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Abstract

Background

We demonstrate high accuracy of whole-genome sequence imputation in large27

livestock populations where only a small fraction of individuals (2%) had been28

sequenced, mostly at low coverage.29

Methods

We used data from four pig populations of different sizes (18,349 to 107,81530

individuals) that were broadly genotyped at densities between 15,000 and 75,00031

markers genome-wide. Around 2% of the individuals in each population were32

sequenced (most at 1x or 2x and a small fraction at 30x; average coverage per33

individual: 4x). We imputed whole-genome sequence with hybrid peeling. We34

evaluated the imputation accuracy by removing the sequence data of a total of 28435

individuals that had been sequenced at high coverage, using a leave-one-out design.36

We complemented these results with simulated data that mimicked the sequencing37

strategy used in the real populations to quantify the factors that affected the38

individual-wise and variant-wise imputation accuracies using regression trees.39

Results

Imputation accuracy was high for the majority of individuals in all four populations40

(median individual-wise correlation was 0.97). Individuals in the earliest generations41

of each population had lower accuracy than the rest, likely due to the lack of marker42

array data for themselves and their ancestors. The main factors that determined the43

individual-wise imputation accuracy were the genotyping status of the individual, the44

availability of marker array data for immediate ancestors, and the degree of45

connectedness of an individual to the rest of the population, but sequencing coverage46

had no effect. The main factors that determined variant-wise imputation accuracy47
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were the minor allele frequency and the number of individuals with sequencing48

coverage at each variant site. These results were validated with the empirical49

observations.50

Conclusions

The coupling of an appropriate sequencing strategy and imputation method, such as51

described and validated here, is a powerful strategy for generating whole-genome52

sequence data in large pedigreed populations with high accuracy. This is a critical step53

for the successful implementation of whole-genome sequence data for genomic54

predictions and fine-mapping of causal variants.55

56
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Background

In this paper we demonstrate high accuracy of whole-genome sequence57

imputation in large livestock populations where only a small fraction of individuals58

(2%) had been sequenced, mostly at low coverage. Using data from pig populations59

we show that imputation accuracy was very high for individuals that were genotyped60

with marker arrays with densities that ranged between 15,000 and 75,000 markers61

genome-wide. We also used simulations to quantify the factors that determined the62

imputation accuracy achieved for each individual and variant, validated those results63

with the empirical observations from real data, and performed robustness tests to64

determine the impact of data misassignment and pedigree errors on the imputation65

accuracy.66

Sequence data has the potential to empower the identification of causal67

variants that underlie quantitative traits or diseases [1–4], enhance livestock breeding68

[5–7], and increase the precision and scope of population genetic studies [8,9]. For69

sequence data to be used routinely in research and breeding, low-cost sequencing70

strategies must be deployed in order to assemble large data sets that capture most of71

the sequence diversity in a population and enable harnessing of its potential. One72

possible strategy is to sequence a subset of the individuals in a population at low73

coverage and then to perform imputation of whole-genome sequence data for the74

remaining individuals [10–12].75

Such a strategy is likely to perform well in livestock breeding populations,76

where individuals have a high degree of relatedness, allowing low-coverage sequence77

data to be pooled across individuals that share a haplotype and imputed to individuals78

who share that haplotype and have small amounts of sequenced data or who do not79

have any sequence data. Due to the implementation of genomic selection in livestock80
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breeding populations, many individuals in breeding nucleus populations have already81

been genotyped with marker arrays. This genotype data can be used to identify the82

individuals that share haplotype segments and to select individuals for sequencing that83

will be more informative from an imputation perspective given a limited budget84

[13,14].85

We have recently proposed ‘hybrid peeling’ [15], a fast and accurate86

imputation method explicitly designed for jointly calling, phasing and imputing87

whole-genome sequence data in large and complex multi-generational pedigreed88

populations where individuals can be sequenced at variable coverage or not89

sequenced at all. Hybrid peeling is a two-step process. In the first step, multi-locus90

iterative peeling is performed to estimate the segregation probabilities for a subset of91

segregating sites (e.g., the markers on a genotyping array). In the second step, the92

segregation probabilities are used to perform fast single-locus iterative peeling on93

every segregating site discovered in the genome. This two-step process allows the94

computationally demanding multi-locus peeling step to be performed on only a subset95

of the variants, while still leveraging linkage information for the remaining variants.96

These properties make hybrid peeling a very appealing imputation method for97

the cost-effective generation of whole-genome sequence data for large pedigreed98

populations that have already been extensively genotyped using marker arrays and in99

which a small proportion of the individuals have been sequenced with variable100

coverage. In the situations described, the sequence data will be sparsely distributed101

across the pedigree and there may be great variability in the amount of data to which102

each individual is exposed. Understanding which factors affect individual-wise and103

variant-wise imputation accuracy and how their effects are mediated is important for104

determining how this sequencing strategy, together with hybrid peeling, performs in105
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real settings that are common in animal breeding and for enabling accuracy-aware106

quality control of the imputed data before downstream analyses. Such knowledge107

could be used in the future to design cost-effective routine whole-genome sequencing108

strategies.109

The objectives of this study were to: (i) demonstrate if whole-genome110

sequence data could be imputed with high accuracy in a variety of pig pedigrees when111

small subsets of individuals are sequenced, mostly at low coverage; (ii) quantify the112

factors that determine the individual-wise and variant-wise imputation accuracy; and113

(iii) quantify the impact of data misassignment and pedigree errors on imputation114

accuracy. Our results showed that high overall imputation accuracies can be achieved115

for whole-genome sequence data in large pedigreed populations using hybrid peeling116

provided that the individuals are connected to a sufficient number of informative117

relatives with marker array or sequence data.118

119

120

Materials and Methods

We structured the study in three tests. In Test 1 we evaluated the imputation121

accuracy of hybrid peeling in four populations of different sizes by removing the122

sequence data of 284 individuals that had been sequenced at high coverage, using a123

leave-one-out validation design. In Test 2 we used simulated data based on three other124

real pedigrees to quantify which factors determined the individual-wise and variant-125

wise imputation accuracy of hybrid peeling with regression trees. We used simulated126

data to provide a much larger sample size where the true genotypes were known, and127

we then used the observations in the real data to validate the findings. In Test 3, we128

evaluated the potential impact that data misassignment and pedigree errors could129
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potentially have on the imputation accuracy by introducing deliberate errors in the130

real data. In what follows we first describe how the data was generated and then how131

the different tests were performed.132

133

Real data

Populations and sequencing strategy134

We performed whole-genome sequencing of 4,427 individuals from four135

commercial pig breeding lines (Genus PIC, Hendersonville, TN) using a total136

coverage of approximately 18,514x. The populations selected for this study differed137

in size, and approximately 2% (1.7-2.5%) of the individuals in each population were138

sequenced, mostly at low coverage. The first population had 18,349 (20k) individuals139

and 445 of these were sequenced with a total coverage of 1,852x. The second140

population had 34,425 (35k) individuals and 760 of these were sequenced with a total141

coverage of 3,192x. The third population had 68,777 (70k) individuals and 1,366 of142

these were sequenced with a total coverage of 5,280x. The fourth population had143

