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Abstract29

Random regression models (RRM) are used extensively for genomic inference and prediction30

of time-valued traits in animal breeding, but only recently have been used in plant systems.31

High-throughput phenotyping (HTP) platforms provide a powerful means to collect high-32

dimensional phenotypes throughout the growing season for large populations. However, to33

date, selection of an appropriate statistical genomic framework to integrate multiple temporal34

traits for genomic prediction in plants remains unexplored. Here, we demonstrate the utility35

of a multi-trait RRM (MT-RRM) for genomic prediction of daily water usage (WU) in rice36

(Oryza sativa) through joint modeling with shoot biomass (projected shoot area, PSA).37

Three hundred and fifty-seven accessions were phenotyped daily for WU and PSA over 2038

days using a greenhouse-based HTP platform. MT-RRMs that modeled additive genetic39

and permanent environmental effects for both traits using quadratic Legendre polynomials40

were used to assess genomic correlations between traits and genomic prediction for WU.41

Predictive abilities of the MT-RRMs were assessed using two cross-validation (CV) scenarios.42

The first scenario was designed to predict genetic values for WU at all time points for a set43

of accessions with unobserved WU. The second scenario was designed to forecast future44

genetic values for WU for a panel of known accessions with records for WU at earlier time45

periods. In each scenario we evaluated two MT-RRMs in which PSA records were absent or46

available for time points in the testing population. Moderate to strong genomic correlations47

between WU and PSA were observed across the days of imaging (0.29-0.87). In both CV48

scenarios, MT-RRMs showed better predictive abilities compared to single-trait RRM, and49

prediction accuracies were greatly improved when PSA records were available for the testing50

population. In summary, these frameworks provide an effective approach to predict temporal51

physiological traits that are difficult or expensive to quantify in large populations.52
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Background53

High-throughput phenotyping (HTP) is an innovative tool in plant breeding. HTP pro-54

vides precise and non-destructive estimation of multiple complex traits that describe growth55

and development (e.g., height, biomass, and flowering time) or environmental responses56

(e.g., chlorophyll fluorescence, canopy temperature, and water content) using non-destructive57

image-based phenotyping (Araus et al., 2018; Morota et al., 2019). These HTP data mitigate58

extensive costs associated with manual phenotyping, and can be used to better capture the59

plant’s phenome. In the context of plant breeding and genetics, these data can be used to60

improve the prediction of breeding values for a target trait of interest, thereby improving61

the accuracy of selection, as well as provide insights into how secondary traits influence a62

trait of interest (Araus et al., 2018; Morota et al., 2019; Voss-Fels et al., 2019).63

For many genome-enabled breeding programs, developing phenotyping and statistical64

approaches to improve prediction of breeding values and accelerate selection is the primary65

objective (Campbell et al., 2018; Juliana et al., 2019; Voss-Fels et al., 2019). In many breed-66

ing programs, the agronomic value of breeding materials is evaluated using multiple traits.67

These traits are often correlated at the genetic level. One standard approach for predicting68

breeding values is to jointly fit all phenotypes in a single model using a multi-trait (MT)69

approaches (Kadarmideen et al., 2003). These approaches capture the genetic covariances70

between traits, and have been shown to improve the prediction of breeding values compared71

to single trait approaches for phenotypes with limited records or low heritability (Calus and72

Veerkamp, 2011; Jia and Jannink, 2012; Guo et al., 2014). Thus, the MT framework can be73

particularly advantageous when the target trait has low heritability, but is correlated with74

a more heritable trait; or when the trait of interest is difficult or costly to evaluate and75

only incomplete data can be collected, and the trait of interest is correlated with a trait76

that is easier and cheaper to evaluate. Thus, in the context of HTP, MT genomic predic-77

tion approaches can accommodate the high-dimensional multi-trait data generated by these78

platforms. Moreover, secondary phenotypes recorded with HTP can be included in the pre-79

4

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 2, 2020. ; https://doi.org/10.1101/772038doi: bioRxiv preprint 

https://doi.org/10.1101/772038
http://creativecommons.org/licenses/by/4.0/


diction framework to improve prediction of a target trait such as yield. These applications80

have been shown in a recent study by (Sun et al., 2017).81

While several studies have highlighted the advantages of MT frameworks for genomic82

prediction, HTP-derived MT data often introduce an additional level of complexity-the time83

axis. The standard MT framework may not be appropriate in cases where multiple pheno-84

types are recorded at regular intervals throughout the growing season or for the duration85

of the experiment. While MT frameworks can be fit to these data, the assumptions of the86

MT framework bring to question whether the conventional MT model should be used. For87

instance, one assumption is that each phenotype in the MT model is finite characteristic88

(Kirkpatrick et al., 1990). While this is certainly true for two phenotypes such as yield or89

protein content, this is certainly not the case for a phenotype recorded at two time points90

