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Abstract. Research into human working memory limits has been shaped by the com-

petition between different formal models, with a central point of contention being whether

internal representations are continuous or discrete. Here we describe a sampling approach

derived from principles of neural coding as a new framework to understand working mem-

ory limits. Reconceptualizing existing models in these terms reveals strong commonali-

ties between seemingly opposing accounts, and shows that random variability in sample

counts, rather than discreteness, is the key to reproducing human behavioral performance.

A probabilistic limit on the number of items successfully retrieved is an emergent property of

stochastic sampling, requiring no explicit mechanism to enforce it. These findings resolve

discrepancies between previous accounts and establish a unified computational framework

for working memory.

Elementary features of objects are represented within the human visual system in the form of

population codes [1]. A simple model [2] of limits on representing multiple stimuli [3–5] as-

sumes each stimulus is encoded in a separate pool of neurons with identical tuning curves,

each centered on a different (preferred) feature value, such that the cells densely and uni-

formly cover a one-dimensional feature space (Fig. 1A). Each neuron’s response to a stimulus

consists of discrete spikes generated by a Poisson process at the rate determined by its tuning

function. To make a connection with sampling [6–12], we associate each spike from a given
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pool with the preferred feature value of the neuron that emitted it, obtaining a probability distri-

bution p(ϕ) that any randomly selected spike is associated with a preferred value ϕ (Fig. 1B).

Each spike can be viewed as a sample drawn from this distribution, which has the same shape

as the neural tuning function and is centered on the true stimulus value (see SI Sec. 4.1).

Retrieval of a stimulus feature value is modeled as maximum likelihood estimation based on

the spikes generated within a fixed decoding window. For Gaussian tuning functions this is

realized by simple averaging of the sample values. Due to the superposition property of Pois-

son processes, the number of spikes – or samples – generated by a pool within the decoding

window is also a Poisson random variable. If the total spike rate is normalized at a population

level γ and distributed evenly among N stimuli (as proposed in [2]), the mean number of sam-

ples available to recover each item is γ/N , but the actual number varies from one retrieval to

the next according to a Poisson distribution. Decoding of population activity can therefore be

interpreted as stochastic sampling of stimulus features.

This stochasticity stands in contrast with most previous sampling-based models in the atten-

tional and memory literature, and with the influential slots+averaging model [13], which can

also readily be interpreted in terms of sampling (Fig. 1E–G). Each slot is postulated to hold

a representation of a single object with a fixed precision, and thus provides a noisy sample

of the objects’ feature values. Multiple slots, or samples, that correspond to the same object

are averaged at retrieval to improve recall precision. Independent of whether working mem-

ory representations are feature- or object-based [14, 15], the critical difference from stochastic

sampling is that the total number of samples available for all items is fixed at a value K.

We now consider the distribution of representational precision in these models. For any given

set of samples, the information they provide about the stimulus is described by the likelihood

function. The width of the likelihood function is a measure of uncertainty in the estimate that

also reflects trial-to-trial variability (see SI Sec. 4.2 and Fig. S1), so we define the precision of

an individual estimate in terms of this width. If samples are drawn from a Gaussian distribution,

precision increases linearly with the number of samples.

In the stochastic sampling model, precision has a Poisson distribution scaled by the precision

of a single sample (Fig. 1C). The distribution of decoding errors can be described as a scale

mixture of normal distributions with precision proportional to the sample count (Fig. 1D; for
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Figure 1: Working memory models. (A–D) Sampling interpretation of a population coding
model. (A) Tuning curves of an idealized neural population. One neuron’s tuning and preferred
value [*] is highlighted. (B) Probability distribution over stimulus space obtained by associating
each spike with the preferred stimulus of the neuron that generated it. This distribution has the
same precision (ω1) as the tuning functions. (C) Precision of ML estimates (defined in terms of
the likelihood function, see Fig. S1) follows a Poisson distribution scaled by the tuning precision
ω1. (D) Errors in estimation (in a circular feature space) are described by a scale mixture of
distributions with precision shown in (C). (E–G) Sampling interpretation of the slots+averaging
model. (E) Allocation of a fixed number of samples to memory displays of different sizes.
(F) Precision is discretely distributed as a product of the precision of one sample ω1 and the
number of samples allocated per item. (G) Corresponding distribution of estimation errors.
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circular stimulus spaces typically used experimentally, this is a close approximation rather than

exact, see SI Sec. 5.2). The dispersion of errors increases with decreasing activity (e.g. as

a result of increasing set size; black curve vs red curve in Fig. 1D) and their distribution is

leptokurtic, with long tails evident at lower activity levels (red curve).

