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ABSTRACT

Species tree inference from multi-locus data has emerged as a powerful paradigm in the post-genomic
era, both in terms of the accuracy of the species tree it produces as well as in terms of elucidating
the processes that shaped the evolutionary history. Bayesian methods for species tree inference
are desirable in this area as they have been shown to yield accurate estimates, but also to naturally
provide measures of confidence in those estimates. However, the heavy computational requirements
of Bayesian inference have limited the applicability of such methods to very small data sets.
In this paper, we show that the computational efficiency of Bayesian inference under the multispecies
coalescent can be improved in practice by restricting the space of the gene trees explored during the
random walk, without sacrificing accuracy as measured by various metrics. The idea is to first infer
constraints on the trees of the individual loci in the form of unresolved gene trees, and then to restrict
the sampler to consider only resolutions of the constrained trees. We demonstrate the improvements
gained by such an approach on both simulated and biological data.

Keywords species tree · multispecies coalescent · Bayesian MCMC · efficiency.

1 Introduction

Species tree inference under the multispecies coalescent (MSC) model accounts for gene tree heterogenity that arises
due to incomplete lineage sorting (Tajima, 1983). This model has gained much attention in the years since the first
inferential methods to implement it were developed (Takahata et al., 1995; Yang, 2002; Degnan and Rosenberg, 2009).
A wide array of methods that assume or are inspired by the MSC have been devised (Liu et al., 2010; Liu and Yu,
2011; Mirarab et al., 2014; Chifman and Kubatko, 2014; Wang and Nakhleh, 2018), including the Bayesian methods
of Ogilvie et al. (2017); Flouri et al. (2018); Zhu et al. (2018). The MSC was recently extended to the multispecies
network coalescent to account for reticulation (in addition to incomplete lineage sorting; see Yu et al., 2014) and
Bayesian methods for inference under this model have been devised (Wen et al., 2016; Wen and Nakhleh, 2017; Wen
et al., 2018; Zhu et al., 2018; Zhang et al., 2017).

The power of Bayesian methods lies in their ability to incorporate prior knowledge, infer values of parameters beyond the
tree topology, and provide measures of confidence in the inference based on the posterior that they sample (Huelsenbeck
et al., 2001). However, for these Bayesian methods to approximate the true posterior distribution, they demand
significant computational resources, an issue that has thus far limited their applicability in terms of both the number of
taxa and number of loci in the data set (Ogilvie et al., 2016). This is why incomplete lineage sorting aware methods that
have been proven to be statistically consistent under the MSC and, at the same time very efficient computationally, are
used to infer large-scale species trees (Mirarab et al., 2014; Liu et al., 2010; Liu and Yu, 2011; Chifman and Kubatko,
2014). However, these methods focus almost exclusively on the species tree topology and provide neither accurate
information on other parameters, such as divergence times and population sizes, nor confidence intervals for their
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inferences. The question we address in this paper is: Can the convergence of Bayesian methods be improved in practice
without sacrificing the accuracy of the information they provide?

A rich body of literature exists on the development of methods for statistical inference outside phylogenetics, much of
which has been adopted by Bayesian phylogenetic methods. The ubiquitous Markov chain Monte Carlo (MCMC) arose
from nuclear weapons research (Robert and Casella, 2011), and is the basis for tree and network inference in MrBayes,
*BEAST, PhyloNet and other software tools. The efficiency of MCMC for phylogenetics has been improved with the
development of new MCMC proposals (e.g. Höhna and Drummond, 2011; Zhang et al., 2019; Yang and Rodríguez,
2013), including proposals designed to improve the mixing of MSC models (e.g. Yang and Rannala, 2014; Rannala and
Yang, 2017; Jones, 2017).

Metropolis coupling to accelerate MCMC was developed for the inference of spatial statistics (Geyer, 1991), and has
been implemented in various phylogenetics software (Ronquist et al., 2012; Bouckaert et al., 2019; Wen et al., 2018).
Variational Bayes is a radically different approach which fits parametric distributions to model parameters, unlike
MCMC which is non-parametric. Variational Bayes was originally developed for graphical models (Attias, 1999), and
has recently been applied to compute posterior distributions and marginal likelihoods of phylogenetic trees (Zhang and
Matsen, 2019; Fourment and Darling, 2019).