107,815 (110k) individuals and 1,856 of these were sequenced with a total coverage144

of 8,190x. We sorted the pedigrees of each population so that parents appeared before145

their progeny. Thus, relative position in the pedigree was used as a proxy for the146

generation to which an individual belonged.147

We selected the individuals and the coverage at which they were sequenced148

using a three-step strategy: (1) we first selected sires and dams that contributed most149

genotyped progeny in the pedigree (referred to as ‘top sires and dams’) to be150

respectively sequenced at 2x and 1x; (2) conditional on the first step, we used151

AlphaSeqOpt part 1 [13] to identify the individuals whose haplotypes represented the152

greatest proportion of the population haplotypes (referred to as ‘focal individuals’)153

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 16, 2019. ; https://doi.org/10.1101/771576doi: bioRxiv preprint 

https://doi.org/10.1101/771576
http://creativecommons.org/licenses/by-nc-nd/4.0/


and to determine an optimal level of sequencing coverage between 0x and 30x for154

these individuals and their immediate ancestors (i.e., parents and grandparents) under155

a total cost constraint; and (3) conditional on the second step, we used the156

AlphaSeqOpt part 2 [14] to identify individuals that carried haplotypes whose157

cumulative coverage was low (i.e., below 10x) and distributed 1x sequencing amongst158

those individuals so that the cumulative coverage on the haplotypes could be159

increased (i.e., at or above 10x). AlphaSeqOpt used haplotypes inferred from marker160

array genotypes (GGP-Porcine HD BeadChip; GeneSeek, Lincoln, NE), which were161

phased with AlphaPhase [16] and imputed with AlphaImpute [17]. The sequencing162

resources were split so that approximately 30% of the sequencing resources were used163

for sequencing the top sires at 2x, 15% for the top dams at 1x, 25% for the focal164

individuals and their immediate ancestors at variable coverage [13], and the remaining165

30% for individuals that carried under-sequenced haplotypes at 1x [14]. In step 2 we166

identified a total of 284 individuals across the four populations who were sequenced167

at high coverage (15x or 30x). Of these, 37 belonged to the 20k population, 65 to the168

35k population, 92 to the 70k population, and 90 to the 110k population. Many of169

these individuals belonged to early generations of the pedigree of each population.170

The rest of the sequenced individuals were sequenced at low coverage (1x, 2x or 5x).171

The number of individuals sequenced and the coverage at which they were sequenced172

is summarized for each population in Table 1.173

Sequencing and data processing174

Tissue samples were collected from ear punches or tail clippings. Genomic175

DNA was extracted using Qiagen DNeasy 96 Blood & Tissue kits (Qiagen Ltd.,176

Mississauga, ON, Canada). Paired-end library preparation was conducted using the177

TruSeq DNA PCR-free protocol (Illumina, San Diego, CA). Libraries for sequencing178
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at low coverage (1x to 5x) were produced with an average insert size of 350 base pairs179

and sequenced on a HiSeq 4000 instrument (Illumina, San Diego, CA). Libraries for180

sequencing at high coverage (15x or 30x) were produced with an average insert size181

of 550 base pairs and sequenced on a HiSeq X instrument (Illumina, San Diego, CA).182

All libraries were sequenced at Edinburgh Genomics (Edinburgh Genomics,183

University of Edinburgh, Edinburgh, UK). Most pigs were also genotyped either at184

low density (LD; 15,000 markers) using the GGP-Porcine LD BeadChip (GeneSeek,185

Lincoln, NE) or at high density (HD; 75,000 markers) using the GGP-Porcine HD186

BeadChip (GeneSeek, Lincoln, NE).187

DNA sequence reads were pre-processed using Trimmomatic [18] to remove188

adapter sequences from the reads. The reads were then aligned to the reference189

genome Sscrofa11.1 (GenBank accession: GCA_000003025.6; [19]) using the BWA-190

MEM algorithm [20]. Duplicates were marked with Picard191

(http://broadinstitute.github.io/picard). Single nucleotide polymorphisms (SNPs) and192

short insertions and deletions (indels) were identified with the variant caller GATK193

HaplotypeCaller (GATK 3.8.0; [21,22]) using default settings. Variant discovery with194

GATK HaplotypeCaller was performed separately for each individual. A joint variant195

set for all the individuals in each population was obtained by extracting the variant196

sites from all the individuals. Between 20 and 30 million variants were discovered in197

each population.198

To avoid biases towards the reference allele introduced by GATK when199

applied on low-coverage sequence data we extracted the read counts supporting each200

allele directly from the aligned reads stored in the BAM files with a pile-up function201

using the pipeline described in [23]. This pipeline uses the tool pysam (version 0.13.0;202

https://github.com/pysam-developers/pysam), which is a wrapper around htslib and203
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the samtools package [24]. We extracted the read counts for all biallelic SNP204

positions, after filtering out variants with mean coverage 3 times greater than the205

average realized coverage (considered as indicative of potential repetitive regions)206

with VCFtools [25].207

We performed additional quality control on the pedigree by determining the208

number of Mendelian inconsistencies (percentage of opposing homozygous) between209

each parent-progeny pair. We applied the following criteria: (1) we removed marker210

array or sequence data of an individual, when the genotype data was incompatible211

with that of all its available parents and progeny (this was done because it could212

indicate data misassignment for that individual); (2) we removed parent-progeny213

pedigree links when the genotype data available was incompatible for only a pair of214

individuals but not for their other parents and progeny; and (3) we created a dummy215

parent with no genotype data when the genotype data of a group of littermates was216

incompatible with one of its parents but both the parent and the littermates were not217

incompatible with the rest of their parents and progeny (this was done to preserve the218

full-sib relationship between those individuals).219

220

Simulated data

In order to test the factors that influenced imputation accuracy, we simulated221

genetic data for three populations of different sizes: 15,187 (15k), 29,974 (30k), and222

64,598 (65k) individuals. The pedigrees of these populations were a subset of the real223

pedigrees of the 20k, 35k, and 110k populations used for the analyses of real data. As224

in the analyses of real data, the pedigrees were sorted so that parents appeared before225

their progeny. Genomic data for each population was simulated using the software226

AlphaSim [26]. Each simulation was repeated twice and results were averaged across227
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repetitions. Below, we present only a brief description of the simulation strategy. The228

full details of the simulation are described in a companion paper [27].229

Genomic data were simulated for 20 chromosomes, each 100 cM in length. A230

total of 150,000 SNPs per chromosome (3 million SNPs genome-wide) were231

simulated in order to represent whole-genome sequence. A subset of 3,000 SNPs per232

chromosome (60,000 SNPs genome-wide) was used as a high-density marker array233

(HD). A smaller subset of 300 SNPs per chromosome (6,000 SNPs genome-wide)234

nested within the high-density marker array was used as a low-density marker array235

