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Abstract

Phase Amplitude Coupling (PAC) is thought to play a fundamental role in the dynamic
coordination of brain circuits and systems. There are however growing concerns that existing
methods for PAC analysis are prone to error and misinterpretation. Improper frequency band
selection can render true PAC undetectable, while non-linearities or abrupt changes in the
signal can produce spurious PAC. Current methods require substantial amounts of data and
lack formal statistical inference tools. We describe here a novel approach for PAC analysis that
substantially addresses these problems. We use a state space model to estimate the component
oscillations, avoiding problems with frequency band selection, nonlinearities, and sharp signal
transitions. We represent cross-frequency coupling in parametric and time-varying forms to
further improve statistical efficiency and estimate the posterior distribution of the coupling
parameters to derive their credible intervals. We demonstrate the method using simulated
data, rat LFP data, and human EEG data.

1 Introduction
Neural oscillations are thought to play a fundamental role in the dynamic coordination of brain
circuits and systems [1]. At individual frequencies, oscillations reflect the temporal coordination
of activity across populations of neurons, and can be observed experimentally in neuronal spiking
time series, multi-unit activity, local field potentials (LFP), and even non-invasively using magne-
toencephalogram or electroencephalogram (EEG) recordings. In the past decade, a major advance
has been the realization that oscillating neural activity can have higher-order interactions in which
oscillations at different frequencies interact [2–4]. This cross-frequency coupling (CFC) appears to
be nearly as ubiquitous as oscillations themselves, occurring during learning and memory, varying
across different states of arousal and unconsciousness, and changing in relation to neurological and
psychiatric disorders [2,4–15] . If distinct oscillations stem from specific neural circuit architectures
and time constants [16], it seems plausible that cross-frequency coupling could serve as a way of co-
ordinating activity among otherwise disparate circuits and systems [2]. Amplitude-Amplitude [17]
and Phase-Phase coupling [3] [18] have been reported, but phase-amplitude coupling (PAC), in
which the phase of a slower wave modulates the amplitude of a faster one, remains the most fre-
quently described phenomenon.

The explosion of interest in CFC has led to the growing concern that existing methods for analysis
may be prone to error and misinterpretation. In a recent article, Aru and colleagues [19] point
out that existing cross-frequency coupling analyses are very sensitive to frequency band selection,
noise, sharp signal transitions, and signal nonlinearities. Depending on the scenario, true underly-
ing CFC can be missed, or spurious coupling can be detected. In addition, cross-frequency coupling
methods tend to be statistically inefficient, requiring substantial amounts of data, making them
unsuitable for time-varying scenarios or real-time application. Finally, in the absence of an appro-
priate statistical model, analysts typically employ surrogate data methods for statistical inference
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on cross-frequency coupling, making it difficult to properly answer even basic questions about the
nature of the coupling, such as the size of the effect or its confidence/credible interval.

We describe here a novel method to estimate PAC that addresses these problems. A major source
of error in existing methods stems from their reliance on traditional bandpass filtering. These filters
can remove meaningful oscillatory coupling components (i.e., sidebands), and introduce spurious
transients that resemble cross-frequency coupling. In our approach we use a state space oscillator
model to separate out the different oscillations of interest. These models can preserve the relevant
coupling terms in the signal and are resilient to noise and sharp signal transitions. We choose
a particular model formulation, ingeniously proposed by Matsuda and Komaki, [20] that makes
it straightforward to estimate both the phase and amplitude of oscillatory components. To fur-
ther improve statistical efficiency, we introduce a parametric representation of the cross-frequency
coupling relationship. A constrained linear regression estimates modulation parameters which can
in addition be incorporated into a second state space model representing time-varying changes
in the modulation parameters. Finally, we combine these statistical models to compute credible
intervals for the observed coupling via resampling from the estimated posterior distributions. We
demonstrate the efficacy of this method using simulated data, rat LFP data, and human EEG data.

We show that our method accurately estimates the parameters describing the oscillatory and
modulation dynamics, provides improved temporal resolution, statistical efficiency, and inference
compared to existing methods. Furthermore, we show that it overcomes the common problems
with existing PAC methods described earlier, namely, band selection and spurious coupling intro-
duced by sharp signal transitions and nonlinearities. The improved performance and robustness
to artifacts should help improve the efficiency and reliability of PAC methods, and could enable
novel experimental studies of PAC as well as novel medical applications.

2 Results

2.1 Overview of the State-Space PAC (SSP) method
In the conventional approach to phase and amplitude estimation, the signal is bandpass filtered to
estimate the slow and fast components. The Hilbert transform is then applied to synthesize their
imaginary counterparts. Finally, the slow component phase and the fast component amplitude are
computed and used to calculate a Phase Amplitude Coupling (PAC) metric. In our approach, we
use a state space model to estimate the oscillatory components of the signal, using the oscillation
decomposition framework described by Matsuda and Komaki [20]. We assume, for the moment,
that the observed signal yt ∈ R is a linear combination of two latent states representing a slow
and a fast component xst and xft ∈ R2, respectively. Each of these 2 dimensional latent states are
assumed to be independent and their evolution over a fixed step size is modeled as a scaled and
noisy rotation, for j = s, f:

xjt = ajR(ωj)x
j
t−1 + ujt , u

j
t ∼ N (0, σ2

j I2×2) (1)
where aj is a scaling parameter, R(ωj) a 2-dimensional rotation of angle ωj (the radial frequency)
and σ2

j the process noise variance. An example of this state space oscillation decomposition is
shown in Fig.1.a-d. This approach eliminates the need for traditional bandpass filtering since the
slow and fast components are directly estimated under the model. Perhaps more importantly, the
oscillations’ respective components can be regarded as the real and imaginary terms of a phasor
or analytic signal. As a result, the Hilbert transform is no longer needed. Thus the latent vector’s
polar coordinates provide a direct representation of the slow instantaneous phase φst and fast
oscillation amplitude Af

