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Abstract	25	

	26	
Single-cell	 RNA	 sequencing	 studies	 into	 gene	 co-expression	 patterns	 could	 yield	27	
important	new	 regulatory	 and	 functional	 insights,	 but	have	 so	 far	been	 limited	by	 the	28	
confounding	 effects	 of	 cell	 differentiation	 and	 the	 cell	 cycle.	 We	 apply	 a	 tailored	29	
experimental	design	that	eliminates	these	confounders,	and	report	>80,000	intrinsically	30	
covarying	gene	pairs	in	mouse	embryonic	stem	cells.	These	covariances	form	a	network	31	
with	biological	properties,	outlining	known	and	novel	gene	interactions.	We	provide	the	32	
first	 evidence	 that	 miRNAs	 naturally	 induce	 transcriptome-wide	 covariances,	 and	33	
compare	 the	 relative	 importance	 of	 nuclear	 organization,	 transcriptional	 and	 post-34	
transcriptional	regulation	in	defining	covariances.	We	find	that	nuclear	organization	has	35	
the	 greatest	 impact,	 and	 that	 genes	 encoding	 for	 physically	 interacting	 proteins	36	
specifically	 tend	 to	 covary,	 suggesting	 importance	 for	 protein	 complex	 stoichiometry.	37	
Our	 results	 lend	 support	 to	 the	 concept	 of	 post-transcriptional	 ‘RNA	 operons’,	 but	we	38	
further	present	evidence	 that	nuclear	proximity	of	genes	on	 the	same	or	even	distinct	39	
chromosomes	also	provides	substantial	functional	regulation	in	mammalian	single	cells.	40	

	41	
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Introduction	43	

	44	
Two	genes	that	increase	or	decrease	coordinately	in	expression	over	multiple	conditions	45	
are	 said	 to	 covary	 in	 expression.	Gene	 expression	 covariance	 can	be	 studied	over	 two	46	
conditions	(for	 instance	healthy	and	diseased	 tissue),	over	 time-series	experiments,	or	47	
in	meta-studies	 spanning	 hundreds	 of	 tissues	 and	 cell	 types,	 for	 instance	 from	 public	48	
expression	repositories	1–3.	Over	the	last	20	years,	these	studies	have	yielded	numerous	49	
important	 biological	 insights	 since	 covarying	 genes	 are	 often	 functionally	 related	 and	50	
commonly	share	the	same	gene	regulatory	mechanisms.	51	
	52	
In	 the	 last	 ten	 years,	 new	 single-cell	 sequencing	 methods	 have	 emerged,	 making	 it	53	
possible	to	profile	entire	transcriptomes	of	individual	cells	4–6.	This	makes	it	possible	to	54	
identify	 genes	 that	 covary	 in	 expression	 across	 individual	 cells,	 considering	 in	 effect	55	
every	 cell	 as	 a	distinct	 condition.	This	 research	direction	holds	 great	promise,	 since	 it	56	
could	 reveal	 biological	 covariances	 that	 are	 not	 detectable	 in	 analysis	 of	 bulk	 cell	57	
populations.	 First,	 differences	 in	 cellular	 compositions	 between	 samples	 may	 disturb	58	
covariance	 analyses	 in	 bulk	 tissues	 7.	 Further,	 transcripts	 can	 appear	 to	 be	 constantly	59	
and	moderately	expressed	in	all	studied	tissues	or	cell	cultures,	but	may	in	fact	display	60	
temporally	 fluctuating	 and	 covarying	 expression	 in	 single	 cells.	 This	 latter	 type	 of	61	
covariances	may	never	be	detected	 in	bulk	tissues.	However,	until	now	transcriptome-62	
wide	single-cell	studies	of	such	intrinsic	gene	covariance	patterns	have	been	limited	by	63	
confounding	 factors	 such	 as	 cell	 cycle	 progression	 and	 cell	 differentiation,	 that	 are	64	
extrinsic	to	the	genes	of	interest	8,9.	These	confounding	factors	induce	a	strong	impact	on	65	
the	 global	 covariance	 patterns,	 which	 could	 overshadow	 the	 more	 subtle	 -	 and	66	
potentially	more	interesting	-	underlying	patterns.	67	
	68	
Here,	we	apply	carefully	designed	experimental	conditions	 to	remove	 the	confounding	69	
extrinsic	effects	of	differentiation	and	cell	cycle	progression,	and	apply	sensitive	Smart-70	
Seq2	 single-cell	 sequencing	 to	 profile	 the	 transcriptomes	 of	 hundreds	 of	 mouse	71	
embryonic	 stem	cells	 (mESCs).	 Specifically,	using	 stringent	 cut-offs	we	 report	>80,000	72	
gene	 pairs	 that	 intrinsically	 covary	 in	 expression;	 more	 than	 have	 been	 described	 in	73	
previous	single-cell	studies.	The	covarying	gene	pairs	 interlink	to	form	a	network	with	74	
well-established	 biological	 features,	 following	 a	 so-called	 power-law	 distribution,	 and	75	
recover	 known	 regulatory	 patterns	 and	 pathways.	 We	 further	 apply	 a	 novel	76	
computational	 framework	 to	 study	 the	 relative	 importance	 of	 distinct	 regulatory	77	
mechanisms	for	gene	expression	covariances.	We	find	that	genes	regulated	by	the	same	78	

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 16, 2019. ; https://doi.org/10.1101/771402doi: bioRxiv preprint 

https://doi.org/10.1101/771402
http://creativecommons.org/licenses/by-nd/4.0/


4	
	

transcription	 factors	or	miRNAs	tend	to	covary,	while	 the	strongest	effect	 is	seen	with	79	
genes	 that	 are	 in	 nuclear	 proximity	 on	 the	 same	 chromosomes.	 A	 similar	 but	weaker	80	
effect	 is	 seen	 for	 genes	 that	 are	 in	 nuclear	 proximity	 on	 distinct	 chromosomes.	 We	81	
validate	 that	a	 subset	of	 the	covariances	are	directly	 induced	by	miRNAs	by	 repeating	82	
our	entire	experiment	in	miRNA-deficient	cells.	83	
	84	
Last,	 we	 test	 two	 competing	 hypotheses	 regarding	 the	 putative	 function	 of	 gene	85	
expression	 covariances.	 The	 first	 hypothesis	 states	 that	 genes	 covary	 in	 expression	 to	86	
ensure	stoichiometric	abundances	of	proteins	that	function	in	the	same	pathway,	while	87	
the	 second	 hypothesis	 proposes	 that	 covariances	 are	 important	 for	 proper	88	
stoichiometry	of	proteins	 that	are	part	of	 the	same	complexes.	We	 find	 that	 covarying	89	
genes	 only	 tend	 to	 share	 the	 same	 function	 if	 their	 encoded	 proteins	 also	 physically	90	
interact,	lending	evidence	to	the	“protein	complex”	hypothesis.	91	
	92	
In	summary,	we	have	combined	single-cell	RNA	sequencing	with	a	tailored	experimental	93	
design	 and	 novel	 computational	 analyses	 to	 quantify	 regulatory	 drivers	 in	 single	94	
mammalian	embryonic	stem	cells,	highlighting	the	importance	of	nuclear	proximity	for	95	
gene	expression	covariances.	Additionally,	we	present	evidence	 that	 these	covariances	96	
play	roles	in	ensuring	stoichiometry	between	interacting	proteins.	97	

