated with corresponding traits in 
published GWAS. rsID = rsID of the leading SNP of the region; p = p-value of the leading SNP 
from the meta-analysis; Study = Previous studies reporting significant association at this locus; 
trait = trait reported associated with the locus by the study; reported gene = gene reported by the 
study; mapped gene = gene mapped onto the reported region. 

Table S3. Significant genes from gene-based GWAS analyses. Also showing p-values from each 
individual disorder gene-based analyses. 
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Table S4. Significant results from cross-disorder ADHD-ASD-OCD-TS tissue specificity analysis, 
testing 53 tissue types from GTEx v7 tissue expression atlas. Significant threshold is subjective to 
Bonferroni correction (p < 9.43 x 10-4) 

 

Supplementary Figures – Legends 

 

Figure S1. Top ten gene networks from top 200 genes annotated from SNP-based GWAS meta-
analyses results and gene-based analysis results.  A. ADHD-ASD SNP-based network plot; B. 
ADHD-ASD gene-based network plot. 

Figure S2. Top ten gene networks from top 200 genes annotated from SNP-based GWAS meta-
analyses results and gene-based analysis results.  A. ADHD-OCD SNP-based network plot; B. 
ADHD-OCD gene-based network plot. 

Figure S3. Top ten gene networks from top 200 genes annotated from SNP-based GWAS meta-
analyses results and gene-based analysis results.  A. ADHD-TS SNP-based network plot; B. 
ADHD-TS gene-based network plot. 

Figure S4. Top ten gene networks from top 200 genes annotated from SNP-based GWAS meta-
analyses results and gene-based analysis results.  A. ASD-TS SNP-based network plot; B. ASD-
TS gene-based network plot. 

Figure S5. Top ten gene networks from top 200 genes annotated from SNP-based GWAS meta-
analyses results and gene-based analysis results.  A. OCD-TS SNP-based network plot; B. OCD-
TS gene-based network plot. 

Figure S6. ADHD-ASD-OCD-TS cross-disorder tissue specificity analysis, testing 53 tissue types 
from GTEx v7 tissue expression atlas. Red bar indicates significant enrichment of gene expression 
in corresponding tissue under Bonferroni correction (p < 9.43 x 10-4). Panel on top right corner of 
each figure shows detailed statistics for significantly enriched tissue. A. ADHD-ASD-OCD-TS 
cross-disorder tissue specific expression enrichment; B. ADHD-ASD cross-disorder tissue specific 
expression enrichment; C. ADHD-OCD cross-disorder tissue specific expression enrichment; D. 
ADHD-TS cross-disorder tissue specific expression enrichment; E. ASD-TS cross-disorder tissue 
specific expression enrichment; F. OCD-TS cross-disorder tissue specific expression enrichment. 
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