(LD). Each individual was assigned HD or LD marker array data based on the density236

at which they were genotyped in real data. The sequence read counts for each237

individual and SNP were simulated by sampling sequence reads using a Poisson-238

gamma model that gave variable sequenceability at each SNP and variable number of239

reads for each individual at each SNP [28,29].240

The individuals to be sequenced and their sequencing coverage were selected241

using a combination of pedigree- and haplotype-based methods that emulated the242

sequencing strategy that was used for the real data. In implementing this approach, for243

simplicity the simulated sequencing resources were split in an equitable way so that244

25% of the sequencing resources were used for sequencing top sires at 2x, 25% for245

top dams at 1x, 25% for the focal individuals and their immediate ancestors at246

variable coverage [13], and the remaining 25% for individuals that carried under-247

sequenced haplotypes at 1x [14]. The total level of investment for sequencing was248

equivalent to the cost of sequencing 2% of the population at 2x, and thus resulted in a249

similar number of sequenced individuals as in the real data.250

251
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Imputation using hybrid peeling

Imputation was performed in each population separately using hybrid peeling,252

as implemented in AlphaPeel [15] with the default settings. Hybrid peeling extends253

the methods of Kerr and Kinghorn [30] for single-locus iterative peeling and of254

Meuwissen and Goddard [31] for multi-locus iterative peeling to efficiently call,255

phase and impute whole-genome sequence data in complex multi-generational256

pedigrees with loops. Multi-locus iterative peeling was performed on all available257

marker array data to estimate the segregation probabilities for each individual. The258

individuals genotyped with LD marker arrays were not imputed to HD prior to this259

step. The segregation probabilities were used for segregation-aware single-locus260

iterative peeling for the remaining segregating variants.261

262

Imputation accuracy tests

Test 1: Imputation accuracy in populations of different size263

The imputation accuracy in the real data was estimated using a leave-one-out264

design. In each leave-one-out round, hybrid peeling was performed after removing the265

sequence data of one of the 284 individuals that were sequenced at high coverage266

(either 15 or 30x) in the four populations, which produced a total of 284 validation267

rounds across the four populations. We used the genotypes imputed for these268

individuals using the full data as the true genotypes. To reduce computational269

requirements, accuracy was only assessed on a subset of 50,000 non-consecutive270

SNPs on a single chromosome. The chromosome that we used was chromosome 5,271

which was selected randomly and has an intermediate size compared to the other pig272

chromosomes. Tests in other chromosomes gave similar results. The 50,000 variants273

that we tested included all the markers from the arrays that map to this chromosome274
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(~3,000), while the rest were chosen randomly from sequence variants discovered275

along the chromosome.276

We measured individual-wise and variant-wise imputation accuracy with the277

genotype concordance, measured as the percentage of correct genotypes, and the278

correlation between the true genotypes and imputed dosages. The individual-wise279

correlation was calculated after correcting for minor allele frequency (MAF), as280

recommended by Calus et al. [32]. In the context of this study, we found that the281

relationship between the raw correlation uncorrected for MAF and the dosage282

corrected for MAF was nearly linear (see Figure S1). To facilitate comparison with283

other studies that report the uncorrected (raw) allele dosage correlations, we found284

that the MAF corrected correlations of 0.75, 0.80, 0.85, 0.90, and 0.95 were285

respectively equivalent to the raw correlations of 0.89, 0.91, 0.93, 0.96, and 0.98. The286

variant-wise imputation accuracy was measured as the correlation between the287

imputed allele dosages and true genotypes without any correction.288

Test 2: Factors that affect individual-wise and variant-wise imputation accuracy289

In this test we assessed the factors that influenced imputation accuracy in the290

simulated data. The simulated data was used to provide a much larger sample size291

where the true genotypes were known. Just as for the real data, we ran single-locus292

peeling only on a random subset of SNPs among all sequence variants; in this case on293

a total of 5,000 non-consecutive SNPs taken from across three chromosomes to294

reduce computational requirements, although the full set of 20 chromosomes were295

simulated to represent realistic genetic architecture and haplotype diversity, which296

was needed to ensure that the properties of AlphaSeqOpt, which is a haplotype-based297

method, matched those of the of real data. We assessed the factors that influenced298

imputation accuracy by building regression trees. The regression trees were built299
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using the data from 219,518 simulated individuals and a total of 30,000 variants300

(5,000 variants from each population and replicate).301

The regression tree for the individual-wise imputation accuracy was based on302

the amount of information that was available for the individual itself and its close303

relatives (4 relationship levels: grandparents, parents, progeny, and grandprogeny).304

The factors included: (i) size of the population to which they belonged (15k, 30k, or305

65k individuals); (ii) marker array density of the individual (3 genotyping statuses:306

not genotyped, genotyped at LD, or genotyped at HD); (iii) number of close relatives307

that were genotyped at each genotyping density (12 variables; 4 relationship levels308

and 3 genotyping statuses); (iv) sequencing coverage of the individual; (v) number of309

close relatives that were sequenced and their cumulative sequencing coverage (8310

variables; 2 variables for each of the 4 relationship levels); and (vi) connectedness to311

the population, which was measured as the sum of coefficients of relationship312

between an individual and the rest of individuals in the pedigree. The regression tree313

was built using the ‘rpart’ R package [33], allowing partitions that increased the314

overall R2 by 0.005 at each step. Consecutive binary partitions based on the same315

variable were considered as multi-part.316

The factors in the regression tree for the variant-wise imputation accuracy317

included: (i) size of the population (15k, 30k, or 65k individuals); (ii) MAF; (iii)318

relative position of the variant within a chromosome; (iv) distance of a variant to the319

nearest variant from the marker array (this distance was 0 if that variant was present320

on the marker array); (v) cumulative sequencing coverage across individuals at that321

variant site; and (vi) number of individuals with at least one sequencing read covering322

that variant site. As with the individual-wise imputation accuracy, we allowed323
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partitions that increased the overall R2 by 0.005 at each step and consecutive binary324

partitions based on the same variable were considered as multi-part.325

We then used the 284 high-coverage individuals in the real data for validation,326

by comparing the results of the regression trees from the simulated data with the327

imputation accuracies observed in the real data. A regression tree was not separately328

created for the real data due to the small number of high-coverage individuals in our329

validation set. To further assess which factors affected the individual-wise imputation330

accuracy in the real data we fitted a linear model predicting imputation accuracy331

against each of the factors used for the regression tree.332

Test 3: Impact of data misassignment and pedigree errors333

We tested the impact that data misassignment and pedigree errors could have334

on the imputation results by introducing deliberate errors to the real data. We335

considered three types of errors: sequence data misassignment, marker array data336

misassignment, and pedigree errors. For each type of error we created 284 scenarios,337

in which we altered the data of each of the individuals that were sequenced at high338

coverage in each population, one at a time. The three types of errors were defined as339