(Kirkpatrick et al., 1990). Temporal phenotypes are infinite-dimensional traits, meaning91

that although there are only records for discrete time intervals, we expect that the pheno-92

type will vary continuously with time between the two intervals. With these data, a more93

appropriate solution is to treat the temporal phenotypes as continuous characteristics and94

perform genetic analyses using random regression models (RRM).95

RRM model the covariance between time points as a continuous function of time (Mrode,96

2014). While several covariance functions can be utilized, Legendre polynomials or B-splines97

are routinely used . The use of orthogonal Legendre polynomials in RRM offers numeri-98

cal stability by reducing correlation between random regression coefficients and computing99

error (Schaeffer, 2004). With RRM, temporal phenotypes are partitioned into genetic, per-100

manent environmental effects, and residuals (Mrode, 2014). With repeated measurements,101

it is assumed that there is additional resemblance between records of an individual due to102

environmental factors or circumstances that affect the records of the individual permanently103

(Mrode, 2014). Thus, the random permanent environment term captures this non-genetic104

resemblance between time points. Covariance functions are used to model both genetic105

and permanent environmental effects (Kirkpatrick et al., 1990; Schaeffer and Dekkers, 1994;106
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Meyer and Hill, 1997; Schaeffer, 2004). Thus, the RRM prediction framework provides so-107

lutions for random regression coefficients for random effects. Given coefficients for random108

genetic effects, the genetic values at any time point can be easily calculated. Recently,109

RRM have been used for genomic analyses of longitudinal image-based HTP traits in plants110

(Campbell et al., 2018, 2019; Momen et al., 2019a). The ability of these frameworks to111

forecast future phenotypes using the records at earlier time has been shown by Campbell112

et al. (2018) and Momen et al. (2019a) based on a digital metric for shoot biomass, known113

as projected shoot area (PSA). PSA is a digital metric derived from images taken of each114

plant and is highly correlated with destructive measures of shoot biomass (Golzarian et al.,115

2011; Berger et al., 2010; Campbell et al., 2015).116

However, given the capability of HTP to collect multiple temporal phenotypes, one un-117

resolved question in plant breeding is how to jointly model multiple temporal phenotypes.118

To address this, we aimed to integrate the RRM framework for temporal traits into a MT119

model. We utilized a data set in which PSA and water use (WU) was recorded daily over120

a period of 20 days. The aim of the study was to evaluate the ability of multi-trait ran-121

dom regression model (MT-RRM) and a single-trait random regression model (ST-RRM) to122

predict WU by borrowing information from PSA. The rationale is that WU is much more123

difficult to evaluate in most studies compared to PSA and is likely to be more influenced124

by environmental effects, and thus have lower heritability compared to shoot biomass. The125

models were compared using several cross-validation (CV) scenarios.126
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Materials and Methods127

Plant materials and greenhouse conditions128

This study utilized HTP records from 378 of the 432 accessions of rice (Oryza sativa) diversity129

panel 1 (RDP1) (Zhao et al., 2011). Sixty four accessions were excluded due to lack of seed130

availability or poor germination. Seeds were treated with Thiram fungicide and germinated131

on moist paper towels in plastic boxes for three days. Three uniformly germinated seedlings132

were selected for each accession and transplanted to pots (150mm diameter x 200 mm height)133

filled with 2.5 kg of UC Mix. The plants were grown in saturated soil on greenhouse benches134

prior to phenotyping.135

Plants were thinned to one seedling per pot seven days after transplant (DAT), and two136

layers of blue mesh were placed on top of the pots to reduce evaporation. The plants were137

loaded on to the imaging system at 13 DAT. The automated phenotyping system was set138

to maintain all plants at 90% field capacity. The experiment followed a partially replicated139

design (Cullis et al., 2006). The p-rep design was modified to accommodate the two water140

treatments (control and drought conditions) and allow comparison of treatments within each141

accession. Each accession was assigned to two consecutive pots, and the water treatments142

were randomly assigned to each pot. Each experiment consisted of 378 accessions from RDP1143

and was repeated three times from February to April 2016. The accessions were distributed144

across 432 pots positioned across 24 lanes (18 plants/pots in each lane). These 432 pots145

belonged to 378 accessions, of which 54 had more than one replicate in each experiment.146

The same 54 accessions were replicated twice in each experiment. Of these 378 accessions,147

357 accessions had genotypic data. All experiments were conducted at the Plant Accelerator148

Australian Plant Phenomics Facility, at the University of Adelaide, SA, Australia.149
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Phenotypic data150

Beginning at 13 DAT all plants were phenotyped daily for shoot biomass and WU using the151

automated greenhouse system, and each plant was imaged daily over a period of 20 days152

using a visible (red-green-blue / RGB) camera (Basler Pilot piA240012 gc, Ahrensburg,153