	98	
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Results	100	

	101	
Smart-Seq2	sequencing	of	hundreds	of	mouse	single-cell	transcriptomes	102	
To	obtain	reliable	and	reproducible	measurements	of	gene	expression	for	our	study,	we	103	
applied	 the	 Smart-Seq2	 protocol	 to	 sequence	 the	 transcriptomes	 of	 567	 individual	104	
mouse	embryonic	stem	cells	divided	between	three	well-plates	which	serve	as	biological	105	
replicates.	The	Smart-Seq2	protocol	is	one	of	the	gold	standards	in	the	single-cell	field.	106	
While	 labor-intensive	 and	 not	 easily	 scalable,	 it	 is	 highly	 sensitive	 and	 precise,	which	107	
means	 that	 each	measurement	 is	 less	 affected	 by	 technical	 noise	 6,10,11.	 It	 also	 reliably	108	
detects	 both	 exons	 and	 introns,	 which	 is	 useful	 for	 distinguishing	 transcriptional	 and	109	
post-transcriptional	regulation	12.	We	performed	strict	quality	filtering	on	the	initial	set	110	
of	cells,	which	resulted	in	a	total	of	355	cells	considered	(Methods,	Suppl.	Fig.	1,	Suppl.	111	
Table	 1).	 Gene	 expression	 values	 in	 each	 cell	 were	 normalized	 to	 the	 sum	 of	 mRNA	112	
sequence	 reads	 in	 the	 given	 cell,	 as	 this	 approach	was	 found	 to	 best	 eliminate	 biases	113	
from	 technical	 factors	 (Methods,	 Suppl.	 Fig.	2,	3).	We	considered	a	gene	 to	be	 reliably	114	
profiled	 if	 its	 transcript	 was	 detected	 in	 at	 least	 half	 of	 the	 cells	 in	 each	 of	 the	 three	115	
replicates.	 Importantly,	 we	 estimated	 that	 for	 genes	 that	 are	 expressed	 at	 above	 16	116	
reads	 per	 million	 biological	 variation	 between	 cells	 exceeds	 technical	 noise	 (as	117	
estimated	by	ERCC	spike-ins,	Suppl.	Fig.	4).	The	vast	majority	of	the	genes	that	fulfill	our	118	
criteria	 for	 reliable	 detection	 also	 exceeds	 this	 expression	 threshold.	 Overall	 our	119	
analysis	 yielded	 reliable	 gene	expression	measurements	 for	8,983	genes	 (Suppl.	 Table	120	
2).	121	
	122	
Homogenous	cell	population	unconfounded	by	cell	cycle	or	differentiation	123	
For	 the	 sequencing	 experiment,	 we	 took	 several	 precautions	 to	 eliminate	 the	124	
confounding	 extrinsic	 effects	 of	 cell	 cycle	 and	 differentiation.	 First,	 all	 cells	 were	125	
cultured	in	2i+LIF	medium	which	is	a	well-established	protocol	to	maintain	embryonic	126	
stem	cells	in	a	homogeneous	pluripotent	state,	excluding	potential	differentiation	effects	127	
13.	 Second,	 the	 cells	 used	 in	 this	 experiment	 were	 derived	 from	 a	 single	 cell	 through	128	
clonal	 expansion	 ensuring	 genetic	 identity.	 It	 is	 well-established	 that	 genetically	129	
identical	 mES	 cells	 cultured	 in	 2i+LIF	 have	 remarkably	 similar	 chromatin	 states	 and	130	
transcriptomes	 14,15.	 Third	 and	 finally,	 we	 used	 fluorescence	 activated	 cell	 sorting	 to	131	
specifically	 select	 cells	 in	G2/M	phase	of	 the	 cell	 cycle,	 thus	excluding	major	 cell	 cycle	132	
effects.	 This	 particular	 combination	 of	 growth	 medium	 (2i+LIF)	 and	 cell	 cycle	 phase	133	
(G2/M)	has	been	reported	to	generate	particularly	homogeneous	cell	populations	with	134	
regard	to	their	transcriptome	signatures	9.	Using	published	marker	genes,	we	confirmed	135	

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 16, 2019. ; https://doi.org/10.1101/771402doi: bioRxiv preprint 

https://doi.org/10.1101/771402
http://creativecommons.org/licenses/by-nd/4.0/


6	
	

that	our	 cells	were	 in	 the	 correct	 cell	 cycle	phase	 13,16	 and	expressed	pluripotency	but	136	
not	 differentiation	 marker	 genes	 9,17	 (Suppl.	 Fig.	 5).	 Altogether	 our	 cells	 comprise	 a	137	
homogenous	population,	unconfounded	by	cell	cycle	or	differentiation	effects.	138	