follows, to represent some worst-case scenarios:340

- Sequence data misassignment. We replaced the sequence data of the target341

individual by that of a random individual from the same population that had been342

sequenced at high coverage.343

- Marker array data misassignment. We replaced the marker array data of the344

target individual by that of a random individual from the same population that had345

been genotyped at HD, regardless of its own genotyping status or density.346

- Pedigree errors. We assigned a random progeny from one of the individuals347

sequenced at high coverage from the same population to the target individual.348
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The impact of the data misassignment and pedigree errors on imputation349

accuracy was measured as the correlation between the allele dosages using the correct350

data and the erroneous data. The impact of these errors was assessed on the target351

individual where the error was introduced but also on its grandparents, parents,352

progeny, and grandprogeny to evaluate how the errors could propagate to relatives of353

the target individual. In the case of the pedigree errors we also assessed the impact of354

the pedigree error on the misassigned progeny and grandprogeny. As a control we355

also assessed the allele dosage correlation on the target individual and its relatives356

when the data of the target individual was removed, as performed in Test 1.357

358

359

Results

Imputation accuracy in populations of different size

Individual-wise imputation accuracy360

The imputation accuracy in the real data was high for most of the tested361

individuals. The average individual-wise dosage correlation was 0.94 but there was362

substantial variation with an asymmetrical distribution (median: 0.97; min: 0.11; max:363

1; interquartile range: 0.94-0.98). The average individual-wise genotype concordance364

was 97.1% (median: 98.4%; min: 78.9%; max: 100%; interquartile range: 97.1-365

98.9%). Some of the oldest individuals that belonged to the earliest generations of the366

pedigree (some of the 106 individuals located in the first 20% of the pedigree) had367

lower imputation accuracy than individuals in the remainder of pedigree, who had368

consistently high imputation accuracy. This pattern was observed for all four369

populations. Figure 1 shows the imputation accuracy, measured as the individual-wise370

dosage correlation, plotted against relative position in the pedigree, the marker array371
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density of the individual, or size of the population to which they belonged. Figure 2372

shows the same but with imputation accuracy measured as the individual-wise373

genotype concordance. The imputation accuracy of the individuals in later generations374

(the 178 individuals after the first 20% of the pedigree) was higher (Figures S2 and375

S3), with an average dosage correlation of 0.97 and with much lower variability376

(median: 0.98; min: 0.69; max: 1; interquartile range: 0.96-0.99), and an average377

genotype concordance of 98.3% (median: 98.7%; min: 86.9%; max: 100%;378

interquartile range: 98.3-99.0%).379

The marker array density of the individuals was confounded with the number380

of ancestors that were genotyped with marker arrays. The non-genotyped individuals381

(n=19) and approximately half of the individuals genotyped at HD (n=87 out of 157)382

belonged to early generations of the pedigree (Figures 1a and 2a), which reduced the383

chances that they had ancestors with data and penalized the imputation accuracy for384

these two groups of individuals (Figures 1b and 2b). On the contrary, most individuals385

genotyped at LD belonged to later generations (n=91 out of 108), ensuring that their386

ancestors had enough data to enable high imputation accuracies for the LD individuals.387

The average dosage correlation for the non-genotyped individuals was 0.81, for the388

HD individuals was 0.94, and for the LD individuals was 0.96. The average dosage389

correlation for the HD individuals in the earliest generations was lower (0.91) than for390

the HD individuals in later generations (0.97). For individuals in the later generations391

there were no significant differences between marker array densities and the average392

dosage correlation of both the HD and LD individuals was 0.97 (Figures S2b and393

S3b). There was no clear trend that population size affected imputation accuracy394

(Figures 1c and 2c), especially for individuals in the later generations (Figures S2c395

and S3c). The population with 35k individuals had higher imputation accuracy than396
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the other three populations but this was more likely due to population-specific397

characteristics, related to unbalanced distributions of the tested individuals across398

generations and genotyping statuses or potentially to pedigree structure, rather than399

population size. The 35k population had only 5 out of 65 individuals in the first 20%400

of the pedigree, compared to a much greater proportion in the other populations (from401

15 out of 37 in the 15k population to 56 out of 92 in the 65k population).402

Variant-wise imputation accuracy403

The variant-wise imputation accuracy was also high. The average variant-wise404

dosage correlation was 0.88 (median: 0.96; min: -0.33; max: 1; interquartile range:405

0.92-0.99) and the average variant-wise genotype concordance was 96.3% (median:406

97.8%; min: 24.3%; max: 100%; interquartile range: 95.4-100%). Variant-wise407

dosage correlations were much higher when the individuals from the first 20% of the408

pedigree, which had lower individual-wise imputation accuracy, were excluded from409

the calculation. The average variant-wise dosage correlation calculated from the 178410

individuals after the first 20% of the pedigree was 0.93 (median: >0.99; min: -0.46;411

max: 1; interquartile range: 0.97-1) and the average variant-wise genotype412

concordance was 97.4% (median: 100%; min: 13.3%; max: 100%; interquartile range:413

97.9-100%).414

Variant-wise imputation accuracy was lower for low-frequency variants,415

compared to more common variants. Figure 3 shows the distribution of the dosage416

correlation for variants across the MAF spectrum. The only MAF category where the417

average dosage correlation decreased when the individuals from the first 20% of the418

pedigree were excluded was for MAF≤0.001 (Figure 3b), likely because the419

individuals in the early generations were biased towards the major allele, which420

would inflate imputation accuracy for low MAF variants (the major allele is more421
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likely to be true). Figure S4 shows the distribution of the genotype concordance for422

variants across the MAF spectrum. Note that the genotype concordance increases at423

lower MAF because the probability that the true genotype is the most common one424

increases, highlighting that genotype concordance is misleading as a measure of425

imputation accuracy and thus should be interpreted with care [34,35].426

427

Factors that affect individual-wise imputation accuracy

The main factors that determined individual-wise imputation accuracy were428

whether the individual itself was genotyped with a marker array, the number of close429

relatives of that individual that were genotyped with a marker array (primarily parents430

and grandparents), and the connectedness of that individual to the rest of the431

population. The number of close relatives of an individual that were sequenced was a432

significant factor for the imputation accuracy of the 284 tested individuals in a linear433

model, but only the number of sequenced parents or progeny were influential434

partitioning factors in the regression trees based on the simulated data. The435

sequencing status of the individual itself or the sequencing coverage of its relatives436

were not influential partitioning factors in the regression trees. The results were437

consistent between the simulated and the real data.438

The regression tree for the factors that affect individual-wise dosage439

correlations in the simulated data is shown in Figure 4a. The first partitioning factor440

was the availability of marker array data of the grandparents. Individuals without441

genotyped grandparents had much lower imputation accuracy (0.47, n=10,794) than442

individuals with at least one genotyped grandparent (0.96, n=208,724). In contrast,443

the number of genotyped parents was not an influential partitioning factor. A likely444

explanation for this observation was that the number of genotyped grandparents and445
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the number of genotyped parents in the populations were confounded. Specifically, if446

an individual had genotyped grandparents it was likely that it also had genotyped447

parents because non-genotyped grandparents were likely to be individuals from very448

early generations (e.g., the base generation) and most individuals with progeny in449

subsequent generations were genotyped. For individuals without genotyped450

grandparents, other sources of information from the ancestors, such as availability of451

any sequenced parents, increased their imputation accuracy from 0.40 (n=7,516) to452