t (Fig.1.f-g). We note xt = [xsᵀt xfᵀt ]ᵀ and obtain a canonical state space
representation [21]:

yt = Mxt + vt, vt ∼ N (0, R)

xt = Φxt−1 + ut, ut ∼ N (0, Q)
(2)

where Φ ∈ R4×4 is a block diagonal matrix composed of the rotations described earlier, Q the total
process noise covariance, R the observation noise covariance and M ∈ R1×4 links the observation
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with the oscillation first coordinate. We estimate (Φ, Q,R) using an Expectation-Maximization
(EM) procedure. To extend this model to add more independent oscillation components or to
account for the harmonics of an oscillation (as one might encounter in a nonlinear system) we
describe and derive a more general formulation in the Supplementary Materials 9.2.

The standard approach for PAC analysis uses binned histograms to quantify the relationship
between phase and amplitude [22] which is a major source of statistical inefficiency. Instead,
we introduce a parametric representation of PAC based on a simple amplitude modulation model
used in radio communications. To do so, we consider a constrained linear regression problem of
the form Af

t = X(φst)β + εt which can ultimately be rewritten:

Af
t = A0[1 +Kmod cos(φst − φmod)] + εt, , εt ∼ N (0, σ2

β) (3)

Kmod controls the strength of the modulation while φmod is the preferred phase around which the
amplitude of the fast oscillation xft is maximal (Fig.1.h-j). For example, if Kmod = 1 and φmod = 0,
the fast oscillation is strongest at the peak of the slow oscillation. On the other hand, if φmod = π,
the fast oscillation is strongest at the trough or nadir of the slow oscillation.

Finally, instead of relying on surrogate data [19] to determine statistical significance, which de-
creases efficiency even further, our model formulation allows us to estimate the posterior distri-
bution of the modulation parameters p(Kmod, φmod|{yt}t) and to deduce the associated credible
intervals (CI) (Fig.1.f-j).

We refer to our approach as the State-Space PAC (SSP) method. Because physiological systems
are time varying, we apply it over multiple non-overlapping windows. In a variation of our method,
we can also impose a temporal continuity constraint on the modulation parameters across windows
using a second state-space model, yielding what we term the double State Space PAC estimate
(dSSP).

2.2 Human EEG Data
To demonstrate the performance of our methods we first analyzed EEG data from a human vol-
unteer receiving propofol to induce sedation and unconsciousness (Fig. 2). As expected, as the
concentration of propofol increases, the subject’s probability of response to auditory stimuli de-
creases. The parametric power spectral density (see equation (38), in Suplementary material 9.1)
changes during this time, developing beta (12.5-25 Hz) oscillations as the probability of response
begins to decrease, followed by slow (0.1-1 Hz) and alpha (8-12 Hz) oscillations when the prob-
ability of response is zero (Fig. 2-d) as in [23]. For a window T , we estimate the modulation
strength Kmod

T and phase φmod
T (and CI) with dSSP (Fig. 2-f) and we gather those estimates in

the Phase Amplitude Modulogam: PAM(T, ψ) (Fig. 2-e). For a given window T , PAM(T, .) is a
probability density function (pdf) having support [−π, π]. It assesses how the amplitude of the fast
oscillation is distributed with respect to the phase of the slow oscillation. When the probability of
response is zero, we observe a strong "peak-max" (Kmod

T ≈ 0.8, φmod
T ≈ 0) pattern in which the

fast oscillation amplitude is largest at the peaks of the slow oscillation. During the transitions to
and from unresponsiveness, we observe a "trough-max" pattern of weaker strength (Kmod

T ≈ 0.25 ,
φmod
T = ±π) in which the fast oscillation amplitude is largest at the troughs of the slow oscillation.

Note that the coefficient of determination R2 for the modulation relationship mirrors the coupling
strength Kmod since Af

t is better predicted by our model when the coupling is strong.

When averaged over long, continuous and stationary time windows, conventional methods provide
good qualitative assessments of PAC. However, in many cases, analyses over shorter windows of
time may be necessary if the experimental conditions or clinical situation changes rapidly. In
previous work [23], we analyzed PAC using conventional methods with relatively long δt = 120s
windows, appropriate in this case because propofol was administered at fixed rates over∼ 14 minute
intervals. The increased statistical efficiency of the SSP and dSSP methods makes it possible to
analyze much shorter time windows of δt = 6s, which we illustrate in two subjects, one with strong
coupling (Fig. 3) and another with weak coupling (Supplementary Fig. 10). To do so, we compare
SSP, dSSP and standard methods used with δt = 120s or δt = 6s based on the modulogram
and on the Modulation Index (MI) estimates. The latter assesses the strength of the modulation
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Figure 1: The oscillation decomposition for an EEG time-series from a human subject during
anesthesia-induced unconsciousness using propofol. From the raw EEG trace (a), we extract a 6
second window (b) and decompose it into a slow (c) and a fast (d) oscillation using our state space
model (e). We then deduce the slow oscillation phase (f) and the fast oscillation amplitude (g).
Finally, we use a linear model (e) to regress the alpha amplitude (j) and to the estimate modulation
parameters (h,j) and their distributions. Here, we used 200× 200 resampled series (dark grey) to
compute the 95% CI.
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Figure 2: Propofol-induced unconsciousness in a human subject monitored with EEG. Increasing
target effect-site concentrations of propofol were infused (a) while loss and recovery of consciousness
were monitored behaviorally with an auditory task from which a probability of response was
estimated (b). R2 value of our modulation regression (c). dSSP was used to estimate the parametric
spectrogram (d), the phase amplitude modulogram (e) and the modulation parameters (f) Kmod

and φmod alongside their CI computed with 200× 200 samples.

by measuring, for any window T how different PAM(T, .) is from the uniform distribution. The
Kullback-Leibler Divergence is typically used for this purpose. Thus, any random fluctuations in
the estimated PAM will increase MI, introducing a bias. Our model parametrization is used to
derive PAM, MI and associated CI but standard non-parametric analysis typically rely on binned
histogram. As a results they estimate statistical significance by constructing surrogate datasets
and reporting p-values [19].

