1	Rare Variants in the OTOG Gene Are a Frequent Cause of Familial
2	Meniere's Disease
3	Pablo Roman-Naranjo ¹ , Alvaro Gallego-Martinez ¹ , Andrés Soto-Varela ² , Ismael Aran ³ ,
4	Maria del Carmen Moleon ⁴ , Juan Manuel Espinosa-Sanchez ⁴ , Juan Carlos Amor-
5	Dorado ⁵ , Angel Batuecas-Caletrio ⁶ , Paz Perez-Vazquez ⁷ and Jose A. Lopez-Escamez ^{1,4}
6 7 8	¹ Otology & Neurotology Group CTS 495, Department of Genomic Medicine, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, Granada, Spain
9 10	² Division of Otoneurology, Department of Otorhinolaryngology, Complexo Hospitalario Universitario, Santiago de Compostela, Spain.
11 12	³ Department of Otolaryngology, Complexo Hospitalario de Pontevedra, Pontevedra, Spain.
13 14	⁴ Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.GRANADA, Hospital Universitario Virgen de las Nieves, Granada, Spain.
15	⁵ Department of Otolaryngology, Hospital Can Misses, Ibiza, Spain.
16 17	⁶ Department of Otolaryngology, Hospital Universitario Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
18	⁷ Department of Otorhinolaryngology, Hospital Universitario de Cabueñes, Gijón, Spain.
19	
20	All correspondence should be addressed to:
21	José Antonio López Escámez, Otology & Neurotology Group CTS495, GENYO, -
22	Centre for Genomics and Oncological Research- Pfizer/Universidad de
23	Granada/Andalusian Regional Government, Avda de la Ilustración 114, Granada 18016
24	Spain. E-mail: antonio.lopezescamez@genyo.es Phone. +34 958 715 500-160
25 26 27 28	Conflicts of Interest and Source of Funding: Jose Antonio Lopez Escamez (JALE) is partially funded by INT18/00031 from ISCIII. This study was funded by the Luxembourg National Research Fund

- 29 INTER/Mobility/17/11772209 Grant and EF-0247-2017 from Andalusian Health
- 30 Government to JALE. Authors declare no conflict of interest.

3

31 Abstract

32	Objectives: Meniere's disease (MD) is a rare inner ear disorder characterized by
33	sensorineural hearing loss, episodic vertigo and tinnitus. Familial MD has been reported
34	in 6-9% of sporadic cases, and few genes including FAM136A, DTNA, PRKCB,
35	SEMA3D and DPT have been involved in single families, suggesting genetic
36	heterogeneity. In this study, the authors recruited 46 families with MD to search for
37	relevant candidate genes for hearing loss in familial MD.
38	Design: Exome sequencing data from MD patients were analyzed to search for rare
39	variants in hearing loss genes in a case-control study. A total of 109 patients with MD
40	(73 familial cases and 36 early-onset sporadic patients) diagnosed according to the
41	diagnostic criteria defined by the Barany Society were recruited in 11 hospitals. The
42	allelic frequencies of rare variants in hearing loss genes were calculated in individuals
43	with familial MD. A single rare variant analysis (SRVA) and a gene burden analysis
44	(GBA) were conducted in the dataset selecting one patient from each family. Allelic
45	frequencies from European and Spanish reference datasets were used as controls.
46	Results: A total of 5136 single nucleotide variants in hearing loss genes were
47	considered for SRVA in familial MD cases, but only one heterozygous variant in the
48	OTOG gene (rs552304627) was found in two unrelated families. The GBA found an
49	enrichment of rare missense variants in the OTOG gene in familial MD. So, 15/46
50	families (33%) showed at least one rare missense variant in the OTOG gene, suggesting
51	a key role in familial MD.
52	Conclusions: The authors found an enrichment of multiplex rare missense variants in
53	the OTOG gene in familial MD. This finding supports OTOG as a relevant gene in

54 familial MD and set the groundwork for genetic testing in MD.

4

INTRODUCTION

56	Meniere's disease [MD (OMIM 18600)] is a rare inner ear disorder with three major
57	symptoms: sensorineural hearing loss (SNHL), episodic vertigo and tinnitus (Lopez-
58	Escamez et al. 2015; Espinosa-Sanchez & Lopez-Escamez 2016). Hearing loss always
59	involves low and medium frequencies in one or both ears (unilateral or bilateral MD) at
60	the onset of the disease. However, MD also affects high frequencies in early or
61	advanced stages of the disease (Belinchon et al. 2011). Epidemiological studies indicate
62	that MD is most common in European population, suggesting a genetic predisposition
63	(Ohmen et al. 2013). Although the majority of MD patients are considered sporadic
64	(Frejo et al. 2016; Frejo et al. 2017), familial clustering has been reported in 8-9% of
65	sporadic cases in the European descendent (Requena et al. 2014), and in 6% of Korean
66	population (Lee et al. 2015), which also supports a genetic contribution to the disease
67	(Roman-Naranjo et al. 2017). MD shows a wide range of phenotypic variations among
68	patients, even within the same families (Lee et al. 2015b), and it is commonly
69	associated with migraine and systemic autoimmune disorders (Tyrrell et al. 2014; Cha
70	et al. 2008). Familial MD (FMD) shows an autosomal dominant (AD) pattern of
71	inheritance with incomplete penetrance and anticipation, showing an earlier onset
72	compared to sporadic cases (Morrison et al. 2009; Birgerson et al. 1987; Klar et al.
73	2006). Different whole exome sequencing (WES) based studies have identified several
74	genes related with FMD. Single nucleotide variants (SNV) in DTNA, FAM136A,
75	PRKCB, DPT and SEMA3D were identified in 4 different families AD inheritance with
76	incomplete penetrance (Requena et al. 2015; Martín-Sierra et al. 2016; Martín-Sierra et
77	al. 2017). However, these findings have not been replicated neither in other MD
78	families nor sporadic MD (SMD) cases.