Germany). For each plant, three images were taken in each recording day: two side-view154

angles separated by 90 degree and a single top view. Plant pixels were extracted from RGB155

images using the LemnaGrid software, and the plant pixels from the three images were156

summed to obtain a digital measure of shoot biomass. We refer to this metric as PSA.157

Several studies have shown this to be an accurate proxy for shoot biomass (Golzarian et al.,158

2011; Campbell et al., 2015; Knecht et al., 2016).159

After imaging, each plant was watered to a predefined weight to maintain 90% field160

capacity. The automated watering system collects the start weight, final weight and amount161

of water that was added for each pot. Thus, from these data we can estimate the amount of162

water that lost by evapotranspiration each day. WU was calculated as WUt = Potwtt−1 −163

Potwtt. Where Potwtt−1 is the weight of the pot after watering on the previous day, and164

Potwtt is the weight of the pot on the current day prior to watering (Momen et al., 2019b).165

In this study, we used observations collected in the control condition. Best linear unbiased

estimators (BLUE) were obtained for each accession and day using the following model

yijkn = µ+ Ai + Ejk +Bjkn + AEij + eijkn

where µ is the overall mean, Ai is the effect of the ith accession, Ejk is the effect of the jth166

experiment in the kth replicate, Bjkn is the block effect of the nth smart house in the jth167

experiment and the kth replicate, AEij is the interaction of accession and experiment. All168

the effects, except Ai were considered random.169
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Genotypic data170

All accessions were genotyped with a 44,000 single nucleotide polymorphisms (SNPs) array171

(Zhao et al., 2011). Genotypic data regarding the rice accessions can be downloaded from the172

rice diversity panel website (http://www.ricediversity.org/). SNPs with call rate ≤ 0.95 and173

minor allele frequency ≤ 0.05 were removed. Missing genotypes were imputed using Beagle174

software version 3.3.2 (Browning and Browning, 2007) following Momen et al. (2019b). A175

total of 34, 993 SNPs remained for downstream analyses.176

Single-trait random regression model177

Campbell et al. (2018) and Momen et al. (2019a) have applied ST-RRM for PSA. In this

study, a similar statistical model was used to model WU. The model is given by

yjt =
2∑

k=0

φ(t)jkbk +
2∑

k=0

φ(t)jkujk +
2∑

k=0

φ(t)jkpjk + ejt,

where yjt is the BLUE of jth accession for WU at time point t, bk is the kth fixed Leg-

endre regression coefficients for overall mean, ujk is the kth random regression coefficients

for additive genetic effect, pjk is the kth random regression coefficients for permanent en-

vironmental effect, ejt is the vector of residuals, and φ(t)jk is a time covariate coefficient

defined by a kth Legendre polynomial evaluated at time point t belonging to the jth ac-

cession. The permanent environmental effect captures constant environmental factors that

affect the successive records of an accession throughout the time course (Mrode, 2014). We

set quadratic Legendre polynomials of all the effects,based on the results of Momen et al.

(2019a) which investigated the prediction accuracy of PSA using ST-RRM. The first order

of the Legendre polynomial (i.e., an intercept) was standardized to 1 (Gengler et al., 1999).

In matrix notation, the model is given by

y = Xb + Zu + Qp + e,
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where y is the vector of observations for WU, b is the vector of fixed effect, u is the vector

of random additive genetic effect, p is the vector of random permanent environmental effect,

e is the vector of random residual effect, and X, Z, and Q are corresponding incidence

matrices. The covariance structures were defined as the following.

Var


u

p

e

 =


C ⊗ G 0 0

0 D ⊗ I 0

0 0 I ⊗ R

 ,

where G is a genomic relationship matrix calculated by WW′/m according to VanRaden

(2008), W is a centered and scaled matrix, m is the number of SNPs, I is an identity matrix,

C and D are covariance matrices of additive genetic and permanent environmental effects,

R is a diagonal matrix of heterogeneous residual variance at each time period, and ⊗ is the

Kronecker product. The covariance matrices C and D are defined as follows.

C =


v0u v01u v02u

v10u v1u v12u

v20u v21u v2u

 , D =


v0p v01p v02p

v10p v1p v12p

v20p v21p v2p

 ,

where vku and vkp are the variance components of kth order random regression coefficients178

for additive genetic and permanent environment effects, respectively, and vklu and vklp are the179

covariances between kth and lth order random regression coefficients for additive genetic and180

permanent environmental effects, respectively.181
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Multi-trait random regression model182

For MT-RRM, the ST-RRM for WU described above is expanded to include PSA information

as follows.y1

y2

 =

X1 0

0 X2


b1

b2

 +

Z1 0

0 Z2


u1

u2

 +

Q1 0

0 Q2


p1

p2

 +

e1

e2

 ,
where subscripts 1 and 2 refer to WU and PSA, respectively. The covariance structures of

C and D were also expanded as follows.