Both subjects exhibit the typical phase amplitude modulation profile previously described when
they transition in and out of unconsciousness. Nevertheless, since SSP more efficiently estimates
phase and amplitude [20] and produces smooth PAM estimates even on short windows, MI esti-
mates derived from SSP show less bias that the standard approach. For the same reasons, φmod

estimates show less variance than the standard approach. The dSSP algorithm provides a temporal
continuity constraint on the PAM, making it possible to track time-varying changes in PAC while
further reducing the variance of the PAM estimates. Finally, our parametric strategy provides
posterior distributions for Kmod, φmod and MI, making it possible to estimate CI for each variable
and it assesses significance without resorting to surrogate data methods.

2.3 Rat LFP Data
To illustrate the performance of our approach in a different scenario representative of invasive
recordings in animal models, we analyzed rat LFP during a learning task hypothesized to involve
theta (6-10Hz) and low gamma (25-60Hz) oscillations. We applied dSSP on 2 second windows (Fig.
4) and confirmed that theta-gamma coupling in the CA3 region of the hippocampus increases as
the rat learned the discrimination task, as originally reported in Tort et al. [4]. In our analysis using
dSSP, we did not pre-select the frequencies of interest, nor did we specify bandpass filtering cutoff
frequencies. Rather, the EM algorithm was able to estimate the specific underlying oscillatory
frequencies for phase and amplitude from the data, given an initial starting point in the theta
and gamma ranges. Thus we illustrate that our method can be applied effectively to analyze LFP
data, and that it can identify the underlying oscillatory structure without having to specify fixed
frequencies or frequency ranges.

2.4 Simulation Studies
To test our algorithms in a more systematic way as a function of different modulation features
and signal to noise levels, we analyzed multiple simulated data sets. By design, these simulated
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Figure 3: The Phase Amplitude Coupling profile of a subject infused with increasing target effect
site concentrations of propofol. Left: response probability curves (a) aligned with modulograms
(c) (distribution of alpha amplitude with respect to slow phase) computed with standard (top)
and state-space parametric (bottom) methods. Right: propofol infusion target concentration (b)
aligned with corresponding Modulation Indices (d). Standard technique significance was assessed
using 200 random permutations and CI where estimated using 200× 200 samples
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Figure 4: Rats show increased theta-gamma coupling when learning a discrimination task in
hypocampus CA3 region. Top: Standard [4] processing. Bottom: dSSP applied on 2 second
windows.

data were constructed using generative processes or models different than the state space oscillator
model; i.e., the simulated data generating processes were outside the "model class" used in our
methods. Here, we focus on slow and an alpha components to reproduce our main experimental
data cases. In doing so, our intent is not to provide an exhaustive characterization of the precision
and accuracy of our algorithm, since this would strongly depend on the signal to noise ratio, the
signal shape, etc. Instead, we aim to illustrate how and why our algorithm outperforms standard
analyses in the case of short and noisy time-varying data sets.

We first compare the resolution and robustness of dSSP with conventional techniques on broad-
band signals with modulation parameters varying on multiple time scales. Results are reported
for different generative parameters (See Section 8.3.2, ∆fgens = ∆fgenf ,σs and σf) in Fig. 5 and
Supplementary Fig. 11 and associated signal traces are illustrated Supplementary Fig. 12. Al-
though robust when averaged on long windows with stationary coupling parameters, standard
techniques become ineffective when the modulation parameters vary rapidly across windows. The
modulation cannot be resolved when long windows are used. However if we reduce the window
size to compensate, the variance of the estimates increases significantly. A trade-off has to be
found empirically. On the other hand, we see that, applied on 6-second windows, (d)SSP can track
the rapid changes in amplitude modulation even in the case of a low signal to noise ratio. The
dSSP algorithm also provides estimates of the posterior distribution of the modulation parameters,
making it straightforward to construct CI and perform statistical inference. By comparison, the
surrogate data approach becomes infeasible as there are fewer and fewer data segments to shuffle.

In a recent paper, Dupré la Tour et al. [24] designed an elegant nonlinear PAC formulation, de-
scribed as a driven autoregressive (DAR) process, where the modulated signal is a polynomial
function of the slow oscillation. The latter, referred to as the driver, is filtered out from the ob-
servation around a preset frequency and used to estimate DAR coefficients. The signal parametric
spectral density is subsequently derived as a function of the slow oscillation. The modulation is
then represented in terms of the phase around which the fast oscillation power is preferentially
distributed. A gridsearch is performed on the driver, yielding modulograms for each slow central
frequency over a range of fast frequencies. The frequencies associated with the highest likelihood
and/or strongest coupling relationship are then selected as the final coupling estimate.

This parametric representation improves efficiency, especially in the case of short signal windows,
but because it relies on an initial filtering step, it also shares some of the limitations of conventional
techniques. As we will see, spurious CFC can emerge from abruptly varying signals or nonlinear-
ities. Additionally, this initial filtering step might contaminate PAC estimates from short data
segments with wideband slow oscillations.