In the fixed sampling model, making the common assumption that samples are distributed as

evenly as possible among items [13, 16], we obtain a discrete distribution over at most two

precision values (Fig. 1F), which are multiples of the sample precision. As in the stochastic

model, mean precision is inversely proportional to set size, but because the distributions over

precision differ, the fixed and stochastic models make distinct, testable predictions for error

distributions (Fig. 1G).

We fit the stochastic and fixed sampling models to a large dataset of single-report and whole-

report tasks (see SI Sec. 1 and Fig. S2). In the latter, participants reported the feature values

of all presented items, providing additional information about subjective confidence (which we

equate with likelihood width) and error correlations between items, for which fixed and stochas-

tic models make differing predictions. The stochastic model fit data substantially better than

the fixed sampling model for both types of task (Fig. 2A and B, Fig. S3), indicating that stochas-

ticity is critical for capturing behavioral performance. Contrary to previous interpretations [17],

model comparison on whole-report data did not support a slot-like mechanism with a fixed

item limit. Intermediate models in which a fixed number of samples were randomly allocated

to items (random–fixed model) or a Poisson random number of samples was distributed as

evenly as possible between items (even–stochastic model) produced intermediate qualities of

fit overall (Fig. 2C), with the latter’s advantage over the fully stochastic model in single-report

data outweighed by its significantly worse fit to whole-report data.

For the models examined above, typical fitted parameters indicate that estimates are based on

relatively small numbers of samples. To investigate whether these low sample counts are im-

portant for reproducing human performance, we implemented a generalization of the stochastic

model (based on a scaling of the negative binomial distribution, see SI Sec. 2.6 and 6) which

maintains its key characteristics (mean and variance of precision scale inversely with set size,

resulting in a fixed Fano factor [FF], Fig. 2D) while the number of samples and the sample

precision are controlled in inverse relation by a discretization parameter p (Fig. 3).
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Figure 2: Model comparison based on single- and whole-report data. (A) Mean difference
in log-likelihood for each model from the stochastic sampling model, for a benchmark data
set of single-report experiments. Errorbars indicate ±1 SE across participants. (B) The same
comparison for a set of whole-report experiments. (C) Total difference in log-likelihood between
models across single- and whole-report experiments. (D) Ratio of variance to mean precision
(Fano Factor) is independent of set size only in the stochastic model. (E) Mean difference
in log-likelihood for differing levels of discretization in the generalized stochastic model (top),
plotted relative to the maximum discretization (p = 1), and (bottom) number of participants best
fit by each level of discretization. All models have the same number of free parameters and
include a fixed per-item probability of swap errors (see SI Sec. 2.1).
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Figure 3: Generalized stochastic model. Main panels: Precision distributions in the generalized
model with typical fitted parameters (γ = 12, ω1 = 1.5) for different levels of discretization p and
different set sizes. Insets: Construction of the corresponding distributions of response error (for
set size 8), with thin lines showing normal distributions with different precisions incrementally
accumulated in ascending order (magenta to blue). (A) Poisson-distributed precision values
(p = 1). (B & C) With decreasing discretization (p < 1), estimates are based on larger mean
numbers of samples and discrete precision values are more finely spaced. (D) In the limit p→
0, the mean number of samples becomes infinite and the distribution over precision approaches
a continuous Gamma distribution (as in [16, 18]). The Fano factor is fixed at ω1 across all set
sizes and levels of discretization. Note that discrete precision values for different set sizes are
slightly shifted for visibility.
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Figure 4: Item limits in sampling models. (A) Example probability distribution of the number of
items recovered with greater than zero precision for different set sizes (color coded, increasing
blue to red; discrete probability distributions are depicted as line plots for better visualization)
in the fixed sampling model with K = 5 total samples. (B) Mean number of items with above-
zero precision as a function of set size for different numbers of samples K. (C) Example
probability distribution of the number of items recovered with greater than a fixed threshold
precision (as proportion of base precision ω1) in the generalized stochastic sampling model,
with γ = 12, ω1 = 1.5, p = 0.1. Note the existence of a probabilistic item limit at ∼7 items,
which does not directly correspond to the number of samples in the model (mean 120). (D)
Mean number of items with above-threshold precision for the generalized stochastic model with
different levels of discretization (colors) and threshold precision (solid versus dashed lines).
For finite thresholds smaller than the base precision ω1, the number of above-threshold items
saturates with increasing set size for all model parameters.