C =

 C1 C12

CT
12 C2

 , D =

 D1 D12

DT
12 D2


where C1 and C2 (D1 and D2) are 3×3 variance-covariance submatrices of random regression183

coefficients for each trait and C12 (D12) is a 3×3 covariance submatrix of random regression184

coefficients between the traits. Thus, the whole C and D matrices take the form185

C =



v0u1
v01u1

v02u1
v00u12

v01u12
v02u12

v10u1
v1u1

v12u1
v10u12

v11u12
v12u12

v20u1
v21u1

v2u1
v20u12

v21u12
v22u12

v00u21
v10u21

v20u21
v0u2

v01u2
v02u2

v10u21
v11u21

v21u21
v10u2

v1u2
v12u2

v20u21
v21u21

v22u21
v20u2

v21u2
v2u2


, D =



v0p1 v01p1 v02p1 v00p12 v01p12 v02p12

v10p1 v1p1 v12p1 v10p12 v11p12 v12p12

v20p1 v21p1 v2p1 v20p12 v21p12 v22p12

v00p21 v10p21 v20p21 v0p2 v01p2 v02p2

v10p21 v11p21 v21p21 v10p2 v1p2 v12p2

v20p21 v21p21 v22p21 v20p2 v21p2 v2p2


,

where vku1
and vkp1 (vku2

and vkp2) are variance components of kth order random regression

coefficients for additive genetic and permanent environment terms for WU (PSA), vklu1
and

vklp1 (vklu2
and vklp2) are covariances between kth and lth order random regression coefficients for

additive genetic or permanent environmental effects within WU (PSA), and vklu12
and vklp12 are
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covariances between kth and lth order random regression coefficients for additive genetic and

permanent environmental effects between WU and PSA, respectively. As with ST-RRM, we

assumed the residual variance for each day of imaging was unique. Thus, a heterogeneous

residual variance structure was used for MT-RRM. The matrix of residual variance at time

t (R∗(t)) is presented as:

R∗(t) =

 ve1(t) ve12(t)

ve21(t) ve2(t)


where ve1(t) and ve2(t) are residual variances for WU and PSA, respectively, and ve12(t) (ve21(t))186

is the residual covariance between WU and PSA at time point t.187

Estimation of genomic correlation at each time point188

Genomic correlation between WU and PSA at each time point from MT-RRM was computed

as follows.

tiC12t
′
i√

tiC1t′i
√

tiC2t′i
,

where ti = φik is the ith row vector of the 20 × 3 basis function matrix (Φ) with the189

kth order of fit (Mrode, 2014). Here, Φ is given as MΛ, where M is a matrix of second190

order polynomials of standardized time values and Λ is a matrix of coefficients for a second191

order Legendre polynomial (Kirkpatrick et al., 1990). We used the GIBBS3F90 program to192

estimate genetic parameters (Misztal et al., 2002). The GIBBS3F90 program solves mixed193

model equations in the Bayesian framework by assuming heterogeneous residual variances.194

Cross-validation scenarios195

We investigated the prediction performance of genetic values for WU from RRM using two196

CV scenarios as shown in Figure 1. For each CV scenario, we compared three models as197

described below.198

CV1: The objective of this scenario was to assess the ability of ST-RRM and MT-RRM to199
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predict WU for a set of new accessions without records on WU. To this end, the accessions200

were split into testing and training sets with 245 accessions allocated to the training set and201

112 allocated to the testing set. First, we fitted ST-RRM using genomic and phenotypic202

data on the training subset and the genetic values of WU were predicted for all accessions203

in the testing set. This ST-RRM served as a baseline to evaluate MT-RRM. We evaluated204

two different types for MT-RRM. The first MT-RRM (MT-RRM1) can be thought of as205

a conventional genomic prediction application in which a model is fitted using a training206

population that has genomic data and phenotypic records for both traits. This model is207

used to predict genomic values for WU in a testing population that has genotypic data, but208

no records for either trait. In the second MT-RRM (MT-RRM2), complete PSA and WU209

records were available for the training population, while only PSA phenotypes were available210

for the testing population. The rationale for this scenario is that it is often much easier to211

obtain non-destructive measurements for shoot biomass compared to WU. Thus, this can be212

thought of as a case in which a portion of the population has incomplete data.213

Genetic values of testing individuals for WU at time t from ST-RRM and MT-RRM1214

were calculated by ât
tst = Gtst,trnG

−1
trn,trnâ

t
trn, where Gtst,trn is the genomic relationship matrix215

between testing and training individuals, G−1trn,trn is the inverse of genomic relationship matrix216

of training individuals, and ât
trn = Φû1,trn is the vector of genetic values at time t (Momen217

et al., 2019a). On the other hand, the genetic values of testing individuals for WU from218