	139	
Figure	 1:	 Covariance	 network	 reflects	 biological	 features.	 (A)	 Transcriptome-wide	140	
covariance	 (co-expression)	 values	 for	 all	 possible	 gene	pairs.	 Violin	 plot	 of	 Spearman’s	 ranked	141	
statistics	 (rho-value)	 for	 the	 entire	 transcriptome	 (blue)	 and	 for	 a	 permuted	 control	 matrix	142	
(grey).	Value	for	the	gene	pair	Npm1	-	Ppia	 is	highlighted.	(B)	Covariance	of	the	genes	Ppia	and	143	
Npm1.	Abundances	for	the	two	genes	are	in	reads	per	million	(RPM)	and	plotted	in	log	scale.	Each	144	
data	 point	 represents	 their	 respective	 measurement	 in	 the	 same	 single	 cell.	 (C)	 Spearman’s	145	
ranked	coefficients	is	in	accordance	with	other	covariances	and	dependency	measures.	(D)	Gene	146	
covariance	network	is	scale-free.	Number	of	significant	covariances	per	gene	against	the	number	147	
of	genes	with	that	number	of	covariances.	Blue	line	illustrates	a	scale-free	network	that	captures	148	
the	data	points	(y	≈	2.1).	Green	line	illustrates	the	degree	distribution	of	a	random	network	with	149	
same	number	of	genes	(nodes)	and	covariances	(edges)	as	the	observed	network.	(E)	Cholesterol	150	
biosynthesis	pathway	is	highly	enriched	for	gene	pair	covariances.	Genes	involved	in	cholesterol	151	
biosynthesis	from	acetyl-CoA.	Only	genes	that	were	robustly	detected	in	our	sequencing	data	are	152	
shown.	Arrows	 indicate	 the	 flow	of	metabolites,	 lines	 indicated	 significant	 covariance	between	153	
genes.	Gene	names	in	bold	indicated	direct	targets	of	Srebpf1,	a	transcription	factor	that	is	well	154	
known	to	regulate	cholesterol	biosynthesis.	(F)	Gene	sets	 that	share	 functional	annotations	are	155	
enriched	 for	 covariances.	 Gene	 covariance	 enrichment	 scores	 (CES)	 for	 gene	 sets	 sharing	 the	156	
same	gene	ontology	or	sharing	the	same	KEGG	pathway	annotation	as	well	as	respective	controls.	157	
Gene	covariance	enrichment	scores	indicate	the	ratio	of	observed	significant	covariances	relative	158	
to	the	amount	of	expected	covariances	(see	main	text).	(G)	Example	sub-network.	159	
	160	
Discovery	of	>80,000	significant	positive	and	negative	gene	covariances	161	
To	 study	 pairwise	 gene	 covariances,	 we	 calculated	 Spearman’s	 rank	 correlation	162	
coefficient	 for	 all	possible	gene	pairs.	We	chose	 this	procedure	 for	 its	 ability	 to	detect	163	
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non-linear	 monotonous	 dependencies	 and	 for	 its	 robustness	 towards	 outliers.	 The	164	
calculation	 of	 covariance	 coefficients	 with	 Spearman’s	 was	 performed	 separately	 on	165	
each	 of	 the	 three	 biological	 replicates.	 The	 measured	 covariance	 coefficients	 were	166	
centered	 around	 zero	 (Figure	 1A,	 left),	 indicating	 the	 absence	 of	 overall	 confounding	167	
factors,	and	importantly,	the	observed	covariance	values	had	a	bigger	spread	that	those	168	
of	permutated	controls	(Figure	1A),	suggesting	the	presence	of	numerous	non-random	169	
biological	 covariances.	 We	 then	 defined	 covariances	 to	 be	 overall	 significant	 if	 their	170	
coefficients	were	 significant	 (p	 <	 0.01)	 in	 two	 out	 of	 the	 three	 replicates	 and	 had	 the	171	
same	 sign	 in	 all	 three	 replicates.	 This	 approach	 resulted	 in	 81,820	 significantly	172	
covarying	unique	gene	pairs	(52,695	positively	and	29,125	negatively).	Using	stringent	173	
permuted	 controls,	 we	 estimated	 the	 false	 discovery	 rate	 of	 these	 covariances	 to	 be	174	
lower	 than	1.6%	(Methods).	An	example	 for	 a	highly	 significant	gene	pair	 is	 shown	 in	175	
Fig.	 1B,	 where	 each	 data	 point	 represents	 one	 individual	 cell.	 Significant	 covariances	176	
identified	with	Spearman’s	ranked	correlation	coefficient	have	a	high	overlap	with	those	177	
retrieved	by	Pearson’s	correlation	coefficient,	and	with	dependency	measures	recovered	178	
through	 Hoeffding’s	 D	 statistics	 (Fig.	 1C),	 showing	 the	 robustness	 of	 the	 approach.	179	
Finally,	we	validated	 several	of	 the	gene	expression	covariances	using	 single-molecule	180	
FISH	and	 single-cell	 quantitative	RT-PCR	 (Suppl.	 Fig.	 11,	 12).	 In	 summary,	we	present	181	
>80,000	 high-confidence	 gene	 pair	 covariances;	 more	 than	 have	 been	 reported	 in	182	
previous	single-cell	studies.	183	
	184	
Properties	of	the	covariance	network	reflect	biological	functions	185	
We	observed	that	the	covarying	gene	pairs	link	together	in	complex	patterns	that	can	be	186	
described	 as	 a	 network.	 It	 is	 well-established	 that	 biological	 networks,	 such	 as	 those	187	
arising	 from	 transcription	 factor	 or	 protein	 interactions,	 have	 properties	 that	 are	188	
different	 from	 random	 networks	 18.	 For	 instance,	 biological	 networks	 tend	 to	 follow	189	
power	 law	 distributions,	 such	 that	most	 genes	 have	 only	 few	 interactions	 with	 other	190	
genes	 while	 few	 genes	 represent	 hubs	 in	 the	 network,	 interacting	 with	 many	 other	191	
genes.	Consistent	with	our	network	having	biological	 rather	 than	 technical	origins,	we	192	
found	that	our	covariance	network	follows	such	a	power	distribution	(γ≈2.1,	Figure	1D,	193	
light	 blue).	 Importantly,	 this	 network	 structure	 is	 distinctly	 different	 from	 that	 of	 a	194	
random	 network	with	 the	 same	 overall	 connectivity	 (Figure	 1D,	 light	 green).	 Further	195	
network	features	are	listed	in	Suppl.	Fig.	7D.	196	
	197	
Within	 the	 covariance	 network,	 we	 identified	 many	 biologically	 meaningful	198	
subnetworks,	such	as	the	one	formed	by	genes	involved	in	cholesterol	biosynthesis	(Fig.	199	
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1E).	 Genes	 involved	 in	 cholesterol	 biosynthesis	 are	 activated	 when	 the	 SREBF1	200	
transcription	 factor	 is	 cleaved	 from	 the	cell	membranes	and	shuttles	 to	 the	nucleus	 in	201	
response	to	lack	of	cholesterol	19	and	can	therefore	be	expected	to	covary	in	expression,	202	
depending	 on	 the	 localization	 of	 SREBF1	 protein.	 Another	 notable	 sub-network	 is	203	
formed	 by	 genes	 involved	 in	 the	 formation	 of	 the	 TCP1	 ring	 complex,	 a	 chaperone	204	
involved	in	tubulin	biogenesis	20	(Suppl.	Fig.	8).	205	
	206	
A	 substantial	 part	 of	 the	 observed	 covariances	 (~14,500	 gene	 pairs)	 are	 between	207	
ribosomal	proteins.	While	these	are	interesting	and	have	been	reported	before	for	bulk	208	
cell	 populations	 21,	 the	 exact	 mechanism	 behind	 ribosomal	 protein	 co-expression	 in	209	
eukaryotes	 remains	 cryptic,	 and	we	have	 excluded	 them	 from	analysis	 in	 the	 sections	210	
below.	It	was	recently	reported	that	four	of	these	proteins	(RPL10,	RPL38,	RPS7,	RPS25)	211	
are	 optional	 components	 of	 the	 ribosome,	whose	 inclusion	 or	 exclusion	 can	 influence	212	
which	 pools	 of	 transcripts	 are	 preferentially	 translated	 22.	 We	 find	 that	 these	 four	213	
ribosomal	 proteins	 all	 covary	 positively	 and	 significantly	 with	 each	 other,	 providing	214	
evidence	that	they	do	not	function	in	a	mutually	exclusive	“switch-like”	manner	in	single	215	
cells.	216	
	217	
Importantly,	applying	our	new	method	for	measuring	covariance	enrichment	over	large	218	
gene	 sets	 (see	 section	 of	 CES	 score	 below),	we	 find	 that	 genes	 sharing	 common	Gene	219	
Ontology	terms	are	31%	more	likely	to	be	covarying	(1.31-fold	covariance	enrichment),	220	
while	 permuted	 control	 sets	 shows	 no	 such	 enrichment	 (Figure	 1F).	 The	 same	 holds	221	
true	 for	 genes	 sharing	 common	 KEGG	 pathway	 annotation,	 where	 the	 enrichment	 is	222	
25%	(Figure	1F).	We	conclude	that	genes	sharing	functions	or	pathways	are	more	likely	223	
to	 be	 regulated	 in	 a	 similar	 fashion	 and	 hence	 tend	 to	 covary.	 In	 conclusion,	 the	224	
covarying	gene	pairs	form	a	comprehensive	scale-free	network,	which	is	associated	with	225	
annotated	cellular	functions	and	pathways.	226	
	227	
Covariances	retrace	known	aspects	of	stem	cell	biology	228	
The	 pluripotency	 of	 mouse	 embryonic	 stem	 cells	 has	 been	 studied	 extensively	 and	229	
several	studies	focus	on	characterizing	their	transcriptomes	and	gene	regulatory	circuits	230	
13,23–26.	The	network	that	we	observe	recapitulates	many	known	relationships	between	231	
pluripotency	markers	in	mouse	embryonic	stem	cells.	For	instance,	positive	covariances	232	
support	the	activation	of	Fgf4	through	Nanog	and	Sox2	27,28,	while	negative	covariances	233	
support	the	inhibition	of	Dnmt3a/b/l	by	Prdm14	17,29	and	of	Dppa3	by	Tbx3	30.	While	our	234	
data	 support	 previous	 claims	 that	 Nanog	 is	 positively	 covarying	with	Klf4,	 Sox2,	 Tet2,	235	
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and	Kat6b	 9,	we	 see	 little	 support	 for	 a	 covariance	with	Esrrb,	 Zfp42	 and	Tet1	and	we	236	
observe	a	significant	negative	covariance	with	Pou5f1	and	Dnmt3a	 in	single	cells.	With	237	
regard	 to	 predicted	 pluripotency	 genes,	 we	 can	 confirm	 that	 there	 are	 strong	238	
covariances	between	Etv5,	and	weak	covariances	between	Ptma,	and	Zfp710	and	other	239	
pluripotency	genes.	Covariances	of	pluripotency	genes	can	be	found	in	Suppl.	Table	4.	In	240	
summary,	 the	 detected	 covariances	 are	 in	 accordance	 with	 known	 gene	 expression	241	
patterns	in	stem	cell	biology,	and	gives	hints	to	new	connections.	242	
	243	
Covariance	enrichment	score	(CES)	244	
To	systematically	investigate	the	regulatory	implications	of	the	covariances,	we	defined	245	
the	 Covariance	 Enrichment	 Score	 (CES)	 for	 gene	 sets	 of	 interest.	 The	 CES	 indicates	246	
whether	for	a	given	gene	set	we	observe	fewer	or	more	significant	covariances	between	247	
the	genes	than	we	would	expect,	based	on	a	simple	background	model.	Our	background	248	
model	considers	the	total	number	of	significant	covariances	for	each	gene	as	well	as	the	249	
number	of	 covariances	of	all	 its	potential	pairing	genes.	 In	short,	 it	 is	 the	 factor	of	 the	250	
probabilities	of	 two	genes	assuming	that	 their	covariances	were	distributed	randomly,	251	
summing	over	all	possible	pairs	in	the	gene	set.	252	
	253	