0.63 (n=3,278). After these initial partitions, the next partitioning factor was whether453

or not the individual itself was genotyped with a marker array, regardless of marker454

array density. This partition revealed an asymmetry in that individuals without455

genotyped grandparents or with only one genotyped grandparent were mostly not456

genotyped themselves (n=6,877 out of 7,516 individuals without any genotype data457

from their ancestors), whereas the individuals with genotyped grandparents were458

mostly genotyped (n=194,104 out of 208,724 individuals with genotyped459

grandparents). For non-genotyped individuals, having some genotyped or sequenced460

progeny and grandprogeny improved their imputation accuracy. For genotyped461

individuals, regardless of genotyping density, connectedness to the rest of the462

population was the main factor that determined imputation accuracy, with the dosage463

correlation increasing with connectedness from 0.89 (n=9,446) to 0.98 (n=184,658).464

The regression tree for the factors that affect individual-wise genotype465

concordance in the simulated data is shown in Figure 5a. It had a similar pattern to466

that observed for the dosage correlation. The first partitioning factor was whether or467

not the individual itself was genotyped with a marker array. For non-genotyped468

individuals, the next partitioning factors were the availability of marker array data of469

the grandparents, the parents (if none or only one grandparent were genotyped), and470
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progeny. As the number of genotyped close relatives increased, genotype471

concordances of the non-genotyped individuals increased from 69.6% (n=8,834) to472

93.7% (n=5,022). For genotyped individuals, the next partitioning factor was the473

connectedness to the rest of the population. The genotype concordance increased with474

connectedness from 88.4% (n=6,680) to 98.6% (n=152,322). In individuals with low475

connectedness, availability of marker array data of the grandparents helped improve476

their genotype concordance.477

The dosage correlations and genotype concordances observed in the real data478

were consistent with the partitions of the regression tree based on the simulated data479

(Figures 4b and 5b). The analysis of the factors that affected the individual-wise480

imputation accuracy observed in the real data with a linear model largely supported481

these patterns. Table 2 summarises the factors that were significantly associated with482

individual-wise imputation accuracy when measured as dosage correlations or483

genotype concordances. Broadly, the significant factors were the same for both484

measures of imputation accuracy. The significant factors included the number of485

genotyped ancestors, but not the number of genotyped descendants, and the number of486

sequenced relatives, but generally not their cumulative sequencing coverage. The487

number of parents genotyped with marker arrays at both LD and HD were generally488

significant factors (p-value≤0.001). The number of grandparents genotyped was also489

significant at HD (p-value≤0.016) but not at LD (p-value≥0.614). The number of490

genotyped progeny and grandprogeny were not significant factors (p-value≥0.062).491

The number of sequenced ancestors and descendants were also significant factors (p-492

value≤0.016). The cumulative sequencing coverage of the parents and grandprogeny493

was significant (p-value=0.016 to 0.044) but not that of the grandparents and progeny494

(p-value≥0.100). The factors that referred to the amount of information available for495
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the individuals themselves were also significant, including both their genotyping496

status (p-value≤0.001) and their connectedness to the rest of the population (p-497

value≤0.031). However, the marker array density was confounded with the generation498

to which the individuals belonged and, therefore, with the number of ancestors that499

were genotyped with marker arrays (Figure 1). Population size was also a significant500

factor (p-value≤0.001), but likely confounded with population-specific factors (Figure501

1).502

503

Factors that affect variant-wise imputation accuracy

The main factors that determined the variant-wise imputation accuracy were504

the MAF of the variants and the number of sequenced individuals or the cumulative505

sequencing coverage at the variant site. Whether a marker was present in the marker506

array or not and the distance of a variant to the nearest variant from the marker array507

were not influential partitioning factors in the regression trees. The relative position of508

the variants within the chromosome was used as an influential partitioning factor in509

the regression tree of the variant-wise genotype concordance but not of the dosage510

correlation. The results were consistent between the simulated and the real data.511

The regression tree for the factors that affect variant-wise dosage correlations512

on the simulated data is shown in Figure 6a. The first factor that determined variant-513

wise imputation accuracy was MAF. The imputation accuracy was limited for very514

rare variants: 0.23 for MAF below 0.001 (n=704), 0.50 for MAF between 0.001 and515

0.005 (n=1,217), 0.79 for MAF between 0.005 and 0.028 (n=2,111), and 0.93 for516

MAF above 0.028 (n=25,968). Other partition factors were the number of individuals517

with sequencing coverage at a given position, the cumulative sequencing coverage at518

a given position, and population size. The dosage correlations observed in the real519
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data within each partition of the regression tree followed the same trends as for the520

simulated data, but ranged from 0.51 (n=11,312) to 0.93 (n=89,701) and were greater521

than those from the simulated data, especially at low MAF (Figures 6b).522

The regression tree for the factors that affect variant-wise genotype523

concordance in the simulated data is shown in Figure 7a. The genotype concordances524

showed the opposite trend with MAF than the dosage correlations, with values from525

99.0% for MAF below 0.050 (n=5,537) to 93.9% for MAF above 0.154 (n=18,230).526

For variants with MAF greater than 0.050, the average imputation accuracy increased527

with the number of individuals that had at least one sequence read covering a given528

position, from 94.8% (n=1,589) to 97.5% (n=4,644), when MAF was between 0.050529

and 0.154, or from 86.1% (n=299) to 95.0% (n=12,668), when MAF was above 0.154.530

The relative position of the variant within a chromosome was an influential531

partitioning factor in the case of variants with high MAF and a high number of532

sequenced individuals. The variants at the extreme ends of the chromosome tended to533

be imputed with lower accuracy (90.5%; n=152) than those at intermediate positions534

(94.5%; n=7,786). This variable was not an influential partitioning factor in the535

regression tree of the dosage correlations. The genotype concordances observed in the536

real data were consistent with the partitions of the regression tree based on the537

simulated data (Figures 7b).538

539

Impact of data misassignment and pedigree errors

Data misassignment and pedigree errors can have drastic consequences on the540

imputation results. The impact of data misassignment and pedigree errors, measured541

as the dosage correlation between the results with and without the deliberate error, is542

presented in Figure 8 for the target individual (‘ind’) and its immediate relatives. We543
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report here the average dosage correlation but note that there was large case-by-case544

variability due to the stochasticity of the data misassignment and pedigree errors.545

