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Abstract

The availability of high-coverage genomes of our extinct relatives, the
Neanderthals and Denisovans, and the emergence of large, tissue-specific
databases of modern human genetic variation, offer the possibility of prob-
ing the evolutionary trajectory of heterogenous structures of great interest,
such as the brain. Using the GTEx cis-eQTL dataset and an extended cat-
alog of Homo sapiens-specific alleles relative to Neanderthals and Deniso-
vans, we generated a dataset of nearly fixed, Homo sapiens-derived alleles
that affect the regulation of gene expression across 15 brain (and brain
related) structures. The list of variants obtained reveals enrichments in
regions of the modern human genome showing putative signals of positive
selection relative to archaic humans, and bring out the highly derived sta-
tus of the cerebellum. Additionally, we complement previous literature
on the expression effects of ancestral alleles in the Homo sapiens brain by
pointing at a downregulation bias caused by linkage disequilibrium.

1 Introduction1

State-of-the-art geometric morphometric analyses of endocasts have revealed2

significant differences between Neanderthal and Homo sapiens neurocrania, and3

have led to the conclusion that specific brain regions, particularly the cerebel-4

lum, the parietal and temporal lobes have expanded in the modern lineage as a5

result of differential growth of neural tissue, with potential consequences for the6

evolution of modern human cognition [1, 2, 3, 4, 5]. Other differences, affecting7

subcortical regions that do not leave a direct impact on skulls, are harder to8

detect, but may also exist [6].9
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Probing the nature of brain tissue differences is challenging, but the avail-10

ability of several high-quality archaic genomes [7, 8, 9] has opened numerous11

research avenues and opportunities to studying the evolution of the Homo sapi-12

ens brain with unprecedented precision. Early efforts tried to determine the13

molecular basis of archaic-modern differences based on the few missense mu-14

tations that are Homo sapiens-specific [10]. But evidence is rapidly emerging15

in favor of an important evolutionary role of regulatory variants, as originally16

proposed more than four decades ago [11]. For instance, selective sweep scans17

to detect areas of the genome under putative positive selection after the split18

with the Neanderthal lineage show that regulatory variants played a prominent19

role in ancient selection events [12]. Likewise, changes in potential regulatory20

elements have been singled out in attempts to identify the factors that gave21

the modern human face its shape [13, 14]. Other approaches that exploit data22

from large biobanks have also stressed differences in gene regulatory architecture23

between modern humans and archaic hominins [15].24

Researchers have also explored the idea of connecting genetic variation in25

modern human genomes, genetic expression analysis and brain evolution. A ma-26

jor study [16] explored the effects of Neanderthal and Denisovan introgressed27

variants in 44 tissues in modern humans. The authors found downregulation by28

introgressed alleles in the brain, particularly in the cerebellum and the striatum.29

In a similar vein, another study [6] examined the effects of archaic introgression30

on brain and skull shape variability to determine which variants are associ-31

ated with the globularized brain and skull that is characteristic of anatomically32

modern humans. Here too, the variants with the most salient effects were those33

found to affect the structure of the cerebellum and the striatum.34

We show that derived alleles and genetic regulation data can be used as a35

complementary source of information about the evolution of the brain. To this36

end, we took advantage of the data generated in a recent systematic catalog37

of human genetic variation [17]. This dataset provides an exhaustive collection38

of derived, Homo sapiens-specific alleles found in the present human genetic39

pool. We chose variants found at a high frequency cutoff (≥90%), and probed40

the effect of the modern alleles on gene expression compared to ancestral alleles41

found at low frequencies in modern human genomes.42

To determine the predicted effect on gene expression of these derived, mod-43

ern human-specific alleles, we took advantage of the GTEX database (version 8).44

By offering information about Expression Quantitative Trait Loci (cis-eQTL)45

across tissues, the GTEx database forces us to think beyond variants that affect46

the structure and function of proteins and consider those that regulate gene47

expression. The GTEx data for the following central nervous system tissues48

(‘regions’): Amygdala, Caudate, Brodmann Area (BA) 9, BA24, Cerebellum,49

Cerebellar Hemisphere, Cortex, Hippocampus, Hypothalamus, Nucleus Accum-50

bens, Pituitary, Putamen, Spinal Cord, and Substantia Nigra. Of these samples,51

Cerebellar Hemisphere and Cerebellum, as well as Cortex and BA9, are to be52

treated as duplicates [18]. Though not a brain tissue per se, the Adrenal Gland53

was included in our study because of its role in the Hypothalamic-pituitary-54

adrenal (HPA) axis, an important regulator of the neuroendocrine system that55
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affects behavior.56