79	WES continues to be an efficient tool to determine disease-causing variants (Williams et
80	al. 2016; Adams & Eng 2018; Suwinski et al. 2019), although the monogenic
81	hypothesis in FMD should be reconsidered to achieve results beyond private rare
82	variants for singular families. Thus, the "one variant-one disease" hypothesis, described
83	for classic Mendelian inheritance cannot explain the incomplete penetrance or variable
84	expressivity observed in MD (Martín-Sierra et al. 2017) and more complex inheritance
85	models are needed (Cooper et al. 2013; Kousi & Katsanis 2015). Oligogenic and
86	multiallelic models have been already applied in different diseases, such as Parkinson
87	(Lubbe et al. 2016) and Huntington's disease (Lee et al. 2015a), explaining changes in
88	disease progression and phenotypic variability. Furthermore, a digenic inheritance of
89	deafness was reported by variants in CDH23 and PCDH15 (Zheng et al. 2005), and
90	recently, an enrichment of rare missense variants in certain SNHL genes, such as GJB2,
91	SLC26A4 or USH1G, was found in a large cohort of SMD cases (Gallego-Martinez et
92	al. 2019), supporting the hypothesis of multiallelic inheritance in MD.
93	More than 150 genes have been associated to deafness (Azaiez et al. 2018), and 116 of
94	them are related with non-syndromic SNHL (Van Camp G. 2018).
05	In this study, we have investigated the genetic healtenound of EMD, focusing on SNUL
95	In this study, we have investigated the genetic background of FMD, focusing on SNHL genes by analyzing 46 families with MD by WES. We have found an enrichment of rare
96	
97	missense variants in the OTOG gene compared with non-Finnish European (NFE) and
98	Spanish populations. The OTOG gene, which encodes otogelin, has been previously
99	associated with deafness and imbalance and causes autosomal recessive deafness 18B
100	(Simmler et al. 2000a; Schraders et al. 2012). A total of 15 families out of 46 showed, at
101	least, one rare missense variant in this gene, suggesting a key role of otogelin in MD.

6

102 MATERIALS AND METHODS

103 Patient assessment and selection

- 104 A total of 73 MD patients from 46 different families with one or more affected first-
- degree relatives, and 36 sporadic MD cases with an age of onset younger than 35 were
- 106 recruited. Patients were diagnosed following the diagnostic criteria described by the
- 107 International Classification Committee for Vestibular Disorders of the Barany Society
- 108 (Lopez-Escamez et al. 2015). A complete hearing and vestibular assessment was carried
- 109 out in all cases, including a brain magnetic resonance imaging to exclude other causes
- 110 of neurological symptoms. Serial pure tone audiograms were retrieved from clinical
- 111 records to assess hearing loss since the initial diagnosis. A summary of the clinical
- 112 information of these patients is presented in the Supplemental Digital Content 1 (see
- 113 Table 1 to Table 3, Supplemental Digital Content 1).
- 114 This study protocol was approved by the Institutional Review Board for Clinical
- 115 Research (MS/2014/02), and a written informed consent to donate biological samples
- 116 was obtained from all subjects.

117 DNA extraction and whole exome sequencing

118 Blood and saliva samples were taken from patients with MD to perform WES. DNA

- samples were extracted with prepIT-L2P (DNA Genotek, Ottawa, Canada) and QIAamp
- 120 DNA Blood Mini Kit (Qiagen, Venlo, The Netherlands) using manufacturer's protocols
- and quality controls previously described (Szczepek et al. 2019). DNA libraries were
- 122 prepared by using the SureSelect Human All Exon V6 kit (Agilent Technologies, Santa
- 123 Clara, CA, USA) and were paired-end sequenced on the Illumina HiSeq 4000 platform
- 124 at 100X coverage. Raw reads were stored in two FASTQ files for each individual.

125 **Bioinformatic analysis**

126 Dataset generation and processing

- 127 Analysis-ready BAM files and VCF files were generated from raw unmapped reads
- using the GATK Best Practices pipeline. Reads were aligned to the GRCh37/hg19
- 129 human reference genome using the BWA-MEM algorithm. For obtaining the final
- 130 dataset, SNV and small structural variants were filtered according to its Variant Quality
- 131 Score Recalibration (VQSR) and depth of coverage (DP) values. Thus, variants were
- excluded if their VQSR value were under the VSQR threshold or their average DP < 10.
- 133 Variants were functionally annotated using ANNOVAR version 2018Apr16. RefSeq
- 134 was used for gene-based annotation and the Exome Aggregation Consortium (ExAC)
- 135 database, the Combined Annotation Dependent Depletion (CADD) scores and the
- 136 dbNSFP database (v3.0) were used for filter-based annotation.

137 Sensorineural hearing loss gene set

- 138 The SNHL gene set was generated by using three different databases: the Hereditary
- 139 Hearing Loss Homepage (Van Camp G. 2018), the Deafness Variation Database
- 140 (Azaiez et al. 2018) and Harmonizome (Rouillard et al. 2016), containing a total of 116
- 141 genes related with SNHL (see Table 4, Supplemental Digital Content 1).

142 Data analysis and prioritization strategy

- 143 Two pipelines and filtering/prioritization strategies were conducted to search for rare
- variants as we have previously described (Gallego-Martinez et al. 2019). The first was a
- single rare variant analysis (SRVA) for studying individual families; the second
- approach was a gene burden analysis (GBA) to obtain a gene-level mutational profile
- 147 (Figure 1). For these analyses only one patient from each family was selected.

148	Whenever possible, the patient selected was in the last generation. Sporadic cases with
149	an early onset were also investigated to search for singleton variants in candidate genes
150	in both analyses.
151	All variants were assessed according to the standards and guidelines described by the
152	American College of Medical Genetics and Genomics (ACMG) and the Association for
153	Molecular Pathology (AMP) (Richards et al. 2015). Variants not described in the NFE
154	population from ExAC and the Spanish population from CSVS were discarded to
155	minimize false calls and population-specific variants (Shearer et al. 2014). Selected
156	variants were checked in patients BAM files with IGV and/or sequenced by Sanger
157	sequencing to minimize false calls.
150	
158	Statistics and databases
158	Statistics and databases Two independent datasets were used as reference to compare the observed MAF in
159	Two independent datasets were used as reference to compare the observed MAF in
159 160	Two independent datasets were used as reference to compare the observed MAF in FMD and to calculate odds ratios (OR): NFE population from ExAC and the
159 160 161	Two independent datasets were used as reference to compare the observed MAF in FMD and to calculate odds ratios (OR): NFE population from ExAC and the Collaborative Spanish Variant Server (CSVS) database (Lek et al. 2016; Dopazo et al.
159 160 161 162	Two independent datasets were used as reference to compare the observed MAF in FMD and to calculate odds ratios (OR): NFE population from ExAC and the Collaborative Spanish Variant Server (CSVS) database (Lek et al. 2016; Dopazo et al. 2016).
159 160 161 162 163	Two independent datasets were used as reference to compare the observed MAF in FMD and to calculate odds ratios (OR): NFE population from ExAC and the Collaborative Spanish Variant Server (CSVS) database (Lek et al. 2016; Dopazo et al. 2016). For each selected variant in the SRVA, OR with 95% confidence interval (CI) were
159 160 161 162 163 164	Two independent datasets were used as reference to compare the observed MAF in FMD and to calculate odds ratios (OR): NFE population from ExAC and the Collaborative Spanish Variant Server (CSVS) database (Lek et al. 2016; Dopazo et al. 2016). For each selected variant in the SRVA, OR with 95% confidence interval (CI) were calculated using the MAF values from the CSVS database (N=1,579) and the NFE