	254	
	255	
For	instance,	we	assume	that	genes	that	are	regulated	by	the	same	transcription	factor	256	
will	tend	to	covary,	depending	on	the	abundance	and	activity	of	the	transcription	factor	257	
in	 individual	 cells.	 In	 the	next	 sections	we	 test	 such	hypotheses	 using	CES,	 and	 in	 the	258	
case	of	one	type	of	regulator	(miRNAs)	use	a	loss-of-function	mutant	cell	line	to	validate	259	
that	the	observed	covariances	are	indeed	a	direct	effect	of	said	regulator.	260	
	261	

262	
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	263	
Figure	2:	miRNAs,	 transcription	 factors	and	nuclear	organization	define	covariances.	 (A)	264	
miRNA	targets	tend	to	covary.	Covariances	enrichment	scores	(CES)	for	the	top	200,	300	and	500	265	
ranked	 miRNA	 targets	 according	 to	 TargetScan,	 for	 the	 seven	 highest	 expressed	 conserved	266	
miRNA	and	for	a	control	set	for	comparison	for	300	randomly	selected	targets.	P-values	refer	to	267	
respective	controls.	(B)	miRNA	target	covariances	occur	post-transcriptionally	and	are	miRNA-268	
dependent.	Enrichment	 in	sets	of	the	top	200	ranked	miRNA	targets	 in	parental	cells	(WT)	and	269	
Drosha	KO	cells,	that	are	void	of	canonical	miRNAs.	Enrichments	are	color	coded	for	exonic	reads,	270	
representing	 post-transcriptional	 regulation	 (orange)	 or	 intronic	 reads	 representing	271	
transcriptional	 regulation	 (yellow).	 (C)	 Covarying	 genes	 are	 enriched	 for	 shared	 miRNA	272	
targeting.	 Reverse	 covariance	 enrichment	 shows	 the	 ratio	 between	 covariances	 that	 share	 a	273	
common	 miRNA	 and	 permuted	 covariances	 that	 share	 a	 common	 miRNA.	 (D)	 Transcription	274	
factor	targets	are	enriched	for	gene	covariances.	Enrichment	in	sets	of	the	top	200,	300	and	500	275	
transcription	 factor	 targets,	 for	 168	 transcription	 factors	 profiled	 with	 ChIP-seq.	 Control	 for	276	
comparison	is	shown	for	500	randomly	selected	targets.	P-values	refer	to	respective	controls.	(E)	277	
Transcription	factor	target	covariances	are	transcriptional	and	miRNA-independent.	Enrichment	278	
in	sets	of	the	200	ranked	transcription	factor	targets	in	parental	cells	(WT)	and	Drosha	KO	cells.	279	
Enrichments	 are	 color	 coded	 for	 exonic	 reads	 (dark	 green)	 or	 intronic	 reads	 (light	 green).	 (F)	280	
Covarying	genes	are	enriched	for	shared	transcription	factor	targeting	(figure	similar	to	2C).	(G)	281	
Genes	 that	are	 in	close	nuclear	proximity	and	 locate	 to	 the	same	chromosome	are	enriched	 for	282	
covariances.	 The	 range	 categories	 are	 mutually	 exclusive,	 for	 instance	 pairs	 of	 genes	 that	 are	283	
<5MB	apart	are	not	included	in	the	<25MB	category.	(H)	Gene	regions	that	are	in	close	nuclear	284	
proximity	and	locate	to	different	chromosomes	are	enriched	for	covariances.	Since	relatively	few	285	
intra-chromosomal	Hi-C	contacts	were	identified,	we	here	used	a	less	stringent	criteria	(p-value	286	
<0.05)	 cut-off	 to	 robustly	 identify	 significant	 covariances	 (Suppl.	 Methods)	 (I)	 Circos	 plot	287	
showing	significant	covariances	and	Hi-C	contacts	for	chromosomes	15,	17,	and	19.	Significantly	288	
covarying	 gene	 pairs	 are	 connected	 by	 a	 light	 blue	 line.	 Inter-chromosomal	 Hi-C	 contacts	 are	289	
shown	 as	 grey	 lines.	 (J)	 Covarying	 genes	 are	 enriched	 for	 inter-chromosomal	 Hi-C	 contacts	290	
(figure	similar	to	2C).	291	
	292	