We wish to stress that our focus on brain (and brain-related) structures in57

no way is intended as a claim that the brain is the most derived structure in58

Homo sapiens relative to extinct human species. While other tissues (such as59

the bone structure of the face [19]) undoubtedly display derived characteristics,60

we have concentrated on the brain in this study because our primary interest61

lies in cognition and behavior, which is most directly affected by brain-related62

changes.63

Our study contributes to the emerging literature on the evolution of the64

Homo sapiens brain, and highlights novel regulatory changes that deserve fur-65

ther exploration. We show that regions under putative positive selection are en-66

riched in derived, high-frequency (HF) eQTL, reinforcing the important role ge-67

netic regulation in human evolution highlighted by previous studies [14, 15, 20].68

Our data also complements previous work [16], but differs in an important way:69

while McCoy and colleagues found a significant downregulation of archaic hu-70

man alleles in the brain, we only find this effect when not controlling for linkage71

disequilibrium. Finally, we provide evidence that eQTL affect genetic expres-72

sion in the cerebellum more than expected by chance, after accounting for effects73

such as tissue sample size. Additionally, genes affected by eQTL exclusively in74

the cerebellum are enriched in microtubule-related terms in a GO analysis, sug-75

gesting an effect of derived eQTL on cerebellar morphology and development.76

2 Results77

We extracted variation data from [17], a dataset that determines Homo sapiens78

allele specificity using three high-coverage archaic human genomes available at79

the moment (the Altai and Vindija Neanderthals [7, 8], and a Denisovan in-80

dividual [9]). The original study [17] introduced an allele frequency cutoff of81

≥90% to generate their High-Frequency data subset. We adopted the same filter82

here, but, departing from the original article data, we decided to restrict our83

attention to those derived alleles found at ≥90% not only globally, but in each84

of the major human populations (see Methods section).85

The variation data was crossed with the list of variants obtained with the86

GTEX significant cis-eQTL variants dataset to determine if the selected variants87

affect gene expression, focusing on 15 central nervous system-related tissues.88

The GTEx data consist of statistically significant allele effects on gene expression89

dosage in single tissues, obtained from brain samples of adult individuals aged90

20 to 60 [18].91

The resulting dataset is composed of Homo sapiens derived alleles at high92

frequency that have a statistically significant effect (at a FDR threshold of93

0.05, as defined by the GTEX consortium [21]) on gene expression in any of94

the selected adult human tissues. In quantitative terms, this amounts to 8,27195

statistically significant SNPs associated with the regulation of a total of 89696

eGenes (i.e., genes affected by cis-regulation). When controlling for total eQTL97

variance between brain regions a Chi-square test reveals that the proportion of98
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derived, HF eQTL across tissues is significantly different compared to the rest99

of non-derived, non-high-frequency eQTL (p < 2.2e− 16). A post-hoc residual100

analysis indicates that regions such as the pituitary and the cerebellum are101

among the major contributors to reject the null hypothesis that the distribution102

is similar between both groups (p < 0.05).103

Intronic variants constitute the most abundant category among the derived104

HF eQTL dataset, but the distribution of categories likely reflects the most105

common genetic functions near transcription start sites. We controlled for this106

effect by testing if the functional categories of derived eQTL at high frequency107

are significantly different from the categories of the rest of GTEx eQTL variants108

in brain tissues, and found this to be the case (Chi-square test, p < 2.2e− 16).109

NMD transcript, non coding transcript, and 5’-UTR variants are the categories110

driving significance (p =< 2.2e− 16 for the three sets, residual analysis).111

2.1 Clumping112

To account for linkage disequilibrium and ensure statistical independence, vari-113

ant clumping was applied through the eQTL mapping p-value at a r2 = 0.1.114

After clumping, the dataset was reduced to 1,270 alleles across tissues, out of115

which 211 are region-specific (Figure 1B). Because eQTL discovery is highly116

dependent on the number of tissue samples [21], tissues with more samples tend117

to yield a higher number of significant variants, regardless of tissue specificity118