When we removed the high-coverage sequence data of the target individual, as546

in Test 1 (Figure 8a), the dosage correlation with complete data imputation was 0.94547

for the target individual. The impact of removing the sequence data of the target548

individual had a limited impact on imputing its relatives, which had dosage549

correlations of 0.97 to 0.99 compared to the case with complete data.550

When the sequence data was misassigned (Figure 8b), the dosage correlation551

of the target individual drastically decreased to 0.13, as did (in order of magnitude)552

that of its progeny (0.68), then its grandprogeny (0.86) and parents (0.86), and finally553

its grandparents (0.95).554

When the marker array data was misassigned (Figure 8c), the dosage555

correlation of the target individual remained very high (0.99), probably because the556

high-coverage sequence data provided high certainty about its true genotypes. Despite557

this, potential errors in the segregation probabilities resulted in dosage correlations for558

the relatives of the target individual that were slightly lower (0.97 to 0.98) and559

showed a greater dispersion.560

Finally, when the pedigree was misassigned (Figure 8d), the impact of such561

errors depended on the number of true and misassigned relatives that the target562

individual had. In our test the target individual was misassigned progeny from one of563

the individuals sequenced at high coverage. The dosage correlation of the target564

individual greatly decreased (0.65). The greatest impact of the pedigree errors was on565

the misassigned progeny (0.74), but the impact on the true progeny was also large566

(0.83). The impact was smaller on the misassigned grandprogeny (0.89) and the true567

grandprogeny (0.90). The dosage correlation of the parents and grandparents of the568
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target individual were largely unchanged (0.99 and 0.98, respectively), probably569

because they had other correctly assigned relatives (like their own parents) that570

contributed more accurate data.571

572

573

Discussion

In this paper we present the results of a large-scale sequencing study that574

aimed to generate accurately imputed whole-genome sequence information on575

hundreds of thousands of individuals. Our results show that we were able to obtain576

highly accurate sequence information for approximately 230,000 individuals from577

four different populations that were genotyped at a maximum of 75,000 markers578

genome-wide, by sequencing only 2% of the individuals in each population, mostly at579

low coverage. We found that imputation accuracy was high for most individuals,580

especially for descendants of the first few generations of a pedigree. The same581

approach was applied to five additional populations (results not shown), providing582

high-quality whole-genome sequence data for a total of more than 350,000 individuals.583

To our knowledge this is the largest set of whole-genome sequence information584

assembled to date in pigs [36] or in any other livestock species (e.g., [7,37]).585

Our results give rise to four major points of discussion: (i) the overall586

performance of the sequencing strategy and the approach that we used for imputing587

whole-genome sequence data; (ii) the individual-wise imputation accuracy; (iii) the588

variant-wise imputation accuracy; (iv) the comparison to other imputation methods;589

and (v) the implications for population-wide sequencing studies.590

591
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Overall performance of the sequencing strategy and hybrid peeling

The overall performance of our sequencing strategy coupled with hybrid592

peeling was high. We were able to impute whole-genome sequence data for hundreds593

of thousands of individuals with a median dosage correlation of 0.97 by sequencing594

only about 2% of the individuals in each of our pedigreed populations. Most of the595

sequenced individuals were sequenced at low coverage, with 90% of the sequenced596

individuals at either 1x or 2x and only 6.4% of the sequenced individuals being597

sequenced at a high coverage of 15x to 30x. Sequencing a subset of individuals at598

high coverage may improve the variant discovery rates as well as provide a validation599

set for variants discovered with low-coverage sequence data. It is difficult to separate600

the contributions of the sequencing strategy and of the imputation method to the601

imputation accuracy. We have assessed the contribution of the sequencing strategy on602

imputation accuracy in a companion paper [27]. Overall, sequencing coverage does603

not seem a very influential factor if a sufficiently large number of individuals is604

sequenced and, therefore, the sequencing strategy based primarily on low-coverage605

sequencing that we have described enabled high imputation accuracy in real livestock606

populations regardless of the size of the population.607

Our sequencing strategy and imputation method enabled high imputation608

accuracies of whole-genome sequence data from marker arrays with relatively low609

densities, of approximately 15,000 and 75,000 markers genome-wide. The low610

dependence on marker arrays with higher densities is in contrast to the findings of611

previous studies on imputation of whole-genome sequence data, which have found612

that marker array genotyping density was critical when using other sequencing613

strategies and imputation methods. For example, van Binsbergen et al. [38] found that614

imputing from marker arrays with a density similar to ours (50,000 markers genome-615
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wide) resulted in low accuracies (dosage correlations of up to 0.80) when using the616

Beagle imputation software (version 3; [39]) in cattle. Van den Berg et al. [36] found617

similarly low accuracies in pigs (dosage correlations of around 0.70), probably618

because the number of sequenced individuals was small. In order to achieve higher619

imputation accuracies, an intermediate step of imputation to a much higher density620

(700,000 markers genome-wide or similar) was previously proposed [38]. This621

intermediate step has been used in several studies and with other imputation methods622

[36,37,40,41], but this may be a drawback for populations where marker array data at623

such high densities is not available. We found that a combination of an appropriate624

sequencing strategy and hybrid peeling achieved high imputation accuracies without625

any intermediate imputation steps being required for the LD individuals, likely due to626

the ability of both methods for exploiting pedigree and existing marker array627

information to maximise the value of the generated whole-genome sequence data for628

the whole population.629

630

Individual-wise imputation accuracy

Although most of the individuals had high imputation accuracy, a small631

portion of individuals had much lower imputation accuracies than the rest. These632

individuals mostly belonged to the earliest generations of each pedigree. This633

reduction of imputation accuracy in the earliest generations of the pedigree was634

consistent with observations in previous simulation studies [15,27]. The individuals635

involved had very little information available for themselves and for their ancestors,636

i.e., many of these individuals were not genotyped with marker arrays or their parents637

and grandparents were not genotyped either. Ancestors are very informative for the638

phasing of the genotypes and availability of their marker array data determines the639
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accuracy of estimation of the segregation probabilities used in the multi-locus step of640

hybrid peeling, on which the subsequent single-locus step of hybrid peeling relies.641