To compare our methods with standard techniques and the DAR method, we generated modu-
lated signals with the scheme described in Dupré la Tour et al. [24] (equation (26), λ = 3, and
φmod = −π/3) using different frequencies of interest (fs and ff) spectral widths (∆fgens ) and Signal
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Figure 5: Comparison of the modulation estimates using standard methods and our new dSSP
method. Slow and fast oscillations were generated by filtering white noise around fs =1Hz and
fs10Hz with ∆fgens =3Hz and normalized to standard deviation σs =0.5 and σf =2. The time scale
over which Kmod and φmod changed varied between 20 minutes to 5 and 2 minutes. See Fig. 12
for typical signal traces.

to Noise Ratios (SNR). Typical signal traces for those generating parameters are reported in Sup-
plementary Fig. 14 and 15. We then compare how well these methods recover the slow oscillation
and the fast oscillation (Supplementary Fig. 14 and 15) or the modulation phase (Fig. 6 and Sup-
plementary Fig.13). Contrary to the other methods presented here, SSP does not compute the full
comodulograms to select frequencies of interest but rather identifies them by fitting the state space
oscillator model. Coupling is only estimated in a second step. Although we used tangible prior
knowledge in previous sections to initialize the algorithm, we adapt an initialization procedure
from [25] (See Supplementary Materials 9.6) to provide a fair comparison. For each condition, we
generated 400 six-second windows. When necessary, the driver was extracted using ∆ffilts = ∆fgens .

We find that our algorithm better retrieves fast frequencies in each case (Supplementary Fig. 14
and 15) especially when the slow oscillation is wider-band. It also outperforms the other methods
when estimating modulation phase (Fig. 6 and Supplementary Fig.13): our algorithm is stable in
the case of broadband (∆fgens = 3Hz) or weak ((σs, σs) = (0.7, 0.3)) slow oscillations and φmod is
estimated accurately with very few outliers and a smaller standard deviation in virtually all cases
considered.

2.5 Overcoming Key Limitations of CFC Analysis: Sharp Transitions,
Nonlinearities, and Frequency Band Selection

Despite the central role that CFC likely plays in coordinating neural systems, standard methods
of CFC analysis are subject to many caveats that are a source of ongoing concern [19]. Spurious
coupling can arise when the underlying signals have sharp transitions or nonlinearities. On the
other hand, true underlying coupling can be missed if the frequency band for bandpass filtering is
not selected properly. Here we illustrate how our SSP method is robust to all of these limitations.
We also show how our method is able, counterintuitively, to extract nonlinear features of a signal
using a linear model.
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Figure 6: Modulation phase φmod estimation and comparisons with standard methods (black),
DAR (pink) and SSP (blue). 400 windows of 6 seconds were generated with: a slow oscillation
(filtered from white noise around fs = 1Hz with bandwidth ∆fgens , normalized to standard de-
viation σs) and a modulated fast oscillation (φmod = −π/3, modeled with a sinusoid fs = 10Hz
and normalized to σf). We added unit normalized Gaussian noise and we used 3 Signal To Noise
Ratio (SNR) conditions ((σs, σs) = (2, 1.5), (1, 0.6) and (0.7, 0.3)). We show typical signal traces
for these different conditions in Supplementary Materials Fig 14.

2.5.1 Signals with abrupt changes and/or harmonics

Oscillatory neural waveforms may have features such as abrupt changes or asymmetries that are
not confined to narrow bands [26]. In such cases, truncating their spectral content with standard
bandpass filters can distort the shape of the signal and can introduce artefactual components that
may be incorrectly interpreted as coupling.

The state space oscillator model provides an alternative to bandpass filtering that can accom-
modate non sinusoidal wave-shapes. In this section, we extend the model to explicitly represent
the slow oscillatory signal’s harmonics, thus allowing the model to better represent oscillations
that have sharp transitions and those that may be generated by nonlinear systems. To do so,
we optimize h oscillations with respect to the same fundamental frequency fs (see Supplementary
Materials 9.2.3). We further combine this model with information criteria (Akaike Information
Criteria -AIC- [27] or Bayesian Information Criteria -BIC- [28]) to determine (i) the number of
slow harmonics h and (ii) the presence or the absence of a fast oscillation. We select the best model
by minimizing ∆IC = IC − min(IC). We only report AIC based PAC estimation here although
both AIC and BIC perform similarly. When multiple slow harmonics are favored, we use the phase
of the fundamental oscillation to estimate PAC.

We first simulated a non symmetric abruptly varying signal using a Van der Pol oscillator (equation
(27), ε = 5, ω = 5s−1) to which we added observation noise (vt ∼ N (0, R),

√
R = 0.15). We then

considered two scenarios, one with a modulated fast sinusoidal wave (Fig. 7.a, Af
t = A0 (1 + cosφst),

A0 = 2
√
R and ff = 10Hz), and one without (Fig. 7.b). Because our model is able to fit the sharp

transitions, both AIC and BIC identify the correct number of independent components (Fig. 7.a-4
and b-4: orange and grey traces relative position is switched when adding or not a fast oscillation).
As a consequence, when no clear fast oscillation is detected, no PAC is calculated (Fig. 7.a-6). On
the other hand, when no fast oscillation is present, standard techniques extract a fast component
stemming from the abruptly changing slow oscillation, leading to the detection of spurious coupling
(Fig. 7.a-3).

Nonlinear inputs arising from signal transduction harmonics are a similar hurdle in CFC analysis.
If we consider a slow oscillation xst = cos(ωst) non-linearly transduced as yt = g(xst), we can write
a second order approximation:
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Figure 7: PAC analysis of 6-second signals with harmonic content using standard methods and
SSP. The signal was either generated using a Van der Pol oscillator alone (a-1), a Van der Pol
oscillator with a modulated alpha oscillation (b-1), or with a nonlinearity according to equation
(4)(c-1). The standard method use conventional filters to extract the oscillation (0.1-1Hz and
6-14Hz (ab-2) and 0.6-1.2Hz and 0.9-3.1Hz (c-2)). SSP was combined with an information criteria
(AIC or BIC)(abc-4) to select the optimal number of independent oscillations (one or two) and the
number of slow harmonics (abc-5). PAC is reported as the distribution of the fast amplitude with
respect to the slow phase (abc-3 and abc-6). For SSP 200 samples were drawn from the posterior
to generate CI (b-6).