- values that were corrected for multiple testing by the total number of variants found in
- 169 each gene following the Bonferroni approach.
- 170 Standard audiometric evaluations for air and bone conduction elicited by pure tones
- 171 from 125 to 8000 Hz were retrieved from the clinical records to analyse the time course

- 172 of the hearing profile in FMD cases with candidate variants. Regression analysis was
- 173 performed to estimate the outcome of hearing loss for each frequency.

10

174

RESULTS

175 Main genetic findings in familial MD

176 Single rare variant analysis

- 177 A total of 5136 variants located in SNHL genes were considered in FMD cases. After
- applying quality controls (QC), 4247 SNV remained. Only 75 nonsynonymous or splice
- site SNV fulfilled the MAF (<0.001) and CADD (>15) filtering criteria (Figure 1).
- 180 From them, 40 SNV were already described in the NFE population or Spanish
- 181 population, but only one SNV was found in more than one family (see Table 5,
- 182 Supplemental Digital Content 1, which shows the rare variants found in the SRVA for
- 183 FMD cases). This heterozygous variant located in *OTOG* gene was observed in cases
- 184 from two unrelated families (F1 & F14). The variant chr11:17574758G>A
- 185 (rs552304627; p.V141M), which is in the last nucleotide of the fourth exon in the
- 186 OTOG canonical transcript (ENST00000399391), is likely pathogenic according to the
- 187 ACMG and AMP guidelines. This multiplex variant is located in a Von Willebrand
- 188 Factor D-type domain (vWD) with a MAF=.0008 in NFE population, and multiple *in*
- silico tools supported a likely pathogenic effect of this variant (SIFT score=.001; M-

190 CAP=.153; CADD=28.2; GERP++=5.36).

- 191 The rest of the rare SNV were considered private familial variants because none of them
- 192 were found in other FMD cases. None small structural variant (insertion or deletion)
- 193 was found in any SNHL genes.

194 Gene burden analysis

195 Seventy-three genes with 214 SNV with a MAF<0.05 were retained after QC and

196 filtering steps. Most of the genes (74%) carried less than 3 variants, thus they were

197	discarded for further analysis. The most significant finding was an enrichment of rare
198	missense variants in OTOG gene in our FMD cases against either NFE population from
199	ExAC (OR= 4.3(2.6-7.0), $p = 4.1 \times 10^{-8}$) or Spanish population (OR= 3.6(2.1-5.9), $p =$
200	7.1x10 ⁻⁶). Nine different rare missense variants were found in $OTOG$ in 14/46 non-
201	related families, existing 6 families with 2 or more shared variants (Table 1 & see
202	Figure 1, Supplemental Digital Content 2). The variants rs61978648 and rs61736002
203	were shared by individuals from 4 unrelated families (F2, F3, F4 & F5). Likewise, the
204	variants rs552304627 and rs117315845 were found in patients from other 2 unrelated
205	families (F1 & F14).
206	In addition, a novel variant in OTOG not included in the GBA was found in two cases
207	from a 15th family (F34). This variant, located in exon 18 (chr11:17594747C>A), was
208	found in heterozygous state affecting the sequence of the C8 domain. The distribution
209	of the variants found in OTOG is scattered across the gene sequence (Figure 2).
209 210	of the variants found in <i>OTOG</i> is scattered across the gene sequence (Figure 2). Hearing profile in familial patients with rare variants in <i>OTOG</i>
210	Hearing profile in familial patients with rare variants in OTOG
210 211	Hearing profile in familial patients with rare variants in <i>OTOG</i> The hearing profile for the 14 patients (3 males, 11 females) with rare variants in <i>OTOG</i>
210 211 212	Hearing profile in familial patients with rare variants in <i>OTOG</i> The hearing profile for the 14 patients (3 males, 11 females) with rare variants in <i>OTOG</i> gene was studied (see Figure 2, Supplemental Digital Content 2, which shows the pure
210 211 212 213	Hearing profile in familial patients with rare variants in <i>OTOG</i> The hearing profile for the 14 patients (3 males, 11 females) with rare variants in <i>OTOG</i> gene was studied (see Figure 2, Supplemental Digital Content 2, which shows the pure tone audiograms for these patients). Ten of them showed bilateral hearing loss, 3 had
210 211 212 213 214	Hearing profile in familial patients with rare variants in <i>OTOG</i> The hearing profile for the 14 patients (3 males, 11 females) with rare variants in <i>OTOG</i> gene was studied (see Figure 2, Supplemental Digital Content 2, which shows the pure tone audiograms for these patients). Ten of them showed bilateral hearing loss, 3 had left-sided hearing loss and only 1 patient shown right-sided SNHL (see Table 1,
210 211 212 213 214 215	Hearing profile in familial patients with rare variants in OTOG The hearing profile for the 14 patients (3 males, 11 females) with rare variants in OTOG gene was studied (see Figure 2, Supplemental Digital Content 2, which shows the pure tone audiograms for these patients). Ten of them showed bilateral hearing loss, 3 had left-sided hearing loss and only 1 patient shown right-sided SNHL (see Table 1, Supplemental Digital Content 1, which summarizes the clinical information of the
210 211 212 213 214 215 216	Hearing profile in familial patients with rare variants in <i>OTOG</i> The hearing profile for the 14 patients (3 males, 11 females) with rare variants in <i>OTOG</i> gene was studied (see Figure 2, Supplemental Digital Content 2, which shows the pure tone audiograms for these patients). Ten of them showed bilateral hearing loss, 3 had left-sided hearing loss and only 1 patient shown right-sided SNHL (see Table 1, Supplemental Digital Content 1, which summarizes the clinical information of the familial MD cases carrying variants in <i>OTOG</i> gene). From these 14 patients, 16 ears
210 211 212 213 214 215 216 217	Hearing profile in familial patients with rare variants in OTOG The hearing profile for the 14 patients (3 males, 11 females) with rare variants in OTOG gene was studied (see Figure 2, Supplemental Digital Content 2, which shows the pure tone audiograms for these patients). Ten of them showed bilateral hearing loss, 3 had left-sided hearing loss and only 1 patient shown right-sided SNHL (see Table 1, Supplemental Digital Content 1, which summarizes the clinical information of the familial MD cases carrying variants in OTOG gene). From these 14 patients, 16 ears from 12 patients showed a flat shaped audiogram (57.1%), 5 ears from 5 patients