(Figure 1C), as shown by a Spearman correlation test (p = 0.0017; r = 0.74,119

controlled for linkage disequilibrium). However, a polynomial regression line fit120

(blue line in Figure 1C) shows that the cerebellum, adrenal gland and BA9 fall121

outside the regression’s standard error confidence intervals (in gray in Figure122

1C).123

We sought to understand if the brain regions just highlighted still stand124

out considering that most eQTL are shared among regions. The distribution125

of clumped region-specific variants (Figure 1B) does not correlate with GTEx126

RNAseq sample size (p = 0.9495, Pearson correlation test). The lack of correla-127

tion of the region-specific variants with RNAseq sample size might be explained128

by known effects of genetic regulation disparity between brain regions, such as129

the distinctive profile of cerebellar eQTL [22, 23].130

Additionally, we designed a random sampling testing approach (n=100) to131

see if any particular region tends to draw more clumped unique eQTL regardless132

of total eQTL values. The test reveals no significant difference in proportions133

(p = 0.3647, Chi-square independence test). The fact that the adrenal gland134

and the amygdala have no unique clumped variants might be driving this result.135

2.2 Directionality of regulation136

A previous study [16] had suggested that Neanderthal alleles present in the the137

modern human genetic pool downregulate gene expression in brain tissue. There138

is no significant deviance from the expected 50% proportion between down and139

upregulating variants (p = 0.3656, Chi-square test) in our derived HF eQTL140
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dataset (Figure 2B). A significant deviance from the expected 50% proportion141

(p < 2.2e − 16, Chi-square test) only obtains when linkage disequilibrium was142

not controlled for (Figure 2A). A hierarchical cluster analysis of the distance of143

normalized effect size between regions in non-clumped eQTL shows how the sub-144

stantia nigra is particularly affected by the downregulating direction skewness145

effect (Figure 1A).146

The same deviation from the expected 50% up and down-regulation pro-147

portion was present in major ancestral alleles at a 90% frequency threshold148

(p =< 2.2e − 16, Chi-square test, Figure 2C), discarding the possibility that149

the asymmetry is due to allele frequency cutoffs. However, post-hoc residual150

analysis shows that downregulating eQTL skewness affects different tissues in151

the major and minor ancestral eQTL sets. Our analysis suggests that the asym-152

metric directionality of eQTL regulation is not particular of a given tissue nor153

is accounted for by frequency. Rather, it appears to be an artifact of failure to154

take linkage disequilibrium into account.155

2.3 Regions of evolutionary significance156

To determine further the evolutionary significance of any of the variants in157

our data, we ran two randomization and permutation tests (N = 1, 000) to158

test whether the derived HF eQTL fell within regions under putative positive159

selection relative to archaic humans as identified in two selective sweep studies160

([12, 24]).161

We found a significant (p = 0.001, observed = 525 overlapping regions, ex-162

pected = 53) overlap between eQTL and regions of positive selection as defined163

by [12], as well as in an earlier independent study [24] (p < 0.02, observed =164

673, expected = 177, Figure 3A and 3B). A Wilcoxon signed-rank test shows165

that the number of eQTL found in positive selection regions (visualized per re-166

gion in Figure 3C) is significantly different between studies (p = 6.104e − 05,167

after controlling for length differences in the windows detected by each study).168

A Dunn test (after Bonferroni group correction) failed to find a significant dif-169

ference between the count of alleles per region in each selective sweep, despite170

the apparent concordance of the studies in cerebellum (Figure 3C).171

Additionally, we tested whether any of the eQTL fell within deserts of intro-172

gression, i.e., genetic windows of at least 10 Mb in the Homo sapiens genetic pool173

that have resisted genetic flow from Neanderthals and Denisovans ([25]). While174

some eQTL do fall within these regions, a permutation test showed that deserts175

of introgression are not significantly enriched for such variants (p > 0.18). We176

also explored whether derived eQTL overlapped with any known human miRNA177

or miRNA seeds (as defined in [26]), but found no overlap with our data.178

Finally, we tested whether any of the brain-related eQTL were found in179

genomic locations with a high score according to Pybus et al.’s ([27]) imple-180

mentation of Fay and Wu’s H test of positive selection [28]. Fay and Wu’s H181

test doesn’t require ancestral sequences to detect selective sweeps, circumvent-182

ing the low number of archaic genomes at our disposal. However, derived HF183

eQTL don’t lie withing regions given a high score by Fay and Wu’s H test in184
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CEU, CHB or YRI populations (at a FDR threshold of 0.01).185