10

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 19, 2019. ; https://doi.org/10.1101/772145doi: bioRxiv preprint 

https://doi.org/10.1101/772145


Signal

1s/2a.u

1s/2a.u

0 10 20

-40

-20

0

Multitaper PSD [dB]

0 10 20
(Hz)

-40

-20

0

- 0

0.5

1

1.5

PAM

- 0
(rad)

0.5

1

1.5

True Resampled Estimate Filtered

St
an

da
rd

SS
P

a b c

d e f

Figure 8: Decomposition (a,d), power spectral density (b,e) and modulogram (c,f). The top
row shows the result of applying a narrow bandpass filter that removes the modulation side lobes.
The bottom row shows the result of applying the oscillation decomposition used in SSP and dSSP,
which preserves the modulation structure. (Kmod = 0.6, φmod = −π/3, R = 4, As

t = 4 and Af
t = 1)

yt ≈ xst + a (xst)
2

= cos(ωst) + a[1 + cos(2ωst)]/2 (4)

If ωs/(2π) = 1Hz, bandpass filtering yt around 0.9 − 3.1Hz to extract an oscillation peaking at
ff = 2Hz would yield [19]:

xft = (1 + a cos(ωst)) cos(ωst) (5)

In such a case, standard CFC analysis infers significant coupling (Fig. 7.c-3) while oscillation
decomposition correctly identifies a harmonic decomposition without CFC (Fig. 7.c-6).

This model selection strategy does not guarantee that the correct model will always be selected.
Furthermore, the oscillation decomposition itself is often a non convex optimization problem. How-
ever, we observe that the (extended) state-space oscillator is better suited to model physiological
signals than narrow band components. In addition, the model selection paradigm combined with
prior knowledge of the signal content (e.g., propofol anesthesia slow-alpha or rodent hippocampal
theta-gamma oscillations) allows us to study PAC in a more principled way.

2.5.2 Frequency Band Selection

If bandpass filters with an excessively narrow bandwidth are applied to a modulated signal, the
modulation structure can be obliterated. Let us consider the following signal:

yt = As cos(ωst) +Af cos(ωft)[1 +Kmod cos(ωst+ φmod)] + vt, vt ∼ N (0, R) (6)

Developing yt yields 4 frequency peaks: the slow and fast frequencies ωs and ωf and two sidelobes
centered around ωf − ws and ωf + ωs:

yt = As cos(ωst) +Af cos(ωft) + (AfKmod/2)[cos(ωft+ wst) + cos(ωft− ωst)] (7)

As a consequence, if the fast oscillation is extracted without its side lobes, no modulation is de-
tected, as illustrated Fig. 8-c.

Our SSP algorithm uses a state-space oscillator decomposition which does not explicitly model the
structural relationship giving rise to the modulation side lobes (equation (6)). Yet, we see that
the modulation is successfully extracted, as observed in the fitted time series (Fig. 1) and in the
spectra (Fig. 8-e). The model is able to achieve this by making the frequency response of the
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fast component wide enough to encompass the side lobes. The algorithm does this by inflating
the noises covariances R and σ2

f and σ2
f and deflating af. In theory it might be possible to use a

higher order model like an ARMA(4,2) (which would represent the product of 2 oscillations and
which poles are in asafe±i(wf±ws)), or to directly model coupling through a nonlinear observation.
However, in both cases, we found that such models were difficult to fit to the data, and quickly
became underconstrained when applied to noisy, non-stationary, non-sinusoidal physiological sig-
nals. Instead, we found that our simpler model was able to pull out the modulated high-frequency
component robustly.

In summary, the first stage of our algorithm can extract nonlinearities stemming from the modu-
lation before fitting them with a regression model in the second stage. The main consequence of
this approach is to inflate the variance in the fast component estimation. See for example the wide
CI in the fast oscillation estimate in Fig. 1g. In turn, we resample the fast oscillation amplitudes
from a wider distribution than is actually the case. Although this does not affect the estimates of
φmod, it does produce a conservative estimate when resampling Kmod, i.e., the credible intervals
are wider than they might be otherwise. Even so, we find that our approach still performs better
than previous methods (Fig. 5,3 and 6).

3 Discussion
We have presented a novel method that integrates a state space model of oscillations with a para-
metric formulation of phase amplitude coupling (PAC). Under this state space model we represent
each oscillation as an analytic signal [20] to directly estimate the phase or amplitude. We then
characterize the PAC relationship using a parametric model with a constrained linear regression.
The regression coefficients, which efficiently represent the coupling relationship in only a few pa-
rameters, can be incorporated into a second state space model to track time-varying changes in
the PAC. We demonstrated the efficacy of this method by analyzing neural time series data from
a number of applications, and illustrated its improved statistical efficiency compared to standard
techniques using simulation studies based on different generative models. Finally, we showed how
our method is robust to many of the limitations associated with standard phase amplitude coupling
analysis methods.

The efficacy of our method stems from a number of factors. First, the state-space analytic signal
model provides direct access to the phase and amplitude of the oscillations being analyzed. This
linear model also has the remarkable ability to extract a nonlinear feature (the modulation) by
imposing "soft" frequency band limits which are estimated from the data. The oscillation decom-
position is thus well-suited to analyze physiological signals that are not confined to strict band
limits. We also proposed a harmonic extension that can represent nonlinear oscillations (e.g.,
Van der Pol, Fig. 7), making it possible to better differentiate between true and spurious PAC
resulting from bandpass filtering artifacts. The parametric representation of the coupling relation-
ship can accommodate different modulation shapes and increases the model efficiency even further.