220	A regression analysis was done to estimate the hearing loss at onset and the outcome for
221	each frequency. We found a negative correlation at 1000 Hz (R^2 =.143; p=.033) and
222	2000 Hz (R^2 =.246; p=.004). There was no statistical correlation at 125 Hz, 250 Hz, 500
223	Hz, 4000 Hz nor 8000 Hz, suggesting no progression at these frequencies (Figure 3).
224	The age of onset of the symptoms was 41.93±8.66 and the estimated hearing loss at
225	onset was 62.14 ± 12.83 for low frequencies (125-250-500 Hz) and 58.75 ± 14.1 for high
226	frequencies (1000-2000-4000 Hz).
227	Early onset sporadic MD
228	The same analytical pipeline was used in a series of patients with sporadic MD with an
229	age of onset younger than 35 (see Figure 3, Supplemental Digital Content 2). For the
230	SRVA, we found 60 nonsynonymous or splice site SNV with $MAF < 0.001$ and CADD
231	> 15 in SNHL genes. Among them, one variant was found in two sporadic cases and
232	another variant was also found in a familial case. The rest of the SNV were considered
233	simplex variants found in singletons and none of them were homozygous (see Table 6,
234	Supplemental Digital Content 1, which shows the rare variants found in the SRVA for
235	SMD cases).
236	A heterozygous nonsynonymous SNV in OTOG gene was found in two unrelated
237	sporadic MD cases (S1 and S23). The variant chr11:17632279C>T (rs779658224;
238	p.A1823V) is located in exon 35 of the canonical transcript of OTOG gene and it is a
239	variant of uncertain significance (VUS) according to the ACMG and AMP guidelines.
240	This variant has a MAF=.0005 in the NFE population from ExAC and it is not
241	described in the Spanish population from the CSVS. In addition, a heterozygous

- nonsynonymous SNV in OTOGL gene was found in one sporadic case and in one 242
- familial case (S27 and F31). The variant chr12:80752642T>G (rs145929269; 243

- p.C2068G) is located in exon 51 of the canonical transcript of OTOGL gene
- 245 (ENST00000458043). This region encodes a cysteine-rich region and this variant was
- also classified as a VUS according to the ACMG and AMP guidelines.
- For the GBA, we found 12 rare SNV in OTOG gene in patients with early onset MD
- 248 (see Table 7, Supplemental Digital Content 1). However, in contrast with the results
- obtained in FMD cases, there was not an excess of rare variants in this gene against
- neither the NFE population from ExAC (OR=2.1(1.2-3.7), p=.11) nor Spanish
- 251 population (OR=2(1.1-3.5), *p*=.20) (Figure 2).

14

DISCUSSION

253	Familial MD has an AD inheritance with incomplete penetrance (Morrison et al. 2009;
254	Requena et al. 2014), and few genes have been involved in singular families (Requena
255	et al. 2015; Martín-Sierra et al. 2016; Martín-Sierra et al. 2017). In this study, we have
256	found an enrichment of rare missense variants in several unrelated patients with FMD in
257	the OTOG gene. These variants were observed in 15 of 46 non-related families (33%
258	familial cases). Seven of the 15 families with rare variants in OTOG showed incomplete
259	penetrance (47%) and partial syndromes (episodic vertigo or hearing loss) were found in
260	relatives from 5 of 15 families (Morrison et al. 2009; Requena et al. 2015; Martín-Sierra
261	et al. 2016; Martín-Sierra et al. 2017). Most of these rare variants were found in 2, 3 or
262	4 unrelated individuals from different families with MD and they were considered
263	multiplex variants. However, the majority of the variants in OTOG found in non-
264	familial patients with early onset were not observed in other sporadic cases (singletons
265	variants).
266	OTOG, which encodes otogelin, was described for first time by Cohen-Salmon et al
267	(Cohen-Salmon et al. 1997). Otogelin is a 2925 amino acid protein
268	(ENST00000399391) constituted by several vWD and C8 domains, and a cysteine knot-
269	like domain in its C-terminal. It is mainly expressed in acellular structures which cover
270	the sensory inner ear epithelia: the tectorial membrane, the otoconial membranes and
271	the cupula over the cristae ampullaris of the semicircular canals. Because of its
272	localization in the extracellular structures overlying the stereocilia of the hair cells
273	involved in the mechanotransduction of sound and acceleration, this structural protein
274	plays an important role in both auditory and vestibular functions (Schrauwen et al.
275	2016).