All of these methods were developed decades before their adoption for phylogenetic inference because tree and network
space is far more complex than the typical multidimensional parameter space. The number of unrooted or rooted trees
grows superexponentially with the number of taxa (Felsenstein, 1978), and is for all practical purposes infinite when the
number of taxa is large. Multilocus MSC inference embeds gene trees within a species tree, with the constraint that
between-species coalescent events must take place earlier in time than the most recent common ancestor (MRCA) time
of the involved species. This multiplies the complexity of the inference problem by increasing the number of trees to
infer, and because the probability distributions of node heights for different trees are not independent.

Rather than trying to adapt an algorithm developed for other fields of natural sciences or mathematics, we have
developed a heuristic method that specifically applies to the problem of multilocus MSC inference. The heuristic
method constrains the space of gene tree topologies to allow for faster convergence and, consequently, analyses of
larger data sets. The idea behind our approach is very simple: A set of constraints in the form of a tree which is usually
less than fully resolved is estimated independently for each individual locus, and then MCMC walks in the portion of
the tree space that is consistent with these constraints.

In other words, the MCMC sampler considers only gene trees that are consistent with the constraints on the individual
loci. Using simulated data under a variety of conditions and employing several metrics for assessing performance,
we demonstrate that this simple approach results in computational improvements relative to unconstrained Bayesian
MCMC without sacrificing accuracy. We then analyze a biological data set and show that the new approach enables
analyses that had before necessitated dividing the data set into smaller ones.

Our work presents an approach for improving the computational requirements of Bayesian inference of species
phylogenies. The constraints on the individual loci can be obtained in various ways and the proposals that satisfy these
constraints can be derived in multiple ways as well. In this work, we implemented one specific method for obtaining the
constraints and a standard set of proposals that satisfy them. As this approach can be adopted by any Bayesian species
phylogeny inference method, both of these components can be further modified to achieve even further improvement to
the computational requirements of Bayesian inference.

2 New Approach

A Bayesian formulation of the multi-locus species tree inference problem is to estimate the posterior distribution over
species tree topologies, population sizes and species divergence times from multiple sequence alignments given a model
which includes at least some demographic function (e.g. constant population sizes) and substitution process (e.g. Jukes
and Cantor, 1969).

Here we use S to represent the species tree, Θ to represent the population sizes and divergence times, andX to represent
the multiple sequence alignments. Inspired by Rannala and Yang (2017), we can formulate the model as

f (S,Θ|X) =
1

f (X)
f (S,Θ) f (X|S,Θ) . (1)

In this formulation, f (S,Θ|X) is the posterior probability of the species tree topology and associated parameters,
f (X) is the marginal likelihood, f (S,Θ) is the prior on the species tree topology and associated parameters, and
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f (X|S,Θ) is the likelihood. To calculate the likelihood we must integrate over gene trees G and substitution model
parameters ψ:

f (X|S,Θ) =

∫
ψ

∫
G

f (X|G,ψ) f (G|S,Θ) f (ψ) dGdψ. (2)

In the above formulation, f (X|G,ψ) is the phylogenetic likelihood and substitution model parameters, f (G|S,Θ) is
the coalescent likelihood, and f (ψ) is the prior for the same parameters. Note that the coalescent and phylogenetic
likelihoods are functions of a gene tree, and are calculated over the space of all possible gene trees. When using MCMC,
we only need a density proportional to the posterior probability, so the marginal likelihood can be omitted.

Furthermore, under the common assumption of recombination-free, unlinked loci, the likelihood can be derived from
the product of integrations for each locus:

f (X|S,Θ) =
∏
i

∫
ψ

∫
Gi

f (Xi|Gi, ψ) f (Gi|S,Θ) f (ψ) dGidψ. (3)

where Xi is the multiple sequence alignment of the ith locus in the data set and Gi is the gene tree sampled at locus i.

As the integration in Equation (3) cannot be derived analytically, MCMC sampling algorithms are often employed to
obtain samples from the posterior distribution and approximate it based on those samples. Due to the scaling problems
of MCMC inference (Ogilvie et al., 2016), current algorithms to approximate Equation (3) become computationally
infeasible for larger data sets, getting stuck in the peaks and troughs of the posterior distribution and requiring extremely
large numbers of iterations to converge.