Overall, we addressed a majority of the significant limitations associated with current methods for
PAC analysis. The neural time series are processed more efficiently (Fig. 3), frequency bands of
interest are automatically selected (Fig. 4), extracted (Fig. 8.d-e), and more realistically mod-
eled (Fig. 7). Contrary to standard methods, we do not need to average PAC-related quantities
across time, reducing the amount of contiguous time series data required. Moreover, the posterior
distributions of the signals of interest are well-defined under our proposed model. Sampling from
them bypasses the need to build surrogate data, which can obscure non-stationary structure in the
data and underestimate the false positive rate [19]. Conversely, because SSP estimates the modu-
lation parameters’ posterior distribution, we report CI and provide information on the statistical
significance of our results as well as the strength and direction of the modulation. Our dynamic
estimation of PAC hence makes it possible to base inference on much shorter windows –as short
as 6 seconds for slow 0.1-1Hz signals. Other novel models have been proposed to represent PAC,
including driven autoregressive models (DAR) [24] and generalized linear models (GLM) [29]. As
we saw earlier, SSP performs better than the DAR and standard approaches, particularly when the
signal to noise is low. The GLM represents the modulation relationship parametrically as we do,
but in a more general form, and provides confidence intervals using the bootstrap [29]. Both the
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DAR and GLM approaches remain reliant on traditional bandpass filtering for signal extraction,
and thus remain vulnerable to the crucial problems introduced by these filters [19]. Our method
is the first to use state space models combined with a parametric model of the modulation, the
latter of which could be generalized in the manner described by [29]

Such improvements could significantly improve the analysis of future studies involving CFC, and
could enable medical applications requiring near real-time tracking of CFC. One such application
could be EEG-based monitoring of anesthesia-induced unconsciousness. During propofol induced
anesthesia, frequency bands are not only very well defined, but the PAC signatures strongly dis-
criminates deep unresponsiveness (peak-max) from transition states (through-max), most likely
reflecting underlying changes in the polarization level of the thalamus [30]. Thus, PAC could pro-
vide a sensitive and physiologically-plausible marker of anesthesia-induced brain states, offering
more information than spectral features alone. Accordingly, a recent study [31] reported cases in
which spectral features could not perfectly predict unconsciousness in patients receiving general
anesthesia. In this same data, CFC measures (peak-max) could more accurately indicate a fully
unconscious state from which patients cannot not be aroused [32]. In the operating room, drugs
can be administered rapidly through bolus injection, drug infusion rates can change abruptly, and
patients may be aroused by surgical stimuli, leading to corresponding changes in patients’ brain
states over a time scale of seconds [33] [34]. These rapid transitions in state can blur modula-
tion patterns estimated using conventional methods. Faster and more reliable modulation analysis
could therefore lead to tremendous improvement in managing general anesthesia. Conventional
methods are impractical since they require minutes of data to produce one estimate; in contrast
our method can estimate CFC on a time-scale compatible with such applications.

Since CFC analysis methods were first introduced into neuroscience, there has been a wealth of
data suggesting that CFC is a fundamental mechanism for brain coordination in both health and
disease [15] [35]. Our method addresses many of the challenging problems encountered with existing
techniques, while also significantly improving statistical efficiency and temporal resolution. This
improved performance could pave the way for important new discoveries that have been limited
by inefficient analysis methods, and could enhance the reliability and efficiency of PAC analysis to
enable their use in medical applications.
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8 Methods

8.1 State-Space Oscillator Model
For a time series sampled at Fs, we consider a time window {yt}Nt=1 ∈ RN , and we assume, in
this section, that yt is the sum of observation noise and components from two latent states xst and
xft ∈ R2N which account for a slow and a fast component.1 We use the oscillation decomposition
model described by Matsuda and Komaki [20]. For j = s, f and t = 2..N , each component follows
the process equation:

xjt = ajR(ωj)x
j
t−1 + ujt , u

j
t ∼ N (0, Qj) (8)

where aj ∈ (0, 1) and R(ωj) is a rotation matrix with angle ωj = 2πfj/Fs

R(ωj) =

(
cos(ωj) − sin(ωj)
sin(ωj) cos(ωj)

)
(9)

and

Qj =

(
σ2
j 0

0 σ2
j

)
. (10)

As previously stated, the phase φjt and amplitude Ajt of each oscillation are obtained using the
latent vector polar coordinates:

φjt = tan−1

(
xj2,t

xj1,t

)
and Ajt =

√(
xj1,t

)2

+
(
xj2,t

)2

(11)

Each oscillation has a broad-band power spectral density (PSD) with a peak at frequency fj . The
parametric expression for this PSD is derived in the Supplementary Materials 9.1.

Setting M =
[
1 0 1 0

]
, xt = [xsᵀt xfᵀt ]ᵀ, and Q and Φ to be block diagonal matrices whose

blocks are Qj and ajR(ωj), respectively, we find the canonical state space of equation (2).

Given the observed signal yt, we aim to estimate both the hidden oscillations xt and their gen-
erating parameters (Φ, Q,R). We do so using an Expectation-Maximization (EM) algorithm (see
Supplementary Materials 9.2 for a more general derivation). The hidden oscillations xt are esti-
mated in the E-step of the EM algorithm using the Kalman filter and fixed-interval smoother [49],
while the generating parameters are estimated in each iteration of the M-step.