276	The effects of variants in otogelin were first demonstrated in the orthologous gene in a
277	mouse model. Three mouse models have been generated for evaluating the phenotypic
278	changes resulting from OTOG variants. In the Otog ^{tm1Prs} model, authors inactivated
279	Otog by deleting the first three exons. Vestibular dysfunction was detected at P4 in
280	Otog ^{-/-} , observing anomalies in the saccule and utricule. The auditory function was
281	evaluated by Pleyer reflex, showing profound hearing impairment. The $Otog^{+/-}$ mice did
282	not present any anomalies (Simmler et al. 2000a). The second model is the twister (twt)
283	mice, mice with a spontaneous recessive mutation entailing absence of Otog expression.
284	Similarly to Otog ^{tm1Prs} , in Otog ^{twt} the vestibular dysfunction was detected at P4, and the
285	hearing loss was progressive and moderate to severe/profound (Simmler et al. 2000b).
286	The last mouse model published is the otogelin ENU-induced mouse model. In this
287	model, a homozygous variant at the splice donor site of intron 29, Otog ^{vbd/vbd} , cause a
288	frame-shift and a premature codon. Otog ^{vbd/vbd} mice shown abnormal hearing and
289	vestibular functions (El Hakam Kamareddin et al. 2015).
290	Four variants have been described in OTOG gene causing DFNB18B. Schraders et al.
291	were the first to describe causative variants in OTOG. A homozygous 1bp deletion,
292	c.5508delC (p.Ala1838Profs*31) in four related patients, and two compound-
293	heterozygous variants, c.6347C>T (p.Pro2116Leu) and c.6559C>T (p.Arg2187*) in
294	- the name and the data the second dependence is a second second second second by the second second second by the second
	other two related patients, were described to cause hearing loss and vestibular
295	other two related patients, were described to cause hearing loss and vestibular dysfunction (Schraders et al. 2012). More recently, a homozygous nonsense variant
295 296	
	dysfunction (Schraders et al. 2012). More recently, a homozygous nonsense variant
296	dysfunction (Schraders et al. 2012). More recently, a homozygous nonsense variant c.330C>G (p.Tyr110*) in a Korean patient has been identified, showing early-onset
296 297	dysfunction (Schraders et al. 2012). More recently, a homozygous nonsense variant c.330C>G (p.Tyr110*) in a Korean patient has been identified, showing early-onset mild hearing loss without vestibular dysfunction (Yu et al. 2019).

301	from the parents were not available and OTOG variant segregation could not be fully
302	assessed in each family. However, the variants chr11:17574758G>A and
303	chr11:17663747G>A found in F14 were also identified in his mother, the variants
304	chr11:17578774G>A and chr11:17632921C>T found in F5 were also identified in her
305	sister (II-7), and a novel variant chr11:17594747C>A not considered for the GBA were
306	found in F34 and her brother. Furthermore, variants located in untranslated regions
307	(UTRs) and promoter regions, which modulate gene expression and different protein
308	features (Chatterjee & Pal 2009; Buckland 2006), could not be evaluated because of the
309	study design. Altogether, the results obtained by GBA suggested a different genetic
310	architecture in FMD cases and SMD cases, since the enrichment of rare variants in
311	OTOG gene was only found in FMD cases and most of the variants found in sporadic
312	cases with early onset were singletons (not observed in multiple individuals).
313	Each region of the cochlea is specifically stimulated by a specific frequency. Thus, the
314	base of the cochlea mainly responds to high-frequency sounds, whereas the apex
315	responds to low-frequency sounds, frequencies mostly affected in MD (Robles &
316	Ruggero 2017; Nakashima et al. 2016). Of note, otogelin shows a tonotopic gene
317	expression in mice (Yoshimura et al. 2014). OTOG gene showed a 2.43-fold change in
318	expression for apex vs base, making this gene a possible candidate for SNHL in MD. In
319	addition, an RNA-seq study of the inner ear from patients with normal hearing showed a
320	high expression of OTOG gene in the vestibule (Schrauwen et al. 2016), which could
321	explain the vestibular dysfunction in patients with pathogenic variants in this gene.
322	The audiograms of FMD patients who carried rare variants in OTOG gene showed a
323	moderate-to-severe flat hearing loss $\approx 60 \text{ dB}$ since the first years of onset involving all
324	frequencies. Low-frequency hearing had slight variations throughout the years, while a
325	negative correlation was found at mid (1000Hz) and high-frequency (2000Hz) hearing.

326	Data from F14 were considered as an outlier and discarded because his hearing profile
327	was not comparable to the rest of FMD patients (see Figure 2, Supplemental Digital
328	Content 2). Since all frequencies are involved since the onset of the disease, we can
329	speculate that the damage of the tectorial membrane mediated by mutations in otogelin
330	will involve the entire cochlea from base to apex.
331	According to our results, the clinical picture of patients with mutations in OTOG would
332	be a female of 43 years old with sudden or rapidly progressive flat SNHL around 60 dB
333	and vertigo attacks with a family history of MD, vertigo or early onset SNHL.
334	In conclusion, we have found an enrichment of rare missense variants in the OTOG
335	gene in FMD cases. These findings support a multiallelic contribution in MD, where
336	OTOG gene seems to be playing a relevant role in the pathophysiology of hearing and
337	vestibular functions in MD.

18

338 Acknowledgements

- 339 We thank to all participants of the Meniere's Disease Consortium for recruiting patients
- 340 with familial MD and their relatives. Pablo Roman-Naranjo is a PhD student in the
- 341 Biomedicine Program at Universidad de Granada and his salary was supported by
- 342 ASMES (Asociación Sindrome de Meniere España). JALE conceived the study design
- and recruited all clinicians involved in the Meniere's Disease Consortium to
- 344 characterize families with MD at different sites (AS-V, IA, MCM, JME-S, JCA-D, AB-
- 345 C, PP-V). PR-N and AG-M conducted DNA extractions, WES and all bioinformatics
- analyses. PR-N and JALE drafted the manuscript and all authors approved the final
- 347 version of the manuscript.
- Jose Antonio Lopez Escamez (JALE) is partially funded by INT18/00031 from ISCIII.
- 349 This study was funded by the Luxembourg National Research Fund
- 350 INTER/Mobility/17/11772209 Grant and EF-0247-2017 from Andalusian Health
- 351 Government to JALE.
- 352 Authors declare no conflict of interest.