2.4 Enrichment analysis186

A GO enrichment analysis for the clumped variants in the 15 regions we focused187

on here revealed an over-representation of the categories ‘cytoplasm’, ‘catalytic188

activity’, and ‘ion binding’ (p < 0.05).189

Given the importance of the cerebellum in previous studies of great relevance190

here [1, 6, 16], and the overrepresentation of that region in our eQTL dataset, we191

ran a GO analysis for cerebellum-affecting eQTL. We found that these derived192

HF eQTL lie on genes involved in microtubule-related functions (GO categories193

‘microtubule binding’ and ‘microtubule binding’). Microtubules play an im-194

portant role in cerebellar neuronal migration and in maintaining morphological195

stability through development [29].196

In an attempt to link the derived eQTL to phenotypical effects as detected197

by GWAS, a phenome-wide association (PheWAS) query [30] was run on the198

clumped dataset of variants. Several variants are top hits in GWAS related199

to the immune system and other traits of interest, such as bone mineral den-200

sity, brain volume in various regions and lymphocyte cell count. However, a201

downstream colocalization analysis did not find significant results in any of the202

selected GWAS (including for traits previously claimed to be derived in human203

evolution studies, such as cerebellar volume or Alzheimer’s disease [6, 31]).204

3 Discussion205

In this study we sought to shed light on the contribution of modern-human-206

specific alleles found at high frequency in differential gene regulation across207

brain regions. In so doing we hoped to complement previous work that focused208

on the effects of introgressed variants [6, 16], as well as provide an alterna-209

tive approach to studying fixed variants exclusively [10]. We have shown that210

the cerebellum accumulates more derived HF eQTL than expected by chance,211

supporting previous claims about the derived nature of the cerebellum in the212

context of modern human evolution [3, 6, 13].213

We did not find a significant skewness towards downregulation in derived214

eQTL, regardless of frequency. This effect was previously detected as a char-215

acteristic of Neanderthal alleles introgressed in the modern human genetic pool216

[16]. The derived eQTL did show directional regulatory asymmetry but only217

when linkage disequilibrium was not controlled for. Additional testing indicates218

that the effect is not introduced by the high frequency cutoff imposed to the219

data, nor introduced by the bias of a particular region in either HF or non-HF220

alleles.221

We also found that regions of putative positive selection exhibit an enrich-222

ment for derived eQTL. The authors of [12] introduced fixed alleles as an addi-223

tional source for their selective sweeps, accounting for a mean difference of 3%224

minor allele frequency in our eQTL dataset compared to the putative positive225
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selection alleles (as per frequency values reported in [12]’s supplementary file 3).226

This difference in minor allele frequency might affect the number of detected227

eQTL in regions of positive selection, as the detection power of eQTL negatively228

correlates with MAF [18], making near-fixation alleles harder to map as eQTL.229

We suggest that derived HF eQTL might affect the modern human genetic regu-230

lation landscape by either being drivers of positive selection or being in linkage231

disequilibrium with causal positively selected variants. This is in agreement232

with the authors of one of the selective sweep studies, who found that regions233

under putative positive selection are enriched in regulatory variants [12].234

Some of the genes associated with signals of positive selection and affected235

by differential gene expression have already been linked to clinical phenotypes236

or brain development. For example, NRG4 is involved in dendritic develop-237

ment [32], RAB7A has been found to be related to tau secretion, a marker of238

Alzheimer’s disease [33], a disease hypothesized to be human-specific [31], and239