MT-RRM2 can be directly obtained from best linear unbiased prediction (BLUP) solutions219

because the model included the genomic relationship matrix of all accessions by fitting PSA220

phenotypes for the testing individuals. Thus, the genetic values of WU for the testing221

individuals at time t were computed by ât
tst = Φû1,trn.222

CV2: This cross-validation was designed to evaluate the ability of the MT-RRM and ST-223

RRM to predict genetic values of WU at future time points. Thus, it can be thought of as a224

forecasting approach. The training dataset consisted of phenotypic records for 245 randomly225

selected for the first 10 days of imaging. The models were used to predict genetic values for226
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days 11 to 20. As with the first scenario, we assessed their genomic predictions by using227

ST-RRM and two kinds of MT-RRM from the training data. MT-RRM1 used records of228

WU and PSA from day 1 to day 10 of imaging as training data, while MT-RRM2 used WU229

records from the first 10 days of imaging and PSA values from 1 to 20 to train the model.230

We computed the genetic values of WU at day 11 to 20 as Φ11:20û1,trn where Φ11:20 is the231

basis function matrix at 11 to 20 days and û1,trn is the vector of random additive genetic232

effect for WU of testing individuals.233

To assess prediction accuracy, Pearson correlation was calculated between predicted ge-234

netic values and BLUE of WU at each time point in the testing population. Each CV235

scenario was repeated 10 times. We used the GIBBS3F90 program with a fixed variance236

option to perform genomic prediction in all the CV scenarios. We estimated variance com-237

ponents in the training set and genetic values were predicted in the testing set condition on238

the estimated variance components.239
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Results240

Assessing temporal water use and shoot biomass trajectories in rice241

To assess the temporal relationships between shoot biomass production and WU, a panel of242

357 rice accessions was phenotyped over a period of 20 days using a non-destructive image-243

based phenotyping platform. This system provides a means to non-destructively assess244

plant growth and morphology, and allows WU to be assessed throughout the duration of the245

experiment (Berger et al., 2010; Campbell et al., 2015; Fahlgren et al., 2015; Feldman et al.,246

2018).247

Figure 2 shows a boxplot of the BLUE after an adjustment by fixed effects for WU over248

20 time days of imaging. WU exhibited an exponential trend over the 20 days of imaging249

and closely followed the temporal patterns exhibited by PSA.250

Joint analysis of WU and PSA reveals shared additive genetic ef-251

fects between traits252

Genetic architectures of WU and PSA were dissected by estimating the proportion of cap-253

tured additive genetic variances across 20 days of imaging using a ST-RRM. The RRM254

included a fixed second order Legendre polynomial to capture the overall mean trajectories255

for each trait, and additive genetic and permanent environmental effects were modeled us-256

ing a second order Legendre polynomial. Figure 3 shows that PSA exhibited considerably257

higher narrow-sense heritability (h2) compared to WU. For instance, h2 ranged from 0.48 to258

0.82 for PSA, while the values ranged from 0.20 to 0.73 for WU. We observed an increasing259

trend over time with the lowest value observed on day 1 of imaging and the highest value260

observed on day 19. PSA on the other hand showed the lowest h2 values on day 1, but it261

quickly increased and reached somewhat of a plateau from day 3 to 16. After day 16, h2262

slowly declined. Collectively, these results indicate that both traits are influenced by addi-263

tive genetic effects, and these effects vary throughout time. However, phenotypic variance is264
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less influenced by non-genetic effects for PSA compared to WU. Moreover, additive genetic265

effects for WU show greater temporal variability compared to PSA.266

To investigate genetic relationship between WU and PSA, we estimated genomic correla-267

tion at each time point. The MT-RRM used a second order polynomial to model the overall268

mean trends for each trait, as well as the additive genetic and permanent environmental269

effects for both traits. The genomic correlation between WU and PSA from MT-RRM is270

shown in Figure 4. A moderate to strong positive genomic correlation between WU and271

PSA was observed over 20 time periods. On average, the genomic correlation across all272

time periods was 0.78. The genomic correlation was low for the first time point, but quickly273

increased until the fifth day of imaging. From day 5 to the final day of imaging, genomic274

correlation showed a slight increasing trend. Genomic correlation ranged from 0.29 to 0.87,275

with the highest value observed on the last 12 days of imaging. These results indicate that276

WU and PSA share similarity at the genetic level.277

Predictive assessment using RRM by two CV scenarios278

We next sought to evaluate the predictive performance of MT-RRM to predict genetic values279

for WU. To this end, we employed two CV scenarios. The first is similar to a conventional280

genomic prediction application in which the objective is to predict genetic values for a set281

of individuals without phenotypic records. We used two different testing populations. The282

first consists a set of 112 randomly selected accessions that have no phenotypic records for283