8.2 Phase Amplitude Coupling Model
8.2.1 Standard Processing Using Bandpass Filters and the Hilbert Transform

Standard approaches for PAC analysis follow a procedure described in Tort, et al. [22], which
we briefly summarize here. The raw signal yt is first bandpass filtered to isolate slow and fast
oscillations. A Hilbert transform is then applied to estimate the instantaneous phase of the slow
oscillation φst, and instantaneous amplitude of the fast oscillation Af

t. At time t, the alpha am-
plitude Af

t is assigned to one of (usually 18) equally spaced phase bins of length δψ based on the
instantaneous value of the slow oscillation phase: φst. The histogram is constructed over some time
window T of observations, for instance a ∼ 2 minute epoch, which yields the phase amplitude
modulogram (PAM) [38]:

PAM(T, ψ) =

∫ δt/2
−δt/2

∫ ψ+δψ/2

ψ−δψ/2 A
f
tδ(φ

s
t − ψ′)dtdψ′

2π
∫ t+δt/2
t−δt/2 A

f
tdt

(12)

For a given window T , PAM(T ,.) is a probability distribution function which assesses how the
fast oscillation amplitude is distributed with respect to the slow oscillation phase. The strength

1unless stated otherwise Fs = 250Hz and N/Fs = 6s

17

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 19, 2019. ; https://doi.org/10.1101/772145doi: bioRxiv preprint 

https://doi.org/10.1101/772145


of the modulation is then usually measured with the Kullback–Leibler divergence with a uniform
distribution. It yields the Modulation Index (MI):

MI(T ) =

∫ π

−π
PAM(T, ψ) log2 [2πPAM(t, ψ)] dψ (13)

Finally, under this standard approach, surrogate data such as random permutations are used to
assess the statistical significance of the observed MI. Random time shifts ∆t are drawn from a
uniform distribution whose interval depends on the problem dynamics [38] and phase amplitude
coupling is estimated using the shifted fast amplitudes Af

t−∆t and the original slow phase φst. The
MI is then calculated for this permuted time series, and the process is repeated to construct a
null distribution for the MI. The original MI is deemed significant if it is bigger that 95% of the
permuted values. Overall, this method requires that the underlying process remains stationary
for sufficiently long so that the modulogram can be estimated reasonably well and so that enough
comparable data segments can be permuted in order to assess significance.

8.2.2 Parametric Phase Amplitude Coupling

To improve statistical efficiency, we introduce a parametric representation of PAC. For a given
window, we consider the following (constrained) linear regression problem:{

Af
t = X(φst)β + εt, εt ∼ N (0, σ2

β)

β ∈W (K)
(14)

where β = [β0 β1 β2]ᵀ, X(φst) =
[
1 cos(φst) sin(φst)

]
and W (K) = {β ∈ R3|

√
β2

1 + β2
2 <

β0K}. If we define:

Kmod =
√
β2

1 + β2
2/β0 , φmod = tan−1(β2/β1), and A0 = β0 (15)

we see that equation (14) is equivalent to:{
Af
t = A0[1 +Kmod cos(φst − φmod)] + εt, , εt ∼ N (0, σ2

β)

Kmod ∈ [0,K)
(16)

Setting K = 1 ensures that the model is consistent, i.e., that the modulation envelope cannot
exceed the amplitude of the carrier signal. But this can be a computationally expensive constraint
to impose. If the data have a high signal to noise ratio so that Kmod is unlikely to be greater
than 1 by chance, we could also choose to solve the unconstrained problem (K = +∞). Under the
constrained solution, the posterior distribution for β is a truncated multivariate t-distribution [45]:

p
(
β|{Af

t, φ
s
t}t
)

=
1

Z

(
1 + ν−1

(
β − β

)ᵀ
(V/b)

(
β − β

))− ν+3
2

1{β∈W (K)} (17)

The likelihood, conjugate prior, posterior parameters β, V, b, ν, and the normalizing constant Z are
justified and derived in Supplementary Material 9.3. We refer to this estimate as State Space PAC
(SSP) and we note:

βSSP = argmax p
(
β|{Af

t, φ
s
t}t
)
. (18)

8.2.3 Posterior sampling

The standard approach relies on surrogate data to determine statistical significance, which de-
creases its efficiency even further. Instead, we estimate the posterior distribution p(β|{yt}t) from
which we obtain the credible intervals (CI) of the modulation parameters Kmod and φmod. To
estimate the posterior distribution, we sample from the posterior distributions given by (i) the
state space oscillator model and (ii) the parametric PAC model.

(i) The Kalman Filter used in the rth E-Step (see Supplementary Materials 9.2.1) of the EM
algorithm provides the following moments, for t, t′ = 1..N :
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xNt = Er(xt|{yk}Nk=1), PNt,t′ = covr(xt, xt′ |{yk}Nk=1) (19)

Therefore, we can sample l1 times series: X = {Xt}Nt=1 using:

X|{yt}Nt=1 ∼ N ({xNt }Nt=1,P) (20)

where P is a 4N × 4N matrix whose block entries are given by (P)tt′ = PNt,t′ .

(ii) For each X , we use equation (11) to compute the resampled slow oscillation’s phase ϕ and fast
oscillation’s amplitude A. We then use equation (17) to draw l2 samples from p (β|A, ϕ). As a
result, we produce l1 × l2 samples to estimate:

p(β|{yt}t) =

∫
X
p(β|X )p(X|{yt}t)

=

∫
A,ϕ

p(β|A, ϕ)p(A, ϕ|{yt}t)
(21)

We finally construct CI around βSSP using an L2 norm and in turn derive the CI of Kmod and
φmod (Fig.1 h,i).

8.2.4 A Second State-Space Model to Represent Time-Varying PAC

We segment the time series into multiple non-overlapping windows of length N to which we apply
the previously described analysis. We hence produce {βSSP

T
}
T
, a set of vectors in R3 accounting

for the modulation where T denotes a time window of length N .