293	
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MiRNAs	induce	transcriptome-wide	gene	expression	covariances	294	
We	 first	 apply	 the	 Covariance	 Enrichment	 Score	 to	 study	 the	 regulatory	 impact	 of	295	
miRNAs,	 which	 are	 important	 post-transcriptional	 regulators	 of	 gene	 expression	296	
(reviewed	 in	 Bartel,	 2018).	 In	 most	 conditions,	 these	 small	 RNAs	 down-regulate	 the	297	
expression	 of	 protein	 coding	 genes	 by	 binding	 their	mRNA	 transcripts	 and	 leading	 to	298	
their	 degradation	 32.	 This	 targeting	 takes	 place	 in	 the	 cytoplasm	 and	 is	 therefore	299	
spatially	decoupled	from	transcriptional	regulation.	300	
	301	
We	 speculate	 that	 miRNA	 regulation	 of	 gene	 expression	 may	 be	 a	 source	 of	 gene	302	
covariances.	For	instance,	 if	a	miRNA	is	highly	abundant	in	a	given	cell,	 its	targets	may	303	
be	 coordinately	 repressed,	 and	 we	 expect	 an	 enrichment	 of	 covariances	 for	 these	304	
targets.	 To	 test	 this	 hypothesis,	 we	 investigated	 the	 top-ranking	 miRNA	 targets	305	
according	 to	 TargetScan	 33,	 which	 is	 the	 most	 widely	 used	 catalog	 of	 miRNA-target	306	
interactions.	In	this	study	we	focused	on	the	seven	highest	expressed	conserved	miRNA	307	
families	 (including	 the	miR-15	 and	miR-290	 families)	 in	mouse	 embryonic	 stem	 cells	308	
(Suppl.	Table	5).	309	
	310	
Strikingly,	miRNA	 gene	 target	 sets	 are	 significantly	 enriched	 for	 gene	 covariances.	 	 In	311	
median	the	top	200	targets	of	each	of	the	seven	miRNA	families	are	31%	more	likely	to	312	
covary	with	each	other	than	expected	(p=0.032).	The	enrichments	exhibited	a	gradient	313	
with	 the	 enrichment	 being	 stronger	 for	 the	 top-ranking	 targets	 compared	 to	 sets	 that	314	
also	included	lower	ranking	targets	(Figure	2A).		Introns	are	spliced	out	in	the	nucleus,	315	
so	their	abundances	cannot	be	impacted	by	miRNA	action	in	the	cytosol.	Consistent	with	316	
this,	miRNA	targets	do	not	significantly	covary	at	the	intron	level	(Figure	2B).	317	
	318	
To	 exclude	 the	 possibility	 that	 these	 covariances	 originate	 from	 other	 post-319	
transcriptional	 effectors,	 we	 investigated	 cells	 that	 are	 void	 of	 canonical	 miRNAs.	320	
DROSHA	 is	 an	 endonuclease	 involved	 in	 the	 biogenesis	 of	 miRNAs,	 without	 which	321	
canonical	miRNAs	cannot	be	produced.	We	used	an	inducible	Drosha	knock-out	cell	line	322	
to	validate	 the	miRNA	dependence	of	 these	covariances	(Methods),	and	sequenced	the	323	
transcriptomes	of	343	of	these	knock-out	cells	using	clonal	expansion	from	a	single	cell	324	
and	 sorting	 of	 cells	 in	 G2/M	 phase	 as	 described	 above.	 We	 have	 previously	325	
demonstrated	the	global	loss	of	miRNAs	in	this	particular	cell	line	34.	As	expected,	there	326	
is	no	covariance	enrichment	in	miRNA	target	sets	in	Drosha	knock-out	cells	(Figure	2B),	327	
demonstrating	that	these	covariances	are	directly	caused	by	miRNA	activity.	328	
	329	
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We	additionally	investigated	the	“reverse	covariance	enrichment”.	Here,	we	observe	the	330	
set	of	all	significantly	covarying	gene	pairs	and	ask	how	often	they	are	regulated	by	the	331	
same	miRNA,	 compared	 to	 a	background	 set	 (Methods).	We	 find	 that	 covarying	 genes	332	
are	12%	more	likely	to	be	co-regulated	by	the	top	16	miRNAs,	and	35%	more	likely	to	333	
be	 regulated	 by	 the	 seven	 most	 highly	 expressed	 conserved	 miRNAs	 (Figure	 2C),	334	
showing	the	importance	of	miRNA	conservation	and	abundance	in	inducing	covariances.	335	
It	has	previously	been	reported	that	individual	miRNAs	can	induce	gene	covariances	35,	336	
but	here	we	for	the	first	time	show	that	this	holds	for	the	larger	complement	of	miRNAs,	337	
transcriptome-wide,	 and	 that	 natural	 (non-induced)	 fluctuations	 of	miRNA	 abundance	338	
or	activity	are	sufficient	to	cause	the	covariances.	339	
	340	
From	 a	 network	 perspective,	 we	 found	 that	 >6,000	 high-confidence	 gene	 covariances	341	
were	 lost	 in	 the	 cells	 void	 of	 miRNAs,	 while	 less	 than	 3,000	 new	 covariances	 were	342	
gained	(Suppl.	Figure	7A).	A	substantial	number	of	the	genes	that	cease	to	covary	were	343	
miRNA	targets	and	the	ratio	of	lost	to	gained	covariances	increase	when	high-confidence	344	
targets	 were	 considered	 (Suppl.	 Figure	 7B).	 The	 genes	 that	 lost	 covariances	 were	345	
enriched	 in	 functions	 in	 RNA	 biology	 (Suppl.	 Figure	 7F),	 including	 regulation	 of	 PolII	346	
regulation.	The	average	number	of	 covariances	per	gene	decreased	significantly	 in	 the	347	
miRNA-depleted	 cells,	 from	10.1	 to	8.4	 covariances,	 and	 the	number	of	 genes	without	348	
covariances	 increased	 from	2,265	 to	2,866	 (Suppl.	Figure	7D).	Overall,	 this	 indicates	a	349	
global	loss	of	gene	expression	coordination	in	cells	that	are	void	of	miRNAs.	350	
	351	
Genes	regulated	by	the	same	transcription	factors	covary	with	each	other	352	
To	 investigate	 how	 regulation	 by	 transcription	 factors	 influences	 covariance	 patterns,	353	
we	studied	the	binding	sites	of	145	transcription	factors	for	which	mouse	ES	cell	ChIP-354	
seq	 data	 were	 deposited	 in	 the	 Cistrome	 database	 36.	 As	 for	 miRNAs,	 we	 observe	 a	355	
gradient	 in	 covariance	 enrichment	which	 is	 stronger	 for	 the	 top-ranking	 transcription	356	
factor	targets	compared	to	lower	ranking	targets	(Figure	2D).	Importantly,	transcription	357	
factor	 target	sets	are	significantly	enriched	 for	gene	covariances	both	on	 the	exon	and	358	
the	 intron	 level	 (Figure	2E),	 consistent	with	 transcriptional	 regulation.	 In	median,	 the	359	
top	150	ranked	targets	of	these	transcription	factors	are	39%	more	likely	to	covary	on	360	
the	 exon	 level	 (p-value<10-15)	 and	 22%	more	 likely	 to	 covary	 at	 the	 intron	 level	 (p-361	
value<10-15)	 than	 are	 background	 genes.	 As	 expected,	 the	 covariance	 enrichment	 of	362	
transcription	factor	targets	is	not	significantly	lowered	in	Drosha	knock-out	cells	(Figure	363	
2E).	 In	 conclusion,	 genes	 that	 are	 regulated	 by	 the	 same	 transcription	 factor	 tend	 to	364	
covary,	 possibly	 due	 to	 stochastic	 variations	 in	 transcription	 factor	 abundance	 and	365	
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activity	between	individual	cells.	This	effect	acts	on	millions	of	gene	pairs	and	the	mean	366	
magnitude	 of	 the	 regulation	 is	 similar	 to	 what	 we	 describe	 for	 miRNA-specific	367	
regulation.	368	
	369	
Genes	in	nuclear	proximity	on	same	or	different	chromosomes	covary	370	
Genes	that	neighbor	on	the	same	chromosome	are	known	to	show	co-expression	37;	this	371	
also	holds	 for	 genes	within	 the	 same	 chromatin	 loop	or	within	 the	 same	 topologically	372	
associated	 domain	 (TAD).	 Further,	 the	 concept	 of	 transcription	 factories	 covers	373	
dynamically	 assembled	 complexes	 that	 facilitate	 transcription	 and	 are	 dependent	 on	374	
intra-	 or	 inter-chromosomal	 interactions	38.	 To	 investigate	 covariance	 enrichment	 on	375	
genomic	 regions	 that	 are	 in	 proximity	 within	 the	 nucleus,	 we	 analyzed	 mouse	376	
embryonic	stem	cell	Hi-C-seq	data	39,40.	 In	the	following,	we	define	“proximal”	genes	as	377	
those	whose	 interaction	 is	supported	by	Hi-C	data,	whether	the	 interaction	 is	 intra-	or	378	
inter-chromosomal	 (Methods).	 Our	 data	 shows	 that	 genes	 which	 are	 proximal	 and	379	
located	on	the	same	chromosome	are	highly	enriched	for	covariances	(Figure	2G).	Genes	380	
that	 are	 close	 in	 linear	 distance	 on	 the	 chromosome	 (<5	 MB)	 are	 enriched	 4-fold	 in	381	
covariances,	while	 genes	 that	 are	 distal	 (>50	MB)	 are	 enriched	 2.1-fold.	 This	 effect	 is	382	
also	detectable	at	 the	 intron	 level,	confirming	an	origin	 in	transcriptional	regulation	at	383	
the	level	of	nascent	transcripts	(Suppl.	Fig.	10).	Genes	that	are	on	the	same	chromosome	384	
are	 almost	 twice	 (1.9-fold)	 more	 likely	 to	 covary	 than	 expected	 even	 when	 their	385	
proximity	 is	 not	 supported	 by	 Hi-C	 (Figure	 2G,	 furthest	 right).	 However,	 the	 highest	386	
enrichment	 was	 detected	 for	 genes	 that	 are	 in	 close	 in	 linear	 distance	 on	 the	 same	387	
chromosome	and	predicted	 to	be	 in	 the	 same	TAD,	which	 are	~15-fold	more	 likely	 to	388	
covary	(Figure	2G,	furthest	left).	Intriguingly,	proximal	genes	on	different	chromosomes	389	
also	 show	 substantial	 covariance	 enrichment	 (Figure	 2H-J),	 supporting	 the	 notion	 of	390	
transcription	factories	that	incorporate	areas	from	multiple	chromosomes.	391	
	392	