Our approach to tackle the computational challenge works as follows. For each sequence alignment Xi, maximum
likelihood with bootstrapping is run to obtain a set of gene trees from which a majority-rule consensus tree with a
pre-specified support threshold x is built. For example, for x = 90, a majority-rule consensus tree is built where
only clades that appear in at least 90% of the bootstrap trees are included. We denote this majority-rule consensus
tree by Ci (we use the value of x explicitly in the naming only when it is not clear from the context) and call it a
constraint gene tree, or CGT. Our approach now samples according to Equation (3) with one difference: The integration
is taken over gene trees that are consistent with, i.e., refinements of, their respective Ci constraints. For example, if
Ci = (((A,B), C), (D,E, F )), the sampler considers gene tree Gi = (((A,B), C), ((D,E), F )) as it is a refinement
of Ci, but does not consider gene tree Gi = (((A,B), (C,D)), (E,F )) as it is not a refinement of Ci. This concept is
illustrated in Figure 1.
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Figure 1: Constraint trees, their resolutions, and acceptable moves. Bootstrap tree and CGTs under the consensus
threshold of 50 (CGT-50) and 100 (CGT-100) are shown in the first row. In the second row, three possible proposed
gene trees are provided. The left tree is acceptable given the constraints CGT-50 and CGT-100. The middle tree is not
acceptable given the constraints CGT-50 or CGT-100. The right tree is acceptable given the constraint CGT-100 but not
CGT-50.
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We implemented this restricted sampling of gene tree topologies by comparing proposed topologies with the constraint
trees, and rejecting incompatible proposals. Future implementations may be made even more efficient by only proposing
compatible topologies.

Observe that if Ci is a star phylogeny (a tree that has no internal branches), then the method is effectively sampling
according to Equation (3), whereas if Ci is fully resolved (a binary tree), then the sampler fixes the gene tree topology
for locus i and only samples its parameters. It is important to note that Ci imposes only topological constraints; that is,
Ci has no branch lengths. Furthermore, we take Ci to be unrooted, so that the sampler is allowed to sample the roots of
the gene trees.

The posterior of species trees includes a “long tail” region of model trees where the likelihood of each tree is very
small but the number of trees within such region is very large. Unfortunately, as the scale of the data set increases, the
autocorrelation time of the MCMC chain increases dramatically (Ogilvie et al., 2016). The motivation of our approach
is that by constraining the gene trees, the sampler can avoid the long tail and have better mixing. While utilizing these
constraints necessarily means that the sampler is not sampling from the same posterior distribution as an unconstrained
version of the sampler (except for the case where the constraints are star phylogenies), we demonstrate below that this
has very little impact on the accuracy of the sampler in practice.

Hereafter we write CMCMC to denote constrained MCMC according to our new approach and UMCMC to denote the
unconstrained version of MCMC. We also write CMCMC-x, where x is a value between 50 and 100, to denote the
use of CMCMC with support threshold x in the majority-rule consensus tree, or a value of 0 to denote use with the
maximum likelihood tree.

Parameter values must be initialized somehow at the beginning of each MCMC chain. For both CMCMC and UMCMC
we initialized gene trees by inferring the maximum likelihood (ML) tree for each locus in RAxML (Stamatakis, 2014).
We used the topology of the ML tree, and for each internal node used the maximum distance from that node to any
descendant leaf as the node height. Although there is a chance that the ML tree is incompatible with the constraint tree
due to the stochastic nature of bootstrapping, this is probably very uncommon as we did not encounter this in any of our
analyses.

3 Results and Discussion

A simulation study was carried out to comprehensively analyze the performance of CMCMC and UMCMC. We varied
the simulation data set along three dimensions: evolutionary scenarios of species, the number of loci and the number
of taxa. When we focused on one dimension, the other two dimensions were fixed. More details are provided in
the Materials and Methods section. To simulate different scenarios of complexity and signal in the data, we varied
evolutionary time scales and population sizes in four categories:

• “OH”: old divergence times and high population size;
• “OL”: old divergence times and low population size;
• “YH”: young divergence times and high population size; and,
• “YL”: young divergence times and low population size.

To further examine the performance of each method, we varied the number of loci (10, 20, 40) for the YH condition
while fixing the number of taxa as 16. We also varied the numbers of taxa (16, 32, 48) for the YH condition and fixed
the number of loci as 10. Unless otherwise stated, there are 10 replicates for each condition.