PSA and WU. The second consists of a set of 112 accessions that have phenotypic records284

for PSA, but lack records for WU. Thus, the latter scenario can be thought of as a case285

where a subset of the population has incomplete data. The predictive ability of MT-RRM1286

and MT-RRM2 was compared to a ST-RRM in which the model fitted using WU values287

for 245 accessions and is used to predict genetic values for the remaining 112 accessions. In288

all cases, the predictive ability was measured as the correlation between predicted genetic289

values and BLUE in the testing set at each time point.290
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The prediction accuracy for CV1 is shown in Figure 5. An increasing trend in prediction291

accuracy over time for all models was observed in CV1. Prediction accuracy increased quickly292

from day 1 to 13, and eventually plateaued from days 14 to 20. MT-RRM2 showed the highest293

prediction accuracy of all models. On average the predictive ability for MT-RRM2 was 0.74,294

while for MT-RRM1 and ST-RRM the prediction accuracies were 0.53 and 0.46, respectively.295

These results indicate that the predictive ability can be improved using a MT-RRM when296

records for one trait are available for individuals in the testing population. The predictive297

ability for MT-RRM1 was similar to ST-RRM during the first five time points, but slightly298

increased with 0.06 to 0.09 relative to ST-RRM from day 6 on ward. These results suggested299

that MT-RRM approach can be more effective method for genomic prediction of WU.300

The objective of the second CV scenario was to evaluate the abilities of MT-RRM1 and301

MT-RRM2 to forecast genetic values at future time points using phenotypes recorded at302

earlier time points. The design of two MT-RRM were similar to those described above303

(Figure 1). The first MT-RRM, MT-RRM1, was fit using a training set with WU and PSA304

data collected from the first 10 time points, and was used to predict genetic values for WU for305

the subsequent time points. The second MT-RRM, MT-RRM2, was fit using PSA values for306

all 20 time points and WU values for the first 10 time points, and was used to predict genetic307

values for WU for the last 10 time points. Figure 6 shows the predictive correlation of WU308

for each of the models evaluated. The prediction accuracy for each method was relatively309

constant over all days. However, the prediction accuracy of MT-RRM were greatly higher310

than ST-RRM, indicating that inclusion of additional information from PSA can improve311

the ability to forecast WU. For ST-RRM, prediction accuracy ranged from 0.54 to 0.57, while312

values for MT-RRM1 and MT-RRM2 range from 0.79 to 0.83 and 0.84 to 0.91, respectively.313

Collectively, these results indicate that joint analysis of PSA and WU with the MT-RRM314

improves the ability to forecast future genetic values for WU.315
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Discussion316

Advances in HTP has provided plant breeders with a new suite of tools to assess morphologi-317

cal and physiological traits in a non-destructive manner for large populations at frequent time318

intervals throughout the growing season (Fahlgren et al., 2015). These platforms facilitate319

the collection of data that provide important insights into the morpho-physiological basis of320

complex traits. Thus, with these technologies complex traits such as drought tolerance can321

be decomposed into component traits to better understand the basis of these traits and im-322

prove the development of varieties with increased resilience (Berger et al., 2010). Although323

these platforms provide a powerful means to quantify complex traits in large populations,324

some physiological traits require specialized equipment or must be recorded during a specific325

time of day (e.g., transpiration or chlorophyll fluorescence) (Tardieu et al., 2017). Thus, in326

many cases these data may only be available for a subset of the population.327

HTP is often used to record a number of traits on the same individuals. In some cases,328

physiological traits that are difficult to measure may be correlated with traits that are more329

accessible and can be recorded with greater ease. In such cases, MT genomic prediction330

frameworks provide an excellent solution to utilize partial records and predict genetic val-331

ues for the physiological trait in individuals with missing data. Jia and Jannink (2012)332

demonstrated that MT models improve prediction accuracy particularly for traits with low333

heritability. In the current study, we utilized a MT approach in a RRM framework to pre-334

dict genetic values for WU, a difficult to measure trait with low heritability, by joint analysis335

with PSA, which exhibits higher heritability and is easier to measure. Since WU shows a336

positive correlation with PSA, we hypothesized that the MT-RRM framework can improve337

predictions for WU.338
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Genetic components of HTP image traits339

Since WU is difficult to quantify directly in cereals such as rice, few studies have measured340

WU or water use efficiency, while most studies have sought to utilize indirect measurements341

of WU or water use efficiency for genetic analyses (This et al., 2010; Rebolledo et al., 2013;342

Feldman et al., 2018; Momen et al., 2019b). Consistent with the current study, Feldman343

et al. (2018), which utilized a HTP platform to quantify temporal water use and plant size344

in the C4 species Setaria grown in contrasting water regimes, reported moderate broad345

sense heritability (H2) values for WU, and higher H2 for plant size. Moreover, Feldman346

et al. (2018) showed that H2 varied throughout the experiment with lower H2 observed347

during the initial time points and higher H2 values observed during the middle time points.348