393	
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	394	
Figure	3:	Relative	importance	of	miRNAs,	transcription	factors	and	nuclear	proximity	for	395	
covariances.	 Comparison	 of	 covariance	 enrichment	 (CES)	 scores	 for	 genes	 that	 are	 either	396	
regulated	by	the	same	miRNA,	regulated	by	the	same	transcription	factor	or	that	are	in	nuclear	397	
proximity	–	divided	 into	 intra-	and	 inter-chromosomal	pairs.	The	Drosha	 -/-	cells	are	devoid	of	398	
miRNAs,	and	the	control	gene	sets	are	generated	by	computationally	selecting	background	genes.	399	
	400	
Next,	we	 ranked	 the	 relative	 importance	 of	 transcription	 factors,	miRNAs	 and	nuclear	401	
proximity	 for	 the	 regulation	 of	 covariation	 (Figure	 3).	 We	 found	 that	 miRNA	 targets	402	
were	35%	more	 likely	 to	 covary,	 transcription	 factor	 targets	were	39%	more	 likely	 to	403	
covary,	genes	in	nuclear	proximity	on	different	chromosome	were	3-fold	more	likely	to	404	
covary,	and,	remarkably,	genes	that	are	proximal	on	the	same	chromosome	are	5.3-fold	405	
more	 likely	 to	 covary.	 In	 summary,	 we	 find	 that	 transcriptional	 regulation,	 miRNA-406	
mediated	 regulation,	 and	 surprisingly,	 inter-chromosomal	 nuclear	 proximity	 all	 play	407	
important	 roles,	 while	 the	 intra-chromosomal	 nuclear	 proximity	 is	 the	 strongest	408	
predictor	of	gene	expression	covariances.	409	
	410	

411	
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	412	
Figure	4:	Proteins	 that	physically	 interact	are	specifically	enriched	 in	covariances	at	 the	413	
RNA	 level.	 (A)	 Genes	 that	 interact	 on	 the	 protein	 level	 are	 highly	 enriched	 for	 covariances.	414	
Covariance	 enrichment	 of	 genes	 that	 are	 annotated	 to	 be	 interacting	 on	 the	 protein	 level	415	
according	to	the	STRING	database.	(B)	Covariances	enrichment	for	genes	whose	protein	products	416	
are	part	of	the	same	physical	complex	and	for	genes	that	are	part	of	the	same	reaction	(pathway).	417	
(C)	Gene	covariances	are	mainly	driven	by	protein	 interaction.	Covariance	enrichment	of	genes	418	
sharing	 the	 same	 GO	 annotation	 or	 KEGG	 pathway	 annotation.	 GO	 and	 KEGG	 annotations	 are	419	
stratified	 into	 pairs	 with	 shared	 annotation	 and	 experimentally	 identified	 protein	 interaction	420	
(+PI)	and	shared	annotation	but	 lack	of	experimentally	 identified	protein	 interaction	 (-PI).	(D)	421	
Model.	 Heteromeric	 protein	 complexes	 require	 proper	 stoichiometry	 of	 protein	 components.	422	
Proteins	that	are	in	surplus	can	be	degraded,	mis-folded	or	form	aggregates.	423	
	424	
Protein	interaction	rather	than	shared	function	drives	gene	covariances	425	
Next,	we	examined	putative	functions	of	the	covariances	that	we	observe	in	single	cells.	426	
We	formulated	two	hypotheses.	The	 first	hypothesis	can	be	described	as	 the	“pathway	427	
hypothesis”	–	that	genes	involved	in	the	same	pathway	are	coordinated	in	expression,	for	428	
instance	 to	 avoid	 bottlenecks	 in	 the	 production	 of	 metabolic	 intermediates	 41.	 The	429	
second	 hypothesis	 is	 the	 “complex	 hypothesis”	 –	 that	 covariances	 ensure	 correct	430	
stoichiometry	among	proteins	 that	 are	part	of	 the	 same	heteromeric	protein	 complex,	431	
since	surplus	proteins	may	mis-fold	or	even	cause	aggregates	42.	432	
	433	
As	 stated	earlier,	 genes	 that	 share	 the	 same	Gene	Ontology	 function	or	process	or	 the	434	
same	KEGG	pathway	annotation	are	significantly	enriched	for	gene	covariances	(Figure	435	
1F).	The	same	is	true	for	genes	that	physically	interact	on	the	protein	level	according	to	436	
experimental	 evidence	 gathered	 by	 the	 STRING	 database	 (Figure	 4A).	 For	 these	437	
interactions	 we	 can	 see	 a	 gradient	 with	 those	 interactions	 with	 the	 highest	438	
confidence/affinity	score	also	having	the	highest	enrichment	for	covariances.	We	further	439	
find	that	genes	that	contribute	to	the	same	complex	are	2.6-fold	more	 likely	to	covary,	440	
compared	 to	 just	 1.6-fold	 for	 genes	 that	 are	 part	 of	 the	 same	 pathway	 (Figure	 4B),	441	
lending	support	to	the	“complex	hypothesis”.	442	
	443	
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To	further	test	the	two	hypotheses,	we	split	the	set	of	functionally	related	genes	into	one	444	
set	with	genes	that	share	a	functional	annotation	and	protein	interaction	and	those	that	445	
share	 functional	 annotation	 but	 no	 protein	 interaction.	 If	 the	 “pathway	 hypothesis”	446	
holds,	 we	 would	 expect	 both	 gene	 sets	 to	 covary,	 since	 they	 share	 functions.	 If	 the	447	
“complex	hypothesis”	holds,	we	would	expect	only	the	genes	whose	proteins	physically	448	
interact	to	covary,	since	the	covariances	are	needed	for	proper	stoichiometry	of	proteins	449	
in	the	complexes.	Strikingly,	we	find	no	covariance	enrichment	for	either	of	the	GO	and	450	
KEGG	 functional	 annotations	 if	 genes	 that	 physically	 interact	 at	 the	 protein	 level	 are	451	
excluded	 from	 the	 analysis	 (Figure	 4C).	 In	 other	 words,	 there	 is	 no	 covariance	452	
enrichment	for	proteins	in	the	same	pathway,	if	there	is	no	evidence	that	they	physically	453	
interact.	 Altogether,	 we	 present	 evidence	 that	 support	 direct	 interactions	 between	454	
proteins	 in	 the	 same	 complex	 (Figure	4B-D)	 as	 a	 selector	 for	 covariances,	 rather	 than	455	
pathway	stoichiometry.		456	
	457	