In a similar way, the marker array density at which the ancestors were642

genotyped affected imputation accuracy of an individual, regardless of the marker643

array density at which the individual itself was genotyped. This can be explained by644

the fact that parental and grandparental genotypes are needed for accurately phasing645

the individual’s genotype and even a small number of markers suffices to capture the646

small number of recombinations between the individual and its parents [42]. Thus,647

strategies that target parents that contribute large number of progeny for genotyping at648

high density, such as current genotyping practices of breeding programs with genomic649

selection [43,44], seem appropriate.650

Provided that the segregation probabilities were accurately estimated, high651

connectedness of an individual to the rest of the population enhanced its imputation652

accuracy by favouring the transmission of information from many relatives and by653

increasing the likelihood that a closely connected individual has sequence data. In654

livestock breeding populations, pedigrees are usually deep and individuals have a high655

degree of relatedness. The connectedness of the imputed individuals to a sufficient656

number of informative relatives with marker array or sequence data allows for high657

imputation accuracy (after the initial generations for which the imputation accuracy658

was low) even when only a small subset of individuals was sequenced at low levels of659

coverage.660

It is critical to perform quality controls of the data before performing661

imputation to avoid any data misassignment or pedigree errors. In this study we662

attempted to set an upper threshold for the impact that these errors could have on the663

individual-wise imputation accuracy of the affected individuals as well as how these664
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errors propagate to the relatives of the affected individuals in a pedigree-based665

method. We found that the most serious errors occurred due to pedigree errors or666

assigning sequence data to a wrong individual. However, this may be distorted by the667

fact that all the target individuals had high-coverage sequence data. Therefore,668

misassignment of marker array data must not be ignored as it could also have a strong669

impact on imputation accuracy when it affects individuals that are not sequenced,670

sequenced at low coverage, or whose relatives are genotyped with low-density marker671

arrays. Fortunately, frameworks to detect data misassignment [45] and pedigree errors672

[46] have been developed. We did not test the impact that map errors could have on673

the imputation accuracy, but it is obvious that they would hamper the estimation of674

the segregation probabilities and thus imputation accuracy.675

676

Variant-wise imputation accuracy

We obtained high variant-wise imputation accuracy, especially after filtering677

out individuals that were likely to have low imputation accuracy. The primary factor678

for variant-wise imputation accuracy was MAF. This was expected, as MAF is widely679

known to be one of the main factors that determine imputation accuracy regardless of680

the imputation method, and we found, similar to other studies, that imputation681

accuracy was lower for variants with very low MAF [4,38,40,47].682

The next most important factors were the total number of reads that covered683

that variant site and the number of individuals who had sequence data at that variant684

site. Low-coverage sequencing results in a sparse distribution of reads along the685

genome, and it is likely that only a subset of the sequenced individuals will have any686

reads that map to a given variant site and that the cumulative coverage across variant687

sites will also vary. In our study the number of individuals with some coverage and688
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the cumulative coverage may be confounded because most individuals were689

sequenced at 1x or 2x, but in general this indicates the importance of having as many690

sequenced individuals as possible with some coverage at each variant site [27], a691

circumstance that is favoured by sequencing strategies based on low coverage.692

The importance of the number of individuals sequenced at a variant site also693

suggests that imputation accuracy could be lower in regions with extreme base694

compositions or particular sequence motifs that hamper read alignment [48,49]. While695

the complexity of a given region, namely the presence of large repeats, is another696

factor that could affect local imputation accuracy along a chromosome [40,50], it was697

not considered in our study.698

Inferring the segregation probabilities from the flanking markers that are699

included in the marker array did not result in noticeably lower imputation accuracy700

for those variants that were not included in the marker array. Moreover, variant-wise701

imputation accuracy was found to be independent of the distance between the variant702

and the flanking markers at which the segregation probabilities were estimated. This703

is again the reflection of relying on pedigree and the fact that are only few704

recombinations between a parent and its progeny. However, imputation accuracy705

tended to be lower for the markers that were at the extreme ends of the chromosome.706

This affected a relatively small number of variants that were located before the first707

marker and after the last one and therefore were not flanked on both sides by markers708

from the arrays. These findings differed from those of previous studies using methods709

based on linkage disequilibrium (Beagle, version 3; [39]), where variant-wise710

imputation accuracy decreased as the distance between each variant and the nearest711

variant in the marker array (from which imputation to whole-genome sequence data712

was performed) increased [38].713
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714

Comparison to other imputation methods

We did not intend for a direct comparison of the performance of hybrid715

peeling with other available imputation methods because there are fundamental716

differences in how they exploit information (pedigree and linkage vs. linkage717

disequilibrium) and because sequencing strategies and imputation methods are718

confounded across studies. However, we have previously compared the performance719

of our hybrid peeling with findhap (version 4; [47]) [15] and other studies have720

compared other available imputation tools [40,41,47,51], including tools such as721

Beagle (versions 3 and 4; [39,52]), IMPUTE2 [53], findhap [47], FImpute [54], or722

Minimac3 [55]. Many of these methods are population-based imputation methods that723

use an already phased haplotype reference panel to impute genotyped individuals to724

whole-genome sequence data. As a consequence, previous studies of the factors that725

influence imputation accuracy have been primarily concerned with the design of the726

reference panel. Some of these concerns involve the convenience of using single-727

breed or multi-breed reference panels [41,51], population-specific reference panels728

[41,56], the availability of marker array data for the sequenced individuals or not (it729

removes the genotype uncertainty that otherwise would arise from sequencing at low730

coverage at some pre-established positions) [47], or the trade-off between number of731

individuals sequenced and sequencing coverage [47]. In contrast, in this paper we732

used a purely pedigree-based imputation algorithm. This allows us to exploit the large733

amount of linkage between the haplotypes of an individual and their relatives.734

735
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Implications for population-wide sequencing studies

The coupling of an appropriate sequencing strategy [13,14,27] and an736

appropriate imputation method, such as hybrid peeling [15], enabled the generation of737

large datasets of sequenced individuals at a low cost and with high accuracy. This is a738

critical step for the successful implementation of whole-genome sequence data for739

genomic predictions, within and across breeds, as well as for fine-mapping of causal740

variants underlying quantitative traits, which could guide the promotion and removal741

of alleles by gene editing [57,58].742

In this paper we focused on individual-wise imputation accuracy as an743

indicator of the value of this data for applications such as genomic prediction.744

Previous studies on imputation accuracy of whole-genome sequence data focused on745

variant-wise imputation accuracy rather than individual-wise [38,40,47]. In the746

context of genomic prediction, the estimate of the realized relationship between two747

individuals will correlate strongly with the individual-wise, but not the variant-wise,748

imputation accuracy [32,59]. Understanding which factors determine the variability of749

individual-wise, as well as variant-wise [38,40], imputation accuracy would enable750

accuracy-aware filtering of the imputed data prior to downstream analyses. With that751

purpose we used regression trees on simulated data designed to mimic the real data752

for identifying a small set of partitioning factors that may be used as criteria to filter753

out individuals with expected low imputation accuracy.754

755

756

Conclusion

We used hybrid peeling to impute whole-genome sequence data of hundreds757

of thousands of individuals from real livestock populations that were genotyped at a758
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maximum of 75,000 markers genome-wide by sequencing only 2% of the individuals759

of each population, mostly at low coverage. The coupling of an appropriate760

sequencing strategy and hybrid peeling is a powerful method for generating whole-761

genome sequence data in large pedigreed populations, as long as the individuals are762

connected to enough informative relatives with marker array or sequence data, and763

regardless of population size. The characterization of the factors that affect the764

individual-wise and variant-wise imputation accuracy of hybrid peeling can inform765

genotyping and sequencing strategies as well as provide accuracy-aware quality766

control guidelines for the imputed data before downstream analyses. The success of767

this sequencing strategy demonstrates the possibility of obtaining low-cost whole-768

genome sequence data on large pedigreed livestock populations, which is a critical769

step for the successful implementation of whole-genome sequence data for genomic770

predictions and fine-mapping of causal variants.771
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Figures