In our study, h2 values for WU in early time points were lower compared to those observed349

during the later time points. The plants in the current study were relatively small during350

the initial time points and therefore less amount of water is lost each day. Thus, water351

loss during these periods may be heavily influenced by environmental factors such as soil352

temperature or irradiation. Similar temporal trends have been reported for plant height353

in sorghum (Fernandes et al., 2018). Thus, given the moderate h2 values for WU and the354

temporal variability in h2, selection for this trait may be difficult in breeding programs.355

Conversely, h2 for PSA was relatively stable throughout the experiment, indicating that h2356

for PSA may be less affected by temporal environmental effects compared to WU.357

Multi-trait approaches are particularly advantageous when one target trait has low her-358

itability and is correlated to a secondary non-target trait with higher heritability (Mrode,359

2014). Joint analysis using a MT model can improve prediction of genetic values for low her-360

itability trait and thus improve selection in plant breeding programs. In the current study,361

we showed a benefit of using MT-RRM for WU which had a positive genomic correlation362

with PSA. Thus, we proposed that joint analysis of WU with PSA can improve predictions363

of genetic values for WU. In a recent study, Momen et al. (2019b) examined the relation-364

ships between single time point measurements of WU, root biomass, water use efficiency,365
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and PSA. According to the result, WU showed a moderate to strong positive correlation366

with PSA, root biomass, and water use efficiency, ranging from 0.48 to 0.85 (Momen et al.,367

2019b). Although we utilized PSA as the indicator trait in this study, it is expected that368

root biomass and water use efficiency can be leveraged for genomic prediction for WU using369

the MT.370

Predictive performance of MT-RRM371

The MT-RRM framework offers several advantages over conventional single-trait genomic372

best linear unbiased prediction (ST-GBLUP) approaches. First, the random regression373

framework provides a tractable means to predict genetic values for temporal traits. The374

RRM uses covariances functions to model the genetic and environmental covariance between375

time points, and has been shown to improve prediction of genetic values compared to a376

ST-GBLUP approach (Campbell et al., 2018). Secondly, because the covariance function377

expresses the genetic covariance between time points using a continuous function, the RRM378

can be used to predict genetic values at time points with no records (Momen et al., 2019a).379

Thus, we can leverage the RRM framework to forecast future genetic values. Finally, as380

mentioned above, the joint analysis of MT can improve prediction accuracy for traits with381

low heritability. In the current study, we designed two CV to evaluate the ability to predict382

genetic values in unobserved accessions for a trait with lower heritability, and assessed the383

ability of the MT-RRM to predict future genetic values for accessions with records. Because384

the sample size and the number of time points used were relatively small, both ST- and385

MT-RRMs took less than 10 minutes to complete the longitudinal analyses on 64bit Linux386

with Intel Core i7-6950X (3.0GHz).387

The first CV scenario was designed to evaluate the ability of MT-RRM to predict ge-388

netic values for WU in accessions without any records. Consistent with our expectations,389

MT-RRM had a better predictive ability than ST-RRM. The predictive ability of the MT-390
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RRM was further improved when PSA records were available for accessions in the testing391

population. The effectiveness of MT genomic models has been investigated extensively and392

have reported improved prediction accuracy compared to a ST model (Jia and Jannink,393

2012; Guo et al., 2014; Okeke et al., 2017; Fernandes et al., 2018). For instance, Guo et al.394

(2014) compared prediction accuracy from ST- and MT-GBLUP using simulated data. MT-395

GBLUP showed better predictive performance when the target trait had lower heritability396

compared to the non-target trait and when the target trait had a greater number of missing397

observations (Guo et al., 2014). However, the majority of these studies have focused on398

traits recorded at a single time point. In the current study, we used a MT approach for399

prediction of bivariate traits with longitudinal records, and observed similar results. As sug-400

gested by the previous studies, an increase of prediction accuracy by MT-RRM in this study401

may result from a relative lower heritability of WU than PSA and the high degree of shared402

genetic signals with PSA (Momen et al., 2019b). The results of CV1 showed that prediction403

accuracies from all the models were more stable at later time periods, which is similar to the404

temporal trends in prediction accuracy observed for PSA reported by Momen et al. (2019a)405

that was obtained using a ST-RRM. The accuracy of genomic prediction largely depends406

on the heritability of the trait (Hayes et al., 2009). Thus, the lower predictions at the ini-407

tial time points may be the result of the lower heritability observed during these periods.408

Moreover, early observations are recorded on seedlings that have just started to tiller. At409

this stage the plants may not have accumulated enough biomass and have low transpiration410

demands, to discern genotypic variation in water use from environmental variation.411