	458	
Figure	5:	Gene	covariance	information	can	predict	regulatory	targets.	(A)		Genes	that	covary	459	
with	 transcription	 factor	 targets	 are	 likely	 targets	 of	 the	 same	 factor	 (Ctnnb1)	 and	 can	 be	460	
validated	 by	 ChIP-seq.	 Probability	 for	 genes	 that	 share	 a	 certain	 number	 of	 significant	461	
covariances	 with	 the	 top	 100	 targets	 identified	 via	 ChIP-seq	 to	 be	 identified	 de	 novo	 in	 an	462	
independent	 second	 ChIP-seq	 experiment.	 (B)	 Examples	 of	 genes	 whose	 function	 was	463	
determined	purely	from	the	functional	annotation	of	covarying	genes.	464	
	465	
Predictive	power	of	gene	covariances	466	
We	next	investigated	if	our	observed	covariances	can	be	used	to	predict	genes	that	share	467	
upstream	regulators	by	a	“guilt-by-association”	principle.	We	hypothesize	that	if	a	gene	468	
of	interest	covaries	with	numerous	known	targets	of	a	transcription	factor,	it	is	likely	a	469	
target	of	said	factor.	To	test	this	hypothesis,	we	noted	all	genes	that	had	been	identified	470	
as	targets	of	the	transcription	factor	Ctnnb1	in	a	mouse	ES	cell	ChIP-seq	experiment	43.	471	
This	 gene	 is	 known	 to	 regulate	 cell	 adhesion	 and	 has	 been	 linked	 to	 various	 cancer	472	
phenotypes	 44.	We	 then	 ranked	all	 other	genes	according	 to	how	many	of	 the	 top	100	473	
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Ctnnb1	 targets	 they	 covary	 with,	 and	 observed	 that	 the	 more	 covariances	 a	 gene	474	
exhibited,	the	more	likely	it	is	to	be	bound	by	Ctnnb1	in	a	second	ChIP-seq	experiment	43	475	
(Figure	5A).	 In	other	words,	the	more	significant	covariances	a	gene	had	with	the	high	476	
confidence	 targets	 identified	 in	 the	 first	 experiment,	 the	 more	 often	 is	 was	 observed	477	
among	the	high	confidence	targets	identified	in	a	second	independent	experiment.	While	478	
the	predictive	power	of	our	method	is	 limited	(target	probability	~	25%,	Figure	5A)	 it	479	
serves	 as	 a	 proof	 of	 principle	 that	 single-cell	 transcriptome	 data	 can	 be	 used	 for	480	
predicting	 regulatory	 relations	 even	 in	 a	 homogeneous	 cell	 population.	 This	 approach	481	
could	be	used	 to	make	 sparse	data	 sets	more	 complete,	 through	 “guilt-by-association”	482	
with	previously	identified	targets	or	to	identify	targets	that	escape	current	technologies	483	
due	to	biases.	Last,	we	found	that	the	function	of	genes	could	be	inferred	by	surveying	484	
functional	annotations	of	covarying	genes	(Figure	5B,	Methods).	This	may	not	only	aid	485	
functional	 annotation	 but	 could	 also	 reveal	 hidden	 gene	 functions,	 so	 called	486	
moonlighting.	 In	 conclusion,	 knowledge	 of	 gene	 covariances	 across	 single	 cells	 can	 be	487	
used	to	infer	gene	function	and	regulation	through	associations.	488	