353 **References**

- Adams, D.R., Eng, C.M. (2018). Next-Generation Sequencing to Diagnose Suspected
- 355 Genetic Disorders. *N. Engl. J. Med.*, 379, 1353–1362.
- Azaiez, H., Booth, K.T., Ephraim, S.S., et al. (2018). Genomic Landscape and
- Mutational Signatures of Deafness-Associated Genes. *Am. J. Hum. Genet.*, 103,
 484–497.
- Belinchon, A., Perez- Garrigues, H., Tenias, J.M., et al. (2011). Hearing assessment in
 Menière's disease. *Laryngoscope*, 121, 622–626.
- 361 Birgerson, L., Gustavson, K.H., Stahle, J. (1987). Familial Menière's disease: a genetic
- 362 investigation. Am. J. Otol., 8, 323–6.
- 363 Buckland, P.R. (2006). The importance and identification of regulatory polymorphisms
- and their mechanisms of action. *Biochim. Biophys. Acta Mol. Basis Dis.*
- Van Camp G., S.R.J.H. (2018). Hereditary Hearing Loss Homepage. Available at:
- 366 https://hereditaryhearingloss.org.
- 367 Cha, Y.-H., Kane, M.J., Baloh, R.W. (2008). Familial Clustering of Migraine, Episodic
- 368 Vertigo, and Ménière's Disease. *Otol. Neurotol.*, 29, 93–96.
- Chatterjee, S., Pal, J.K. (2009). Role of 5'- and 3'-untranslated regions of mRNAs in
- human diseases. *Biol. cell*, 101, 251–62.
- 371 Cohen-Salmon, M., El-Amraoui, A., Leibovici, M., et al. (1997). Otogelin: a
- 372 glycoprotein specific to the acellular membranes of the inner ear. *Proc. Natl. Acad.*
- *Sci. U. S. A.*, 94, 14450–5.
- Cooper, D.N., Krawczak, M., Polychronakos, C., et al. (2013). Where genotype is not
- predictive of phenotype: towards an understanding of the molecular basis of

070	
376	reduced penetrance in human inherited disease. Hum. Genet., 132, 1077–1130.
377	Dopazo, J., Amadoz, A., Bleda, M., et al. (2016). 267 Spanish Exomes Reveal
378	Population-Specific Differences in Disease-Related Genetic Variation. Mol. Biol.
379	Evol., 33, 1205–1218.
380	Espinosa-Sanchez, J.M., Lopez-Escamez, J.A. (2016). Menière's disease. In Handbook
381	of clinical neurology. (pp. 257–277).
382	Frejo, L., Martin-Sanz, E., Teggi, R., et al. (2017). Extended phenotype and clinical
383	subgroups in unilateral Meniere disease: A cross-sectional study with cluster
384	analysis. Clin. Otolaryngol., 42, 1172–1180.
385	Frejo, L., Soto-Varela, A., Santos-Perez, S., et al. (2016). Clinical Subgroups in
386	Bilateral Meniere Disease. Front. Neurol., 7, 182.
387	Gallego-Martinez, A., Requena, T., Roman-Naranjo, P., et al. (2019). Excess of Rare
388	Missense Variants in Hearing Loss Genes in Sporadic Meniere Disease. Front.
389	Genet., 10.
390	El Hakam Kamareddin, C., Magnol, L., Blanquet, V. (2015). A new Otogelin ENU
391	mouse model for autosomal-recessive nonsyndromic moderate hearing
392	impairment. Springerplus, 4, 730.
393	Klar, J., Frykholm, C., Friberg, U., et al. (2006). A Meniere's disease gene linked to
394	chromosome 12p12.3. Am. J. Med. Genet. Part B Neuropsychiatr. Genet., 141B,
395	463–467.

- Kousi, M., Katsanis, N. (2015). Genetic Modifiers and Oligogenic Inheritance. *Cold Spring Harb. Perspect. Med.*, 5, a017145–a017145.
- Lee, J.-M., Wheeler, V.C., Chao, M.J., et al. (2015a). Identification of Genetic Factors

399	that Modify Clinical Onset of Huntington's Disease. Cell, 162, 516–526.
400	Lee, J.M., Kim, M.J., Jung, J., et al. (2015b). Genetic aspects and clinical characteristics
401	of familial meniere's disease in a South Korean population. Laryngoscope, 125,
402	2175–2180.
403	Lek, M., Karczewski, K.J., Minikel, E. V., et al. (2016). Analysis of protein-coding
404	genetic variation in 60,706 humans. Nature, 536, 285–291.
405	Lopez-Escamez, J.A., Carey, J., Chung, WH., et al. (2015). Diagnostic criteria for
406	Menière's disease. J. Vestib. Res., 25, 1–7.
407	Lubbe, S.J., Escott-Price, V., Gibbs, J.R., et al. (2016). Additional rare variant analysis
408	in Parkinson's disease cases with and without known pathogenic mutations:
409	evidence for oligogenic inheritance. Hum. Mol. Genet., 25:5483-9.
410	Martín-Sierra, C., Gallego-Martinez, A., Requena, T., et al. (2017). Variable
411	expressivity and genetic heterogeneity involving DPT and SEMA3D genes in
412	autosomal dominant familial Meniere's disease. Eur. J. Hum. Genet., 25, 200-207.
413	Martín-Sierra, C., Requena, T., Frejo, L., et al. (2016). A novel missense variant in
414	PRKCB segregates low-frequency hearing loss in an autosomal dominant family
415	with Meniere's disease. Hum. Mol. Genet., 25, 3407-3415.
416	Morrison, A.W., Bailey, M.E.S., Morrison, G.A.J. (2009). Familial Ménière's disease:
417	clinical and genetic aspects. J. Laryngol. Otol., 123, 29-37.
418	Nakashima, T., Pyykkö, I., Arroll, M.A., et al. (2016). Meniere's disease. Nat. Rev. Dis.
419	Prim., 2, 16028.
420	Ohmen, J.D., White, C.H., Li, X., et al. (2013). Genetic Evidence for an Ethnic
421	Diversity in the Susceptibility to Ménière's Disease. Otol. Neurotol., 34, 1336-

423	Requena.	T., Cabrera.	S., Martin-Sie	rra. C., et al.	(2015).	Identification	of two novel
120	requeina,	1., Cuorera,	, si, martin sie	11u, 0., ot un	(=010)	Identification	01 01 0 110 101