3.1 CGTs improve the convergence of MCMC

The ability to converge within a reasonable time is a key metric to evaluate the performance of an MCMC sampler. An
effective sample size (ESS) of at least 200 is used as a threshold for convergence in the popular MCMC diagnostic
and analysis tool Tracer (Rambaut et al., 2018). In this work, we target the same convergence standard for continuous
parameters including the posterior probability, likelihood, prior probability, coalescent likelihood, tree height and
population size. We terminated any chain still running after 72 hours.

Figure 2(a) shows that decreasing the consensus threshold enables convergence for low population size conditions,
which is impossible for UMCMC within 72 hours. We also show the improved convergence of CMCMC as the number
of loci increases in Figure S1 and as the number of taxa increases in Figure S2.

When MCMC chains are able to converge, CMCMC reduces the number of iterations required for convergence into less
than half that of UMCMC under various evolutionary parameters as shown in Figure 2(b). Furthermore, CMCMC took
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Figure 2: Convergence and efficiency of CMCMC and UMCMC. (a) Convergence of samplers with or without
constraint gene trees. Different samplers are shown on the x axis and the y axis shows the number of data sets (out of
10) on which the sampler converged. (b) Ratios of iterations required for convergence using CMCMC compared with
UMCMC. Values above 1 are faster using UMCMC, below 1 are faster using CMCMC.

fewer iterations than UMCMC to converge for different numbers of loci and different numbers of taxa (Figure S3 and
Figure S4).

3.2 CMCMC and UMCMC derive similar posterior distributions

The ultimate goal of phylogenetic inference problem with Bayesian sampling is to approximate the posterior distribution
of the true species tree. One way to verify the posterior distribution is to compare the average standard deviation of
split frequencies (ASDSF; Lakner et al., 2008) of the 95% credible set. Note that the 95% credible set or interval of a
well calibrated Bayesian method covers the true value in 95% of cases. The smaller the ASDSF is, the more similar
the species tree distributions are. A threshold of 0.01 on the ASDSF is commonly used to assess the convergence of
two chains. An ASDSF value below 0.01 is taken to indicate that the chains are likely to be sampling from the same
underlying distribution (for examples, see Stunžėnas et al., 2011; Mazza et al., 2016; Stensvold et al., 2011).
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Figure 3: ASDSF between the CMCMC and UMCMC chains. The x axis lists CMCMC samplers with different
support thresholds and the y axis shows the ASDSF between each CMCMC method and UMCMC. (a) ASDSF values
when varying the divergence times fixing the number of taxa and loci as 16 and 10. Only ‘YH’ and ‘OH’ are shown
because UMCMC cannot converge in ‘YL’ and ‘OL’ scenarios. (b) ASDSF values when varying the number of loci,
restricted to the ‘YH‘ scenario. There are 10 replicates for 10- and 20-locus data sets. For 40-locus data sets, results are
shown for the 6 out of 10 replicates where all methods converged within 20 days. (c) ASDSF values when varying the
number of taxa, restricted to the ‘YH‘ scenario. There are 10 replicates for 16-, 32- and 48-taxon data sets.
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Figure 3 shows the ASDSF between the CMCMC and UMCMC chains for different evolutionary scenarios, different
numbers of loci, and different numbers of taxa. To compare the ASDSF, the MCMC chains must be converged.
However, although CMCMC has better convergence ability than UMCMC, we only compare the ASDSF when all
MCMC chains can converge. For all simulated scenarios in Figure 3(a), the ASDSF values of CMCMC and UMCMC in
most replicates are below 0.01. As we increased the number of loci and taxa, all ASDSF interquartile ranges (IQRs) fell
below 0.01, except for CMCMC-50 for which the top of the range could be slightly above 0.01, as shown in Figure 3(b)
and Figure 3(c).

As the number of loci was increased, ASDSF decreased. This was expected as with more data more nodes in the species
tree become fully resolved, and the difference in support between CMCMC and UMCMC for those nodes will be
zero. Conversely, ASDSF increased as the number of taxa was increased. Again this was expected, as denser taxon
sampling will reduce the proportion of fully resolved nodes, and hence the proportion of nodes with zero difference
between methods. In summary, while the underlying distributions sampled by CMCMC and UMCMC are different by
construction, our results show that in practice they are almost the same.