GABPB2 has been associated with schizophrenia [34]. We highlight as well a240

derived eQTL in the BAZ1B gene that lies in one of the regions under putative241

positive selection. This variant affects the expression of two genes in cerebel-242

lar tissue that, like BAZ1B itself, are part of the Williams-Beuren Syndrome243

Critical Region (MLXIPL and NSUN5P2 ). BAZ1B is known to be related to244

craniofacial development in human evolution [13].245

All in all, our work reinforces the potential of using human variation databases246

as a valuable point of entry to connect genotype and phenotype in brain evolu-247

tion studies, and corroborates claims about the importance of genetic regulation248

in human brain evolution.249

4 Methods250

We accessed the Homo sapiens variant annotation data from [17]. The orig-251

inal complete dataset is publicly available at https://doi.org/10.6084/m9.252

figshare.8184038. This dataset includes archaic-specific variants and all loci253

showing variation within modern populations, using the 1000 genomes project254

and ExAc data to derive frequencies and the human genome version hg19 as255

reference. As described in the original article, the authors also applied quality256

filters in the archaic genomes (sites with less 5-fold coverage and more than257

105-fold coverage for the Altai individual, or 75-fold coverage for the rest of258

archaic individuals were filtered out). In ambiguous cases, variant ancestrality259

was determined using multiple genome aligments [35] and the macaque reference260

sequence (rheMac3 ) [36].261

For replication purposes, we wrote a script that reproduces the 90% fre-262

quency cutoff point used in the original study. We filtered the variants according263

to the guidelines in [17] such that: 1) all variants show 90% allele frequency, 2)264

the major allele present in Homo sapiens is derived (ancestrality is either deter-265

mined by the criteria in [35] or by the macaque reference allele), whereas either266

archaic reliable genotypes have the ancestral allele, or the Denisovan carries the267

ancestral allele and one of the Neanderthals the derived allele (accounting for268
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gene flow from Homo sapiens to Neanderthal).269

Additionally, the original study we relied on [17] applies the 90% frequency270

cutoff point in a global manner: it requires that the global frequency of an al-271

lele be more than or equal to 90%, allowing for specific populations to display272

lower frequencies. Using the metapopulation frequency information provided273

in the original study, we applied a more stringent filter and removed any alle-274

les that where below 90% in any of the five major metapopulations included275

(African, American, East Asian, European, South Asian). We then harmonized276

and mapped the high-frequency variants to the data provided by the GTEx277

database [21]. In order to do so we pruned out the alleles that did not have an278

assigned rsIDs.279

Post-mostem mRNA degradation affects the number of discovered eQTL in280

other tissues. However, we did not control for post-mortem RNA degradation,281

since the Central Nervous System has been shown to be relatively resistant to282

this effect. [37]. However, re-sampled tissues (here labeled ‘cerebellar hemi-283

sphere’ and ‘Cortex’ following the original GTEx Consortium denominations)284

do show differences compared to their original samples (‘cerebellum’ and ‘BA285

9’). We acknowledge that the resulting data are limited by inherent problems286

of the GTEx database, such the use of the same individuals for different brain287

tissue samples, the reduced discovery power of rare variants [18] or artifacts288

introduced during RNAseq analysis.289

Clumping of the variants to control for Linkage Disequilibrium was done290

with Plink (version 1.9) through the ieugwasr R package [30], requiring a linkage291

disequilibrium score of 0.90 (i.e., co-inheritance in 90% of cases) for an SNP to292

be clumped. The nominal p-value of eQTL mapping was used as the criterion293

to define a top variant; i.e., haplotypes were clumped around the most robust294

eQTL candidate variant. Linkage disequilibrium values are extracted from the295

1000 Genomes project ftp server (ftp://ftp.1000genomes.ebi.ac.uk/vol1/296

ftp/release/20130502/) by the ieugwasr R package.297

Distance values for tissue hierarchical clustering were calculated by using298

the mean values of the normalized effect size of derived HF eQTL.299

We performed the permutation test (n=1,000) with the R package RegioneR300

[38] using the unclumped data, as variants might clump around an eQTL falling301

outside windows of putative positive selection, underepresenting the number of302

data points inside such genomic areas and reducing statistical power.303

We performed the Gene Ontology analysis with the gprofiler R package [39],304

using as background the whole genome, at a p = 0.05 significance threshold.305

We performed the Phenome-wise association scan (PheWAS) (at a p = 0.0001306

threshold) and colocalization analysis (at a p = 5e − 04 threshold for top hit307

identification) through the ieugwasr [30], MRinstruments and gwasglue pack-308

ages. The selected GWAS for colocalization can be consulted in the relevant309

section of the article’s code.310

Figures were created with the ggplot2 R package [40] and RegioneR [38].311

All statistical tests were controlled for power (≥ 0.8). The complete code312

to reproduce the data processing, plot generation and analysis can be found313

in https://github.com/AGMAndirko/GTEX-code. The miRNA data was ex-314
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tracted from the Supplementary Tables S6 and S7 of [26]. The human selective315