- 424 mutations in FAM136A and DTNA genes in autosomal-dominant familial
- 425 Meniere's disease. *Hum. Mol. Genet.*, 24, 1119–1126.
- 426 Requena, T., Espinosa Sanchez, J.M., Cabrera, S., et al. (2014). Familial clustering and
- 427 genetic heterogeneity in Meniere's disease. *Clin. Genet.*, 85, 245–252.
- 428 Richards, S., Aziz, N., Bale, S., et al. (2015). Standards and guidelines for the
- 429 interpretation of sequence variants: a joint consensus recommendation of the
- 430 American College of Medical Genetics and Genomics and the Association for
- 431 Molecular Pathology. *Genet. Med.*, 17, 405–423.
- 432 Robles, L., Ruggero, M.A. (2017). Mechanics of the Mammalian Cochlea. *Physiol. Rev.*
- Roman-Naranjo, P., Gallego-Martinez, A., Lopez Escamez, J.A. (2017). Genetics of
 vestibular syndromes. *Curr. Opin. Neurol.*, 31, 1.
- 435 Rouillard, A.D., Gundersen, G.W., Fernandez, N.F., et al. (2016). The harmonizome: a
- collection of processed datasets gathered to serve and mine knowledge about genes
- and proteins. *Database*, 2016, baw100.
- 438 Schraders, M., Ruiz-Palmero, L., Kalay, E., et al. (2012). Mutations of the Gene
- Encoding Otogelin Are a Cause of Autosomal-Recessive Nonsyndromic Moderate
 Hearing Impairment. *Am. J. Hum. Genet.*, 91, 883–889.
- 441 Schrauwen, I., Hasin-Brumshtein, Y., Corneveaux, J.J., et al. (2016). A comprehensive
- 442 catalogue of the coding and non-coding transcripts of the human inner ear. *Hear*.
- 443 *Res.*, 333, 266–274.
- 444 Shearer, A.E., Eppsteiner, R.W., Booth, K.T., et al. (2014). Utilizing ethnic-specific

445	differences in minor allele frequency to recategorize reported pathogenic deafness
446	variants. Am. J. Hum. Genet., 95, 445-53.
447	Simmler, MC., Cohen-Salmon, M., El-Amraoui, A., et al. (2000a). Targeted disruption
448	of Otog results in deafness and severe imbalance. Nat. Genet., 24, 139-143.
449	Simmler, M.C., Zwaenepoel, I., Verpy, E., et al. (2000b). Twister mutant mice are
450	defective for otogelin, a component specific to inner ear acellular membranes.
451	Mamm. Genome, 11, 961–966.
452	Suwinski, P., Ong, C., Ling, M.H.T., et al. (2019). Advancing Personalized Medicine
453	Through the Application of Whole Exome Sequencing and Big Data Analytics.
454	Front. Genet., 10, 49.
455	Szczepek, A.J., Frejo, L., Vona, B., et al. (2019). Recommendations on Collecting and
456	Storing Samples for Genetic Studies in Hearing and Tinnitus Research. Ear Hear.,
457	40, 219–226.
458	Tyrrell, J.S., Whinney, D.J.D., Ukoumunne, O.C., et al. (2014). Prevalence, Associated
459	Factors, and Comorbid Conditions for Ménière's Disease. Ear Hear., 35, e162-
460	e169.
461	Williams, H.J., Hurst, J.R., Ocaka, L., et al. (2016). The use of whole-exome
462	sequencing to disentangle complex phenotypes. Eur. J. Hum. Genet., 24, 298-301.
463	Yoshimura, H., Takumi, Y., Nishio, S.Y., et al. (2014). Deafness gene expression
464	patterns in the mouse cochlea found by microarray analysis. PLoS One.
465	Yu, S., Choi, H.J., Lee, J.S., et al. (2019). A novel early truncation mutation in OTOG
466	causes prelingual mild hearing loss without vestibular dysfunction. Eur. J. Med.
467	Genet., 62, 81–84.

24

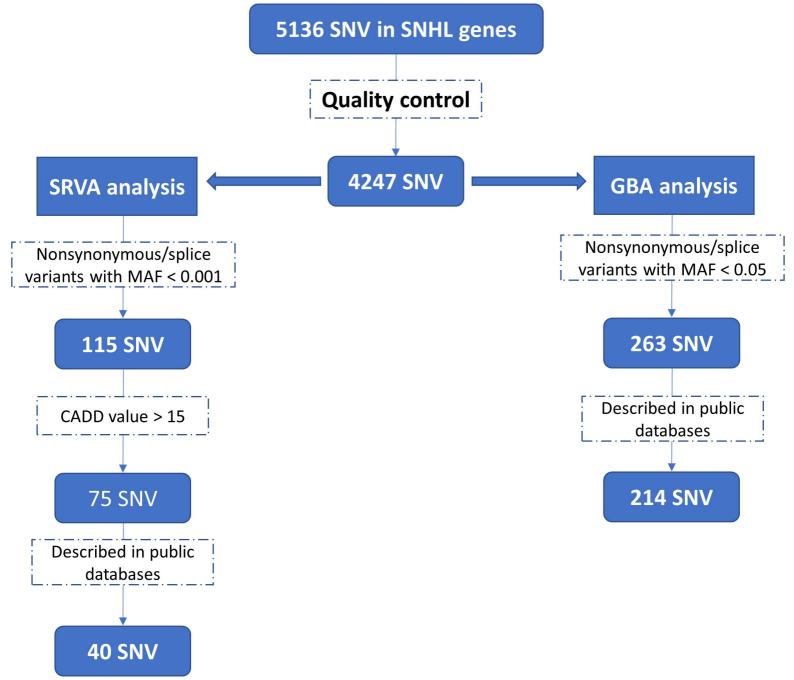
- 468 Zheng, Q.Y., Yan, D., Ouyang, X.M., et al. (2005). Digenic inheritance of deafness
- 469 caused by mutations in genes encoding cadherin 23 and protocadherin 15 in mice
- 470 and humans. *Hum. Mol. Genet.*, 14, 103–111.