If an internal node in one constraint gene tree (CGT) is binary, we consider such node as resolved. For young
divergence time scenarios, there are fewer substitutions and hence less information available with which to reconstruct
the phylogeny. For a given threshold, CGTs in young divergence time scenarios were less resolved than CGTs in old
divergence time scenarios in Figure S5. But for all conditions the proportion of resolved nodes steadily decreased as the
threshold was raised. A similar trend was observed when increasing the number of taxa in Figure S6. This shows the
role that the support threshold plays as a useful tuning parameter for our heuristic.

While the ASDSF provides a numeric measure reflecting the similarity between the distributions being sampled, we
visualize in Figure 4 the distributions sampled by the various samplers as an illustration of this similarity. While
decreasing the support threshold increases the difference in the posterior distribution, all CMCMC methods approximate
posterior density distributions similar to UMCMC, except for CMCMC-0.

Our aim for CMCMC is to closely approximate the unconstrained posterior distribution of species trees, and to do
so faster than UMCMC. The posterior density distribution of CMCMC-0 is very divergent from UMCMC and from
CMCMC when using other thresholds, implying that it is no longer closely approximating the unconstrained posterior
distribution. For this reason, we do not recommend using CMCMC-0 (i.e. gene trees with fixed, maximum likelihood
estimated unrooted topologies) for Bayesian inference of species trees from sequences.
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Figure 4: Kernel Density Estimation of the posterior probability distribution of CMCMC and UMCMC sam-
ples. Different methods are shown in different colors. All methods are run on the example sequence data which
contains 16 taxa and 10 independent loci for the young divergence times and high population size scenario.
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Figure 5: Topological accuracy of the species trees inferred by CMCMC and UMCMC. The data pertained to
simulations of 10 loci from 16 taxa under the OH and YH scenarios.

3.3 CMCMC and UMCMC predictions are essentially identical in accuracy

While Bayesian MCMC provides an approximation of the posterior distribution over parameters, the topology of the
species tree is often the main quantity of interest. We compared the average Robinson-Foulds (RF) distance (Robinson
and Foulds, 1981) between the true species tree and the inferred species tree topology in the 95% credible set to assess
the topological accuracy. For each topology in the 95% credible set, we calculated the RF distance and divided it by the
maximum possible RF distance (twice the number of internal branches in the species tree) to derive the normalized RF
distance (normRF; Kupczok et al., 2010). Then we averaged all normRF distances, weighted by the frequency of each
topology in the 95% credible set. More details about how to calculate average normRF distance are provided in the
Evaluation Metrics section.

Figure 5 shows the topological accuracy of the species trees inferred by the various methods. As the figure shows,
under both evolutionary scenarios, all samplers infer almost the same species trees. For the OH scenario the outlier
corresponds to a single species tree which is difficult to accurately infer because of its short internal branches (Figure S7).
The same lack of variation is also observed when varying the numbers of loci and taxa (Figure S8 and Figure S9).

Within a condition, there was no observed trend in average normRF distance (Figure 5, Figure S8 and Figure S9).
In addition to topological error, we also calculated “branch length error” as the average branch score of trees in the
credible set. The calculation is described in detail in the Evaluation Metrics subsection. As expected, branch length
error was higher for the “old” case because branch score is not scale invariant, and average normRF distance was higher
for the “young” case due to the lower rate of informative mutations. But within a condition, there was no difference in
branch length error between CMCMC and UMCMC (Figure S10, Figure 11 and Figure S12). These results further
demonstrate the proximity of the posterior distribution of species trees inferred by CMCMC to UMCMC.

3.4 Analysis of a biological data set

Recently, a study that applied exon capture sequencing to Australian rainbow skinks (Bragg et al., 2018) compared
the phylogenies inferred using summary MSC methods, a full Bayesian MSC method and concatenation. However
due to the computational time required, the full Bayesian species tree method was only applied to non-overlapping 32
locus subsets of the data, despite 304 highly informative loci being available. This data set contains 46 taxa from 43
recognized species.