sweep data was extracted Supplementary Table S5 from [24], and Supplemen-316

tary Table S2 from [12]. For the deserts of introgression data we extracted the317

information from [25].318
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[7] K. Prüfer, et al., “The complete genome sequence of a Neanderthal from356

the Altai Mountains,” Nature, vol. 505, pp. 43–49, Jan. 2014.357
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Figure 1: A: Hierarchical clustering analysis of eQTL normal effect size, not
controlled for linkage disequilibrium (LD). Color denotes hierarchical distance.
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regression line fit, with regression’s standard error confidence intervals (95%) in
gray.

14

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 30, 2020. ; https://doi.org/10.1101/771816doi: bioRxiv preprint 

https://doi.org/10.1101/771816
http://creativecommons.org/licenses/by-nc-nd/4.0/


0%

25%

50%

75%

100%

Adr
en

al 
Glan

d

Am
yg

da
la

Ant
er

ior
 ci

ng
ula

te
 co

rte
x B

A24

Cau
da

te
 b

as
al 

ga
ng

lia

Cer
eb

ell
ar

 H
em

isp
he

re

Cer
eb

ell
um

Cor
tex

Fro
nt

al 
Cor

tex
 B

A9

Hipp
oc

am
pu

s

Hyp
ot

ha
lam

us

Nuc
leu

s a
cc

um
be

ns
 b

as
al 

ga
ng

lia

Pitu
ita

ry

Put
am

en
 b

as
al 

ga
ng

lia

Spin
al 

co
rd

 ce
rv

ica
l c

−1

Sub
sta

nt
ia 

nig
ra

P
er

ce
nt

ag
e

Up

Down

Directionality of regulation − unclumped minor ancestral variantsA

0%

25%

50%

75%

100%

Adr
en

al 
Glan

d

Am
yg

da
la

Ant
er

ior
 ci

ng
ula

te
 co

rte
x B

A24

Cau
da

te
 b

as
al 

ga
ng

lia

Cer
eb

ell
ar

 H
em

isp
he

re

Cer
eb

ell
um

Cor
tex

Fro
nt

al 
Cor

tex
 B

A9

Hipp
oc

am
pu

s

Hyp
ot

ha
lam

us

Nuc
leu

s a
cc

um
be

ns
 b

as
al 

ga
ng

lia

Pitu
ita

ry

Put
am

en
 b

as
al 

ga
ng

lia

Spin
al 

co
rd

 ce
rv

ica
l c

−1

Sub
sta

nt
ia 

nig
ra

P
er

ce
nt

ag
e

Up

Down

Directionality of regulation − clumped minor ancestral variantsB

0%

25%

50%

75%

100%

Adr
en

al 
Glan

d

Am
yg

da
la

Ant
er

ior
 ci

ng
ula

te
 co

rte
x B

A24

Cau
da

te
 b

as
al 

ga
ng

lia

Cer
eb

ell
ar

 H
em

isp
he

re

Cer
eb

ell
um

Cor
tex

Fro
nt

al 
Cor

tex
 B

A9

Hipp
oc

am
pu

s

Hyp
ot

ha
lam

us

Nuc
leu

s a
cc

um
be

ns
 b

as
al 

ga
ng

lia

Pitu
ita

ry

Put
am

en
 b

as
al 

ga
ng

lia

Spin
al 

co
rd

 ce
rv

ica
l c

−1

Sub
sta

nt
ia 

nig
ra

P
er

ce
nt

ag
e

Down

Up

Directionality of regulation − HF ancestral variantsC

Figure 2: Distribution of up and down-regulating ancestral variants across differ-
ent subsets of the data, in all eGenes. We include here data before (A) and after
(B) controlling for linkage disequilibrium in minor alleles (≥10% frequency). A
control using major ancestral alleles (at ≥90% frequency) is included (C).
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Figure 3: Derived, HF eQTL are present more than expected by chance in
selective sweeps from [12] (A) and [24] (B). C shows the count of eQTL over-
lapping with regions under putative positive selection per region.
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