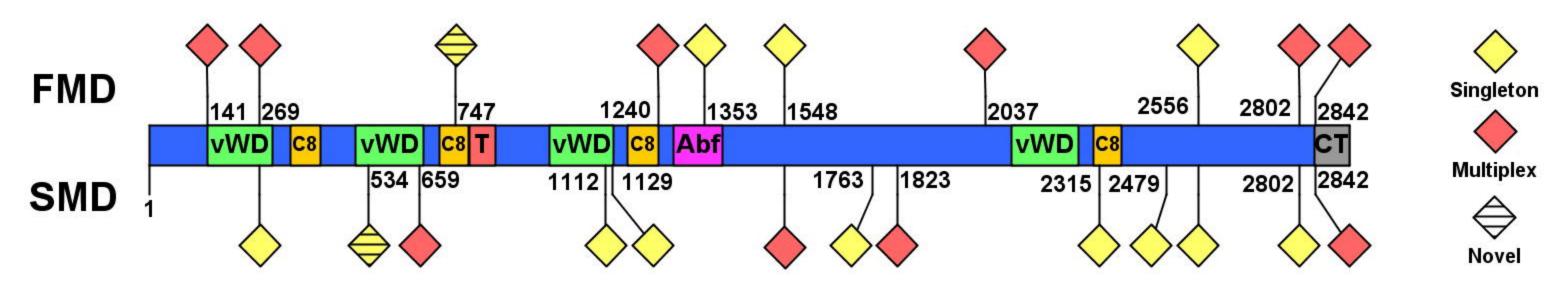
Figure legends

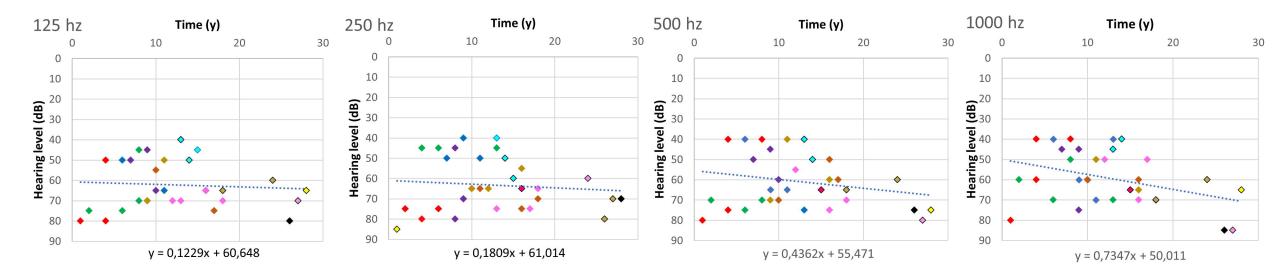
Figure 1: Flowchart summarizing the bioinformatic analysis on familial MD cases. On the left, single rare variant analysis (SRVA) and prioritization pipeline. On the right, the gene burden analysis (GBA) pipeline. SNV, single nucleotide variants; CADD, Combined Annotation Dependent Depletion Score.

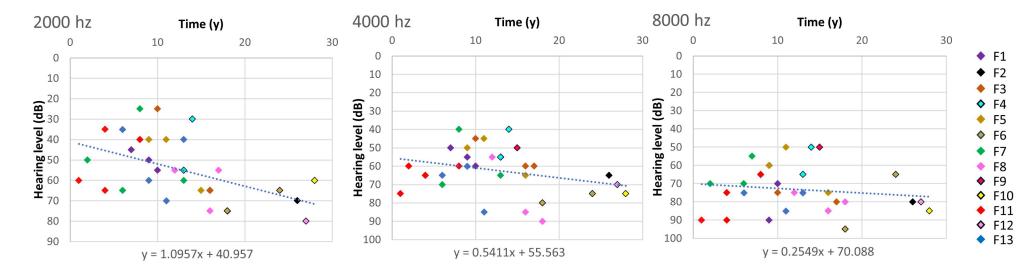
Figure 2: Variants distribution across OTOG gene domains. On the upper part, variants which were found in familial Meniere disease (FMD) cases. On the bottom part, variants which were found in sporadic Meniere disease (SMD) cases. Yellow-colored variants indicate variants found in only one case, whereas red-colored variants represent variants found in 2 or more cases in a cohort. vWD, von Willebrand factor type D domain; T, Trypsin inhibitor-like domain; Abf, Alpha-L-arabinofuranosidase B domain; CT, Cysteine knot domain.

Figure 3: Scattered plot showing air conduction hearing thresholds obtained and the duration of the disease for each frequency in familial MD cases. Regression equations and estimated hearing loss at the onset are displayed below the charts.


Supplemental Digital Content


Supplemental Digital Content 1.docx Supplemental Digital Content 2.docx


Variant negition	Exon	Families	Sporadic cases	MAF	MAF	MAF	MAF	CADD	Domain
Variant position				FMD	ALL MD	NFE	CSVS		
11:17574758G>A	4	F1; F14	-	0.041 (3/73)	0.028 (3/109)	0.00080	0.0033	24.8	vWD
11:17578774G>A	7	F2; F3; F4; F5	S24	0.068 (5/73)	0.055 (6/109)	0.0090	0.017	15.95	vWD
11:17594747C>A*	18	F34	-	0.027 (2/73)	0.018 (2/109)	—	_	22.2	C8
11:17621218C>T	30	F6; F7	-	0.027 (2/73)	0.018 (2/109)	0.0026	0.0033	34	C8
11:17627548G>A	32	F14	-	0.012 (1/73)	0.009 (1/109)	0.0056	0.0054	23.6	Abf
11:17631453C>T	35	F8	S11; S24	0.012 (1/73)	0.028 (3/109)	0.017	0.014	12.89	_
11:17632921C>T	35	F2; F3; F4; F5	—	0.068 (5/73)	0.046 (5/109)	0.0015	0.0054	7.71	_
11:17656672G>A	45	F10	S 9	0.013 (1/73)	0.018 (2/109)	0.0034	0.0039	31	_
11:17663747G>A	52	F1; F13; F14	S7	0.055 (4/73)	0.046 (5/109)	0.0058	0.0054	19.41	-
11:17667139G>C	54	F9; F11; F12	S12; S20	0.082 (6/73)	0.073 (8/109)	0.019	0.017	27.2	СТ


Table 1. Rare Variants Found in the Gene Burden Analysis in OTOG Gene for Familial MD Cases.

* This novel variant was not included in the gene burden analysis. Abbreviations: MAF FMD, minor allele frequency in familial MD; MAF ALL MD, minor allele frequency in all familial and non-familial MD cases ; NFE, Minor allele frequency in non-Finnish European population; CSVS, Collaborative Spanish Variant Server; Abf, alpha-L-arabinofuranosidase B domain; CADD, Combined Annotation Dependent Depletion Score; CT: cysteine knot domain; vWD, von Willebrand factor type D domain.