Genomic predictions based on small number of records are a major concern in many412

practical applications, especially for a trait that is difficult or costly to measure because413

it can reduce phenotyping costs. As expected, the MT approaches (MT-RRM1 and MT-414

RRM2) in CV2 resulted in improvements compared to the ST-RRM with gains of 0.26 and415

0.33, on average, for MT-RRM1 and MT-RRM2, respectively. Our results suggest that416

MT-RRM can be a powerful approach for forecasting future phenotypes using records from417
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earlier periods. In this study, we examined prediction accuracies from 11 to 20 days in CV2.418

However, the trends in prediction accuracy were relatively stable across time points. Thus,419

forecasting based on records at further earlier time periods could be implemented without a420

loss of prediction accuracy as reported by Momen et al. (2019a). However, the performance421

of these forecasting approaches will likely be highly dependent on the genomic correlation422

between the time points used to train the prediction model and the time points in which423

predictions will be made. Lastly, it should be noted that the best prediction performance424

delivered by MT-RRM2 in both scenarios may be due to the fact that the training-testing425

sets partitioning is not completely independent in a strict sense. However, a situation akin426

to this occurs in practice and an approach such as MT-RRM2 would be still worthwhile to427

test.428

We employed an unweighted two-stage approach to obtain adjusted means because of its429

simplicity and computational efficiency. However, a single-stage analysis is often considered430

as a more appropriate method to account for systematic effects due to heterogeneity of431

covariances among adjusted means (Möhring and Piepho, 2009; Piepho et al., 2012). Thus,432

we also explored a single-stage analysis by fitting all the systematic effects in RRM. We433

observed a high correlation (0.92) between the genetic values from the single-stage and the434

unweighted two-stage analyses across 20 time points. This is likely because the current435

dataset is obtained from the control condition in a greenhouse, which may yield a more436

homogeneous variance-covariance structure of errors between adjusted means compared to437

heterogeneous data typically collected from multi environment field trials. A weighted two-438

stage approach (Smith et al., 2001; Piepho et al., 2012) was not considered in the current439

study because of the limitation of the GIBBS3F90 program to perform such an analysis.440
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Conclusion441

To our knowledge, this is the first study that applied the MT-RRM to HTP-derived temporal442

traits in plants. We demonstrated that MT-RRM is a robust and flexible approach that can443

be used to improve prediction accuracy for a trait with a limited number of records or low444

heritability. Thus, in the case of breeding for morpho-physiological traits, the MT-RRM can445

improve prediction accuracy for physiological traits that may have low heritability or are446

difficult to measure in large populations.447
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Figures459

Figure 1: Two scenarios of cross-validation (CV) designed to investigate prediction accuracy
of water use (WU) from single- and multi-trait random regression models (ST-RRM, MT-
RRM1, and MT-RRM2). CV1: Prediction of WU for a set of 112 accessions without records
on WU using 245 training accessions. ST-RRM: single-trait random regression model using
WU of training accessions; MT-RRM1: multi-trait random regression model using WU and
projected shoot area (PSA) of training accessions; MT-RRM2: multi-trait random regression
model using WU and PSA of training accessions as well as PSA of testing accessions. CV2:
Forecast future genetic values of WU belonging to 245 known accessions from records at
earlier time periods. ST-RRM: single-trait random regression model for WU using the first
10 time points in training accessions; MT-RRM1: multi-trait random regression model for
WU using the first 10 time points of WU and PSA information in training accessions; MT-
RRM2: multi-trait random regression model for WU using WU from 1 to 10 time periods
and PSA at all the time periods in training accessions.
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Figure 2: A boxplot of best linear unbiased estimator for water use (A) and projected shoot
area (B) over 20 days of imaging.

26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 2, 2020. ; https://doi.org/10.1101/772038doi: bioRxiv preprint 

https://doi.org/10.1101/772038
http://creativecommons.org/licenses/by/4.0/


Figure 3: Heritability for water use and projected shoot area over 20 days of imaging using
a single-trait random regression model.
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Figure 4: Genomic correlation between water use and projected shoot area over 20 days of
imaging using a multi-trait random regression model.
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Figure 5: Pearson correlation of water use from cross-validation scenario 1. ST-RRM: single-
trait random regression model; MT-RRM1: multi-trait random regression model using the
water use and projected shoot area of training data; MT-RRM2: multi-trait random regres-
sion model using the water use and projected shoot area of training data as well as the PSA
of testing data.
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Figure 6: Pearson correlation of water use from cross-validation scenario 2. ST-RRM: single-
trait random regression model; MT-RRM1: multi-trait random regression model using WU
and PSA from 1 to 10 time periods in the training data; MT-RRM2: multi-trait random
regression model using WU from 1 to 10 time periods and PSA at all the time periods in
the training data.
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