CMCMC enabled us to double the number of loci, so inspired by Bragg et al., we compared the species trees
inferred using UMCMC from nine non-overlapping 32 locus subsets with those inferred using CMCMC from four
non-overlapping 64 locus subsets. All analyses were run until satisfactory convergence was observed. The samples for
each analysis were summarized as maximum clade credibility (MCC) trees. To quantify the variation between species
trees inferred from different subsets, we calculated the normRF distance between the MCC tree from one MCMC chain
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or the inferred tree from ASTRAL (Mirarab et al., 2014). As shown in Figure 6, CMCMC derived more consistent
results compared with UMCMC, as the highest normRF distance between CMCMC subsets was 0.23, but the highest
pairwise distance between the smaller UMCMC subsets was 0.3.

The precision of the 64 locus CMCMC posterior distributions was higher, as expected given the larger number of loci
employed. For both normRF and branch score, the average distances between the maximum clade credibility (MCC)
tree and individual samples in the posterior distribution were smaller for CMCMC (Figure S13 and Figure S14).

norm
RF of M

C
C

 topologies

Figure 6: Discordance among phylogenies estimated by ASTRAL, CMCMC and UMCMC. CMCMC was applied
to four non-overlapping subsets of 64 loci each, UMCMC was applied to nine non-overlapping subsets of 32 loci each,
and ASTRAL was applied to gene trees inferred from all 304 loci. The color and the number in each entry of the matrix
indicates the normalized Robinson-Foulds distance between maximum clade credibility (MCC) species trees estimated
from each subset.

The increased precision of the CMCMC analyses enables taxonomic refinement of rainbow skinks. When 32 loci are
used with UMCMC, the trio Carlia inconnexa, C. pectoralis and C. rubigo form a clade but the relationships within that
clade are unclear, as the best supported topology for this trio has C. rubigo as sister with an average posterior probability
of 69% across subsets. When 64 loci are used with CMCMC, this average rises to 98% (Figure S15 and Figure S16).

3.5 Conclusions

In this paper we reported on a simple heuristic method for speeding the convergence of Bayesian MCMC under the
multispecies coalescent. The heuristic works by restricting the space of gene trees that can be sampled. The constraints
can be obtained in various ways including bootstrap trees contracted according to some support threshold, majority-rule
consensus trees of posterior samples, or even constraints provided based on biological knowledge. As the approach
restricts the explored space by design, we evaluated the method’s performance in terms of convergence and, when
converged, the distribution it samples. The evaluation was done on simulated data sets as well as a biological data set,
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and for evaluation metrics, we focused mainly on the time to convergence, the ASDSF between the constrained version
of the sampler (CMCMC) and the unconstrained one (UMCMC), as well as the topological accuracy of the inferred
species trees.

We have demonstrated that constraint gene trees are advantageous in two distinct ways. For datasets where it is
challenging to achieve convergence with UMCMC, e.g. those which did not converge even after 20 days in our study,
CMCMC can converge within a reasonable time. For datasets which did readily converge using UMCMC, applying
constraint gene trees reduced the required number of iterations.

Following from our results, we recommend that CMCMC can be applied in two ways. The first is to accelerate
preliminary analyses, where CMCMC-50 can be used to infer posterior distributions of species trees which are very
close to the unconstrained posterior distributions. This has the additional benefit of reducing the amount of resources
required for a given study, which range from grant money to pay for computer time, to CPU hours which may be in
high demand at a given institution, to the electricity and natural resources needed to manufacture and operate computer
nodes. As many preliminary analyses may have to be run for a given study, this reduction can be substantial.

The second is for final published analyses, where researches may wish to be more conservative and avoid approximations
and heuristics wherever possible. For example, MCMC chains of finite lengths and variational Bayes are both
approximate and heuristic methods, but are unavoidable for Bayesian inference of phylogenetic trees from sequences.
Constraint gene trees are an additional heuristic which are avoidable for datasets where convergence is possible within a
reasonable time using UMCMC, but unavoidable otherwise. So our final recommendation is to employ CMCMC for
final published analyses of datasets which fail to converge using UMCMC.

4 Materials and Methods

4.1 MCMC implementation and settings

CMCMC can be easily implemented in commonly used Bayesian based phylogenetics software packages such as
PhyloNet (Wen et al., 2016), BEAST (Drummond and Rambaut, 2007) and BEAST2.5 (Bouckaert et al., 2019). In this
paper, we implemented CMCMC in PhyloNet. In all our experiments, we generated 50 bootstrap trees for each locus
and obtained the majority-rule consensus trees from those. Firstly, we generated bootstrap trees given an alignment
using RAxML (Stamatakis, 2014). Then, we estimated the constraint tree given a specific support threshold.