966

Figure 1. Individual-wise dosage correlation in the real data with respect to (a) relative position of the tested individuals within a pedigree, (b)967

genotyping marker array density, and (c) population size.968
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969

Figure 2. Individual-wise genotype concordance in the real data with respect to (a) relative position of the tested individuals within a pedigree,970

(b) genotyping marker array density, and (c) population size.971
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972

Figure 3. Variant-wise dosage correlation in the real data with respect to minor allele973

frequency. Results are shown for (a) all individuals or (b) after excluding the974

individuals in the first 20% of the pedigree.975
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976

Figure 4. Regression tree of the factors that affected individual-wise dosage correlation in (a) the simulated data and (b) comparison to the real977

data. Variables include genotype status, number of grandparents genotyped with marker array (nGParChip), number of progeny genotyped with978

marker array (nProgChip), number of sequenced progeny (nProgSeq), connectedness to the rest of the population (Connect), and population size979

(PopSize).980
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981

Figure 5. Regression tree of the factors that affected individual-wise genotype concordance in (a) the simulated data and (b) comparison to the982

real data. Variables include genotype status, number of grandparents genotyped with marker array (nGParChip), number of parents genotyped983

with high-density marker array (nParChipHD), number of progeny genotyped with marker array (nProgChip), number of grandprogeny984

genotyped with marker array (nGProgChip), and connectedness to the rest of the population (Connect).985
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986

Figure 6. Regression tree of the factors that affected variant-wise dosage correlation in (a) the simulated data and (b) comparison to the real data.987

Variables include minor allele frequency (MAF), number of individuals sequenced at a position (nIndSeq), cumulative sequencing coverage at a988

position (SeqCov), and population size (PopSize).989
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990

Figure 7. Regression tree of the factors that affected variant-wise genotype concordance in (a) the simulated data and (b) comparison to the real991

data. Variables include minor allele frequency (MAF), number of individuals sequenced at a position (nIndSeq), and position of the variant992

within the chromosome (PosChr).993
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994

Figure 8. Impact of data misassignment and pedigree errors on imputation accuracy.995

The dashed line separates the individual directly affected by the data modification996

(ind) and its relatives (gpar: grandparents, par: parents, prog: progeny, gprog:997

grandprogeny, misass prog: misassigned progeny, misass gprog: misassigned998

grandprogeny). The y-axis measures the individual-wise dosage correlation between999

the imputed genotypes based on complete correct data and either missing or1000

misassigned data for the individual itself and its relatives. In panel (a) we provide the1001

case where the sequence data of the target individual was masked as in Test 1; in1002

panel (b) where the sequence data of another individual was misassigned to the target1003

one; in panel (c) where the marker array data was misassigned; and in panel (d) where1004

we assigned the progeny from one of the individuals sequenced at high coverage to1005

the target individual.1006

1007
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Tables

Table 1. Distribution of sequencing coverages by population.1008

Population Individuals
sequenced

Individuals sequenced by coverage Total
coverage1x 2x 5x 15-30x

20k 445 217 176 15 37 1,852x
35k 760 394 274 27 65 3,192x
70k 1,366 685 545 44 92 5,280x
110k 1,856 1,044 649 73 90 8,190x

1009
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Table 2. Factors that affect individual-wise imputation accuracy on the real data (p-1010

value).1011

Factor Allele dosage
correlation

Genotype
concordance

Population size <0.001 *** <0.001 ***
Individual data
Genotyping status <0.001 *** <0.001 ***
Connectedness to the rest of population 0.031 * <0.001 ***

Number of relatives genotyped with marker array
Grandparents at LDa 0.707 0.614
Grandparents at HDa 0.016 * <0.001 ***
Parents at LD 0.059 <0.001 ***
Parents at HD <0.001 *** <0.001 ***
Progeny at LD 0.062 0.202
Progeny at HD 0.553 0.314
Grandprogeny at LD 0.926 0.899
Grandprogeny at HD 0.996 0.681

Number of relatives sequenced
Grandparents 0.003 ** <0.001 ***
Parents <0.001 *** <0.001 ***
Progeny 0.002 ** <0.001 ***
Grandprogeny 0.016 * 0.001 **

Cumulative sequencing coverage of relatives
Grandparents 0.456 0.297
Parents 0.245 0.021 *
Progeny 0.100 0.363
Grandprogeny 0.044 * 0.016 *

aLD: low density; HD: high density.1012

*p-value=0.05-0.01; **p-value=0.01-0.001; ***p-value<0.001.1013

1014
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Supplementary Information

1015

Figure S1. Relationship between raw and MAF-corrected individual-wise dosage1016

correlations for sequence data. Results are for simulated data with a pedigree with 30k1017

individuals an investment equivalent to 2% of the population sequenced at 2x.1018
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1019

Figure S2. Individual-wise dosage correlation on the real data after excluding the individuals in the first 20% of the pedigree with respect to (a)1020

relative position of the tested individuals within a pedigree, (b) genotyping marker array density, and (c) population size.1021
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1022

Figure S3. Individual-wise genotype concordance on the real data after excluding the individuals in the first 20% of the pedigree with respect to1023

(a) relative position of the tested individuals within a pedigree, (b) genotyping marker array density, and (c) population size.1024

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 16, 2019. ; https://doi.org/10.1101/771576doi: bioRxiv preprint 

https://doi.org/10.1101/771576
http://creativecommons.org/licenses/by-nc-nd/4.0/


1025

Figure S4. Variant-wise genotype concordance on the real data respect to minor allele1026

frequency. Results are shown for (a) all individuals or (b) after excluding the1027

individuals in the first 20% of the pedigree.1028

1029

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 16, 2019. ; https://doi.org/10.1101/771576doi: bioRxiv preprint 

https://doi.org/10.1101/771576
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Materials and Methods
	Real data
	Populations and sequencing strategy
	Sequencing and data processing

	Simulated data
	Imputation using hybrid peeling
	Imputation accuracy tests
	Test 1: Imputation accuracy in populations of diff
	Test 2: Factors that affect individual-wise and va
	Test 3: Impact of data misassignment and pedigree 


	Results
	Imputation accuracy in populations of different si
	Factors that affect individual-wise imputation acc
	Factors that affect variant-wise imputation accura
	Impact of data misassignment and pedigree errors

	Discussion
	Overall performance of the sequencing strategy and
	Individual-wise imputation accuracy
	Variant-wise imputation accuracy
	Comparison to other imputation methods
	Implications for population-wide sequencing studie

	Conclusion
	Ethics approval and consent to participate
	Consent for publication
	Availability of data and material
	Competing interests
	Funding
	Authors' contributions
	Acknowledgements 
	References
	Figures
	Tables
	Supplementary Information