As the precision of each individual sample decreases, we find that the precision distribution

approaches a continuous Gamma distribution (Fig. 3D; see SI Sec. 6.3). Two previous stud-

ies [16, 18] independently proposed a continuous scale mixture of normal distributions with

Gamma-distributed precision to account for behavioral data, but could not motivate this choice

theoretically. We can now account for these variable precision models as a limiting case of

stochastic sampling with a very large number of very low-precision samples. We found that the

Gamma model (p → 0) fit single-report data more poorly than the Poisson model (p = 1), and

the best fits were obtained at intermediate levels of discretization (maximum likelihood at p =

0.39; Fig. 2E, top). However, individuals varied considerably in their estimated discretization

parameter (Fig. 2E, bottom), and differences in fit (measured in log likelihood) were on average

an order of magnitude smaller than those between fixed and stochastic sampling (compare with

Fig. 2A), reflecting the limited effect of sampling discreteness on predicted error distributions

(insets in Fig. 3).

7

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 30, 2019. ; https://doi.org/10.1101/771071doi: bioRxiv preprint 

https://doi.org/10.1101/771071
http://creativecommons.org/licenses/by-nd/4.0/


One prediction of working memory models with a fixed number of samples [13, 17] is the ap-

pearance of random “guesses” once the number of items exceeds that limit (Fig. 4A-B). In the

stochastic sampling account, the number of samples available for each item varies probabilis-

tically and independently of every other item. Nonetheless, if a small positive precision value

is chosen as a threshold, the expected number of items that exceed that precision thresh-

old will saturate as set size increases, irrespective of the level of discretization (Fig. 4C-D; SI

Sec. 6.1). The asymptote depends on both the threshold precision and the level of discretiza-

tion, and does not correspond in any direct way to the number of samples in the model. Thus,

a probabilistic item limit is an emergent property of stochastic sampling that does not require

an explicit mechanism nor imply a particular number of samples.

In order for the Fano factor relating the variance and mean of precision to be held constant as

sample counts increase, the sample counts themselves must become “overdispersed” com-

pared to Poisson variability (i.e. FF > 1). Overdispersion of spike counts is a common obser-

vation in visual cortical neurons, typically with FF in the range 1.5–3 (e.g. [19]), corresponding

in our model to discretization p in the range 0.33–0.75. Additionally, several other factors

present in real neural populations could have effects similar to decreasing discretization in the

generalized model. Heterogeneity in tuning functions [20] leads to variation in the information

carried by each spike, with the effect of smoothing out the discrete distributions over precision

predicted by a homogeneous Poisson model. This has similar consequences for estimation

error to decreasing p in the generalized model. Consistent with this idea, incorporating biolog-

ically realistic heterogeneity into the population model improved fits to data (see SI Sec. 5.1

and Fig. S4).

Spikes in real neural populations are not independent events as assumed by the sampling

interpretation, but rather correlated within and between neurons. This will tend to result in

deviations from the simple additivity assumed by sampling. An implementation of short-range

correlations in the population model greatly increased the numbers of decoded spikes required

to reproduce behavioral data, without changing quality of fit (see SI Sec. 5.1). We note however

that the exact consequences of spike correlations for decoding depend on details of correlation

structure that are difficult to measure experimentally [21–23], and suboptimal inference (in the

form of a mismatched decoder) could play a part [24].

8

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 30, 2019. ; https://doi.org/10.1101/771071doi: bioRxiv preprint 

https://doi.org/10.1101/771071
http://creativecommons.org/licenses/by-nd/4.0/


The degree to which working memory samples are discretized versus continuous has only very

weak effects on predicted retrieval errors under the stochastic sampling model (e.g. insets of

Fig. 3). Importantly, discrete representations are compatible with an underlying continuous

memory resource that can be distributed according to behavioral goals [25–27]: indeed in the

stochastic model the integer number of samples available for each item at retrieval is unpre-

dictable, and so cannot be the basis of prioritization. Instead, the resource distributed between

items corresponds to the mean or expected total number of samples, which is constant and

continuous-valued – in the neural model [2] this is equated with the instantaneous firing rate or

membrane potential, while decoding is based on the expression of this rate in discrete spikes.

The stochastic sampling model can be understood at multiple levels: in purely descriptive

terms as a form of mixture model (like the normal+uniform model, [13]); at a cognitive level

in terms of averaging samples; and at a neurocomputational level via its implementation in

population coding. The neural interpretation provides the link to another recent proposal for

understanding recall errors – psychophysical scaling [28] – which has an alternative expression

as a Gaussian-noise population model [29].
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