We applied a uniform prior over the species tree topologies, a uniform prior U(0,∞) on species tree node heights, and
a 1
X prior on the mean population size. More implementation details are provided in Supplementary Materials.

4.2 Executing MCMC chains

For the simulation study, we first ran each chain for three days on the DAVinCI computing cluster. All jobs executed on
this cluster ran on 2.83GHz Intel Westmere CPUs. Jobs were restarted each day, and so the total running time of the
MCMC chain was less than 72 hours, as for each job some time was spent queuing and postprocessing.

For any chain that did not converge within three days, we restarted it from the beginning on the NOTS computing
cluster at Rice University. Jobs executed on this cluster were randomly assigned to one of the following CPUs: Intel
Xeon E5-2650 v2 at 2.6GHz, Xeon E5-2650 v4 at 2.2GHz, Xeon Gold 6126 at 2.6GHz, or Intel Xeon Gold 6230 at
2.1GHz. With the exception of the 48 taxon analyses, all chains were run for 20 days. The 48 taxon chains were run for
only 10 days because we noticed they had all converged by that time. As with the shorter chains, jobs were restarted
each day so the total runtime was less than 480 hours, and less than 240 hours for the 48 taxon chains.

For the empirical study, 10 independent chains with different random seeds but otherwise identical data and settings
were run for each locus subset and method. This was necessary to achieve convergence on these relatively large datasets.
CMCMC chains on 64 loci were run for 160 million iterations, taking approximately 25 days. UMCMC chains on 32
loci were run for 120 million iterations, taking approximately 10 days. After all 10 chains had finished running for a
given subset and method, the remaining samples were concatenated after removing the 10% burnin.

4.3 Simulating data

For all simulated data sets, we used DendroPy (Sukumaran and Holder, 2010) to generate random species trees and
ms (Hudson, 2002) to generate gene trees on these species trees under the multispecies coalescent. Sequence data were
generated by Seq-Gen (Rambaut and Grass, 1997) under the Jukes-Cantor model(Jukes and Cantor, 1969). We derived
the CGT for each locus by bootstrapping from the sequences by RAxML (Stamatakis, 2014).
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Table 1: The evolutionary parameters varied to control the complexity and signal in the data.
Low population sizes High population sizes

Old divergence times OL: 50 mya, 100k individuals OH: 50 mya, 500k individuals
Young divergence times YL: 10 mya, 100k individuals YH: 10 mya, 500k individuals

Because species tree inference methods are employed over a range of evolutionary time scales and to clades with
different population sizes, we varied both parameters for our simulation study which are shown in Table 1. For each
simulated species tree we scaled its root to different heights; an “old” height of 50 million years ago (mya) akin to the
rice–Pooideae split (Sandve et al., 2008), and a “young” height of 10 mya akin to the split of gorillas with humans and
chimpanzees (Langergraber et al., 2012). Gene trees were scaled before simulating sequences so that the branch lenghts
in substitutions per site corresponded to a substitution rate of 2.5× 10−3 per million years. This rate is slightly faster
than the rates observed for the RAG1 nuclear gene in animals (Hugall et al., 2007), but within the ranges observed for
plant nuclear genes (Huang et al., 2003).

For both the old and young species tree scales, we simulated gene trees under large and small population sizes of
500,000 and 100,000 respectively, with annual generation times. Chimpanzees, gorillas and ancient humans all have
effective population sizes (Ne) of around 20,000 individuals (Huff et al., 2010). Assuming a great ape generation
time of 25 years, this population will have the same distribution of coalescent times as a clade of species with annual
generation times and an Ne of 500,000, the same as our large population size condition. Given that human effective
population sizes are often considered low, the small population size condition therefore corresponds to species with
very low effective population sizes.

The evolutionary parameters also affect the proportion of resolved internal nodes of the CGT as shown in Figure S5.
The “OH” and “OL” scenarios have higher proportion of resolved internal nodes than the “YH” and “YL” which means
that the substitution rate more effectively restricts the gene tree search space. The proportion of resolved internal nodes
in consensus trees decreases as the number of taxa increases as shown in Figure S6. In contrast, the population size
does not have such obvious effect as the substitution rate or number of taxa.