	489	

490	
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Discussion	491	

	492	
We	show	 that	 statistically	 robust	 and	biologically	meaningful	 gene	 covariances	 can	be	493	
detected	in	homogeneous	non-dynamic	single	cell	populations.	Evidence	to	support	this	494	
claim	 include:	 the	 validation	 by	 alternative	 statistical	 methods,	 a	 low	 estimated	 false	495	
discovery	rate,	the	recovery	of	known	regulatory	patterns,	and	a	power-law	distribution	496	
of	 network	 edges	 commonly	 found	 in	 biological	 networks.	 Our	 experimental	 set-up	497	
allows	for	the	study	of	widespread	gene	expression	covariances	unrelated	to	cell	cycle	498	
and	 other	 dynamic	 changes	 in	 the	 cells	 such	 as	 differentiation.	 Strikingly,	 all	 major	499	
regulatory	mechanisms	–	post-transcriptional,	transcriptional	and	by	nuclear	proximity	500	
–	 influence	covariance	patterns.	We	confirmed	experimentally	 the	 importance	of	post-501	
transcriptional	 regulation	 by	 miRNAs	 by	 showing	 that	 loss	 of	 miRNAs	 results	 in	 a	502	
specific	loss	of	a	subset	of	covariances.	503	
	504	
Based	on	our	findings,	we	propose	a	hierarchy	of	gene	covariance	regulation.	We	place	505	
regulation	 via	 intra-chromosomal	 proximity	 first	 because	 of	 the	 strength	 of	 the	 effect,	506	
and	transcription	 factors	second	because	of	 the	size	of	 the	affected	target	pool	(Figure	507	
3).	 The	 influence	 of	 inter-chromosomal	 proximity	 and	 miRNA	 regulation	 is	508	
comparatively	smaller	although	still	substantial.	As	targets	of	the	same	regulator	tend	to	509	
covary	as	well	as	genes	that	are	part	of	the	same	functional	units,	covariances	have	been	510	
used	to	predict	gene	function	and	regulation.	We	show	that	we	not	only	recover	known	511	
gene	 functions	 and	 transcription	 factor	 targeting	 but,	 as	 a	 proof	 of	 principle,	 also	512	
showed	the	predictive	potential	for	both	gene	function	and	regulation.	513	
	514	
Importantly,	we	find	that	covarying	genes	only	tend	to	share	the	same	function	if	their	515	
encoded	 proteins	 also	 physically	 interact,	 suggesting	 a	 role	 in	 protein	 complex	516	
stoichiometry.	The	induction	of	gene	expression	covariation	could	be	beneficial	to	cells	517	
as	 it	 is	well	 understood	 that	 the	 formation	 of	 heteromeric	 protein	 complexes	 is	 often	518	
needed	 for	 proper	 folding	 and	 stability	 of	 the	 proteins	 involved	 45.	 In	 bacteria,	 spatial	519	
separation	 of	 the	 translation	 of	 such	 proteins	 leads	 to	 misfolding	 events	 46.	 It	 is	520	
conceivable	 that	 temporal	separation	might	result	 in	similar	effects.	The	production	of	521	
misfolded	proteins	that	have	to	be	removed	by	degradation	is	costly	from	an	energetic	522	
point	of	view,	and	accumulation	of	misfolded	protein	can	have	lethal	consequences	for	523	
cells	(Figure	4D).	Therefore,	we	suggest	that	establishing	expression	covariance	of	such	524	
genes	already	on	the	RNA	level	might	be	an	advantage	in	evolutionary	terms.	525	
	526	
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In	 this	 study	we	measure	RNA	 rather	 than	 protein	with	 the	 latter	 being	 closer	 to	 the	527	
cellular	 phenotype.	 However,	 when	 inferring	 upstream	 regulation,	 it	 may	 be	 more	528	
informative	 to	 measure	 RNA.	 Further,	 many	 of	 the	 interesting	 and	 biologically	529	
meaningful	covariances	that	we	discover	may	not	be	detectable	at	the	protein	level,	even	530	
in	single	cells.	For	instance,	transcript	covariances	may	be	important	for	co-folding,	but	531	
they	may	not	be	visible	at	the	proteome	level	for	proteins	that	have	long	half-lives	and	532	
that	are	therefore	stably	expressed.	It	will	be	exciting	to	study	covariances	at	the	protein	533	
level,	 when	 technologies	 to	 accurately	 profile	 hundreds	 of	 proteins	 in	 single	 cells	534	
become	available.	535	
	536	
Gene	co-expression	studies	have	been	conducted	on	pools	of	cells	for	decades,	yielding	537	
important	 insights	 into	 covariances	 and	 network	 properties.	 However,	 these	 studies	538	
have	been	limited	in	their	capacity	to	study	changes	to	network	properties	following	a	539	
genetic	perturbation.	For	instance,	to	study	the	effects	of	Drosha	knockout	using	pooled	540	
cells,	 it	 would	 be	 necessary	 to	 ablate	 the	 gene	 in	 dozens	 or	 hundreds	 of	 cell	 lines	 in	541	
parallel	to	have	the	statistical	strength	to	call	covariances.	In	contrast,	our	study	serves	542	
as	a	proof-of-concept	that	it	 is	possible	to	delete	the	gene	in	a	single	cell	 line,	and	then	543	
consider	 each	 of	 hundreds	 of	 individual	 cells	 as	 an	 independent	 condition,	 thus	544	
obtaining	the	statistical	power	to	resolve	network	properties	in	one	experiment.	In	our	545	
study	we	find	that	many	more	covariances	are	lost	than	gained	in	the	Drosha	knockout	546	
cells,	 and	 we	 observe	 a	 general	 loss	 of	 network	 connectivity.	 This	 highlights	 the	547	
importance	 of	miRNAs	 in	maintaining	 gene	 expression	 synchronicity	 and	 global	 gene	548	
network	 connectivity;	 an	 insight	 that	 would	 be	 difficult	 to	 obtain	 with	 bulk	 cell	 or	549	
classical	single-gene	approaches.	In	summary,	we	demonstrate	that	the	combination	of	550	
single-cell	 sequencing,	 gene	 covariance	 analysis	 and	 genetic	 perturbations	 can	 yield	551	
insights	into	robustness	of	regulatory	networks	with	unprecedented	ease	and	depth.	552	
	553	
A	 previous	 study	 of	 RNA	 and	 protein	 covariances	 using	 samples	 from	 bulk	 cell	554	
populations	 37	 found	 that	 neighboring	 genes	 on	 the	 same	 chromosomes	 are	 often	 co-555	
expressed	 at	 the	 RNA	 level,	 but	 are	 however	 not	 functionally	 related	 and	 that	 the	556	
covariances	do	not	translate	to	the	protein	level.	To	the	contrary,	we	observe	that	gene	557	
pairs	in	nuclear	proximity	that	share	an	interaction	on	the	protein	level	are	in	fact	7.5-558	
times	enriched	compared	to	background,	suggesting	a	specific	co-occurrence	of	nuclear	559	
proximity,	RNA	covariance	and	shared	function.	Further,	using	a	database	 for	bulk	cell	560	
protein	expression	covariances	47,	we	find	that	21%	of	our	observed	RNA	covariances	in	561	
fact	translate	to	the	protein	level,	compared	to	6%	for	background	genes.	The	apparent	562	
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contrast	between	these	results	may	originate	from	the	fact	that	the	previous	study	was	563	
conducted	in	immortalized	primary	cell	lines	from	human	individuals	37,	where	genetic	564	
variants	that	strongly	impact	protein	levels	may	have	been	specifically	selected	against	565	
by	 evolution.	 In	 contrast,	 temporal	 fluctuations	 of	 protein	 levels	 may	 be	 tolerated	 in	566	
individual	cells	from	cell	lines,	allowing	more	refined	measurements.	This	highlights	the	567	
advantages	of	studying	variation	of	gene	regulation	at	the	single-cell	level.	568	
	569	
It	 has	 been	 proposed	 that	 while	 prokaryotes	 use	 co-transcribed	 operons	 to	 ensure	570	
synchronized	 expression	 and	 stoichiometry	 of	 proteins	 in	 common	 pathways	 or	571	
complexes,	eukaryotes	use	post-transcriptional	regulation	to	ensure	a	similar	outcome	572	
at	the	RNA	level.	The	integrated	effect	of	dispersed	transcription	and	coordinated	post-573	
transcriptional	 regulation	 has	 been	 named	 ‘RNA	 operons’	 or	 ‘Regulons’	 48.	 Our	 results	574	
support	 that	 eukaryotic	 post-transcriptional	 regulation	 by	 for	 instance	 miRNAs	 can	575	
coordinate	 gene	 expression	 at	 the	 RNA	 level,	 but	 we	 also	 provide	 evidence	 that	576	
substantial	functional	regulation	occurs	at	the	level	of	nuclear	organization,	by	genes	on	577	
the	 same	 chromosome	 or	 by	 genes	 that	 are	 in	 proximity	 although	 on	 distinct	578	
chromosomes.	579	
	580	

581	
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Methods	Summary	723	

DroshaKO	cells	were	generated	using	the	DroshaF	mouse	embryonic	stem	cell	line	(Chong	724	
et	 al,	 2008)	 containing	 the	 tamoxifen-inducible	 LoxP	 -	 exon9	 -	 LoxP	 and	 a	 neomycin	725	
selection	 cassette.	 The	DroshaKO	 cells	were	 propagated	 for	 three	 passages	 in	 2i	media	726	
containing	mouse	LIF.	For	 single-cell	 sequencing,	 the	DroshaKO	 cells	were	 stained	with	727	
Hoechst-33342	 and	 propidium	 iodide,	 then	 sorted	 in	 G2/M	 using	 a	 BD	 Influx	 (BD	728	
Bioscience).	Dual-indexed	cDNA	 libraries	were	prepared	using	 the	 Illumina	NexteraXT	729	
dual	index	library	prep	kit	following	the	SmartSeq2	protocol	(Picelli:	24056875).	cDNA	730	
libraries	were	pooled	and	50-bp	single-end	sequencing	was	performed	on	an	 Illumina	731	
HiSeq	2000	platform.	The	reads	were	mapped	against	the	mm10	mouse	genome	using	732	
Tophat,	 and	 duplicates	 were	 removed	 using	 Samtools.	 Only	 reads	 that	 mapped	 to	 a	733	
unique	 genome	 position	 that	 overlapped	 a	 single	 gene	 annotation	 were	 considered.	734	
Individual	cells	that	did	not	pass	stringent	mapping	criteria,	or	that	were	assigned	to	S	735	
or	G1	phase	by	the	cyclone	function	of	the	SCRAN	package,	were	discarded.	Read	counts	736	
for	 each	 cell	 was	 normalized	 to	 reads	 per	 million	 (RPM).	 Genes	 were	 subsequently	737	
excluded	 from	 the	analysis	 if	 they	were	not	detectably	expressed	 in	at	 least	half	of	 all	738	
cells	 in	 each	 condition	 and	 replicate.	 Pairs	 of	 genes	 were	 considered	 significantly	739	
covarying	if	they	were	correlated	by	Spearman’s	ranked	test	(p<0.01)	in	at	least	two	out	740	
of	 three	 replicates.	 Transcription	 factor	 targets	 were	 retrieved	 from	 the	 Cistrome	741	
database	and	miRNA	targets	were	obtained	from	TargetScanMouse	Release	7.1.	Targets	742	
were	ranked	by	the	total	amount	of	8mer	sites,	the	total	amount	of	m8-7mer	sites	and	743	
the	cumulative	weighted	context	score.	744	
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