More details on the simulations are provided in Supplementary Materials.

4.4 Biological data

We analyzed the Australian skinks data set which is provided in Bragg et al. 2018. We randomly selected one sample
from each species. Note that the species names in the data set and in the paper are not consistent. More details about
how to map the species in the data set and in the paper are shown in Table S1.

The Australian skinks data set contains three in-group genera: Carlia, Lygisaurus and Liburnascincus. There are 46
taxa from 43 recognized species. All details of the biological data including genus, species, tissue, collection, sample
library and focal clade are provided in supplementary Table S2.

To obtain informative gene trees, we included 304 complete informative loci whose length ranges from 240 to 6,534
sites. Figure S17 shows the proportion of resolved internal nodes of constraint gene trees for different ranges of
sequence length. In general, as the length of sequence increases the number of resolved internal nodes gets larger. This
is because longer sequences are likely to contain more substitutions to inform the resolution of nodes.

4.5 Evaluation metrics

4.5.1 Effective sample size

The Effective Sample Size or ESS is the number of effectively independent draws from some distributions sampled by
the MCMC chain. Adequate ESS is a sign of good mixing of the MCMC chain and it has been argued that the ESS
should be more than 200 (Kuhner, 2009), a value that has been adopted in the Bayesian phylogenetics community.
Therefore, an MCMC chain where the ESS of all selected probability densities and parameter values were higher than
200 was considered to have converged. The probability densities were of the posterior, phylogenetic likelihood, prior
and coalescent likelihood, all of which are dependent on the tree topologies and continuous parameters. The parameter
values were tree height and population size.
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4.5.2 Average Robinson-Foulds distance

When calculating the total Robinson-Foulds distance, we only considered posterior samples where the species tree
topology was within the 95% credible set. We call this credible set of posterior samples T ∗ to distinguish it from the
full set of posterior samples T . To quantify differences between true tree t and the 95% credible set T ∗, we calculate
the average normRF distance (Kupczok et al., 2010) as

1

|T ∗|
∑
t∗∈T∗

normRF (t, t∗). (4)

4.5.3 Average branch length error

To evaluate the accuracy of branch length estimates, we calculated the average error between the true tree t and the 95%
credible set T ∗ using a measure based on Euclidean branch score distances (Kuhner and Felsenstein, 1994; St. John,
2017). For every tree t∗ in the credible set, we take the union B of all branches in t∗ and t, where a branch b ∈ B is
defined by the taxa associated with its tipward node (i.e. the corresponding clade). We define δ(b) as the difference
between the length of b in t and t∗. If a branch is missing in one of t and t∗, its length in that tree is defined to be zero.
The sum of square differences

∑
b∈B δ(b)

2 is known as the branch score distance, which we will treat as a function
BSD(t, t∗). The square root of the branch score is a Euclidean distance, and we define branch length error as

1

|T ∗|
∑
t∗∈T∗

√
BSD(t, t∗). (5)

4.5.4 Average standard deviation of split frequencies

Average standard deviation of split frequencies (ASDSF) is a measure of convergence that has been used in tools such
as ExaBayes (Aberer et al., 2014) and MrBayes (Ronquist et al., 2012). ASDSF can be calculated by comparing split or
clades frequencies between two MCMC chains. Given two posterior distributions T1 and T2 from two MCMC chains
and their corresponding 95% credible sets T ∗1 and T ∗2 , C is all unique, non-trivial clades in T ∗1 ∪ T ∗2 . Set C∗ is defined
as

C∗ = {c ∈ C|max(f(c, T1), f(c, T2)) ≥ ε}, (6)
where f(c, T ) is the frequency of clade c in distribution T , and ε is a threshold. We used ε = 0.1, the same as the
default setting in MrBayes 3.2 (Ronquist et al., 2012). Finally, the ASDSF between T1 and T2 is defined as

ASDSF (T1, T2) =
1

|C∗|
∑
c∈C∗

|f(c, T1)− f(c, T2)|
2

, (7)

because the standard deviation of two numbers is half of the absolute difference.

5 Supplementary Material

Supplementary Figures S1-S18, Tables S1-S2 and external tool commands are available in supplementary.pdf. All simu-
lation data are available online: https://drive.google.com/file/d/1T56Hz3tMCkMU0qXs8-CftFJwsooKwBao/
view?usp=sharing.
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