A second state-space model can be used to represent the modulation dynamics. Here we fit an
autoregressive (AR) model of order p with observation noise to the modulation vectors βSSP

T
across

time windows. It yields the double State Space PAC estimate (dSSP):

βSSP
T

= βdSSP
T

+ γ
T
, γT ∼ N (0, Rβ)

βdSSP
T

=

p∑
k=1

hkβ
dSSP
T−k

+ η
T
, η

T
∼ N (0, Qβ)

(22)

We proceed by solving and optimizing Yule-Walker type equations numerically (see Supplementary
9.4) and we select the order p with Bayesian Information Criterion [28]. Finally, we can use the
fitted parameters to filter the l1 × l2 resampled parameters to construct a CI for {βSSP

T
}
T

when
necessary.

8.2.5 Equivalence

To better compare standard techniques with the SSP, we derive an approximate expression for the
PAM under our parametric model (Supplementary Materials 9.5). For a window T :

PAM(T, ψ) =
1

2π

(
1 +

sin(δψ/2)

δψ/2
Kmod
T cos(ψ − φmod

T )

)
−−−−→
δψ→0

1

2π

(
1 +Kmod

T cos(ψ − φmod
T )

) (23)

8.3 Data Sets
8.3.1 Experimental design and procedure

a) Human EEG

We analyzed human EEG data during loss and recovery of consciousness during administration
of the anesthetic drug propofol. The experimental design and EEG preprocessing have been ex-
tensively described in [23]. Briefly, 10 healthy volunteers (18-36 years old) were infused increasing
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amounts of propofol spanning 6 target effect site concentrations (0, 1, 2, 3, 4, and 5 µg.L−1). Infu-
sion was computer controlled and each concentration was maintained for 14 minutes. To monitor
loss and recovery of consciousness behaviorally, subject were presented with an audio stimulus
(a click or a verbal command2) every 4 seconds and had to respond by pressing a button. The
probability of response and associated 95% credible intervals were estimated using Monte-Carlo
methods [46] to fit a state space model to these data. Finally, EEG data were pre-processed using
an anti-aliasing filter and downsampled to 250Hz.

We computed spectrograms of the EEG using the parametric expression associated with oscillation
decomposition (derived in Supplementary Materials 9.1). Standard techniques for PAC analysis
were applied on 6 and 120 second windows for which alpha and slow component were assumed to
be known and extracted using bandpass filters around 0.1-1Hz and 9-12Hz. Significance for the
standard PAC method was assessed using 200 random permutations.

b) Rat LFP

Rat LFP dataset was generously shared by Tort et al. [4]. Data were recorded from the CA3
region of the dorsal hippocampus of rats as they learned a spatial recognition task. Signal was
sampled at 1000Hz, bandpassed from 1 to 300Hz and binned into non overlapping 2 second time
windows. The standard PAC analysis was performed using 6-10Hz and 30-55Hz filters to extract
theta and gamma components, respectively. To replicate the original results, modulation indices
were averaged over 20 trials.

8.3.2 Simulations

We tested our algorithm on simulated datasets generated by different models. We constructed
each simulated signal by combining unit variance Gaussian noise, a slow oscillation centered at
fs (=1Hz unless stated otherwise), and a modulated fast oscillation centered at ff (=10Hz unless
stated otherwise). It is important to note that we chose to generate these simulated signals using a
method or "model class" that was different from the state space oscillator model we use to analyze
the data. For standard processing, significance was assessed with 200 random permutations, fs
and ff were assumed to be known, and components were extracted with bandpass filters with pass
bands set to 0.1-1Hz for the slow component and 8-12Hz for the fast component.

a) Simulating the Slow Oscillation

Neural oscillations are not perfect sinusoids and instead have a broad band character. Using the
approach described in [24], we simulated a broad band slow oscillation by convolving (filtering)
independent identically distributed Gaussian noise with the following impulse response function:

c(t) = c0(t) cos(ωst) (24)

where ωs = 2πfs, c0 is a Blackman window of order 2b1.65fs/∆f
gen
s c + 1. The smaller the slow

frequency bandwidth ∆fgens , the closer the signal is to a sinusoid. When necessary, we additionally
use a π/2 phase-shifted filter: c̃(t) = c0(t) sin(ωst) to model an analytic slow oscillation xst from
which we deduce the phase φst. The resulting series is finally normalized such that its standard
deviation is set to σs.

b) Simulating the Modulation

To assess the temporal resolution of our method and the standard method, we generated simulated
data sets with different rates of time-varying modulation. First, to construct the modulated fast
oscillation, we constructed a fast oscillation centered at ωf = 2πff and normalized to σf as described
above and modulated it by:

mt = 1 +Kmod
t cos(φst − φmod

t ) (25)
2here, we only report the response to the verbal command
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Here, Kmod
t and phase φmod

t are time varying and follow the dynamics illustrated in Fig. 5 (Section
2.4) and in Fig.11 (Supplementary Materials 9.6.3). Representative simulated EEG signal traces
for different generative parameters are illustrated in Supplementary Fig. 12.

We also generated simulated data using an alternative modulation function (Fig. 6 and Supple-
mentary Fig. 13, 14 and 15)

mt =
(

1 + exp
(
−λxstu

ᵀ
φmod

))−1
(26)

where uᵀ
φmod =

[
cos(φmod) − sin(φmod)

]
, described previously in described in [24].

c) Simulated Signals with Abrupt Changes

Signals with abrupt or sharp transitions can lead to artefactual phase-amplitude modulation [19].
To assess the robustness of our state-space PAC method under such conditions, we used a Van Der
Pol oscillator to generate a signal with abrupt changes. Here, the oscillation x is governed by the
differential equation:

dx2

dt2
− εω0(1− x2)

dx

dt
+ ω2

0x = 0 (27)

Equation (27) was solved using Euler method with fixed time steps.
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9 Supplementary Materials

9.1 Power Spectral Density for the State Space Oscillator Process
In this section, we derive the parametric expression for the power spectral density (PSD) of an
oscillation xj1,t by building an autoregressive moving average process (ARMA) with the same
spectral content. For convenience, we will drop the index j in what follows. First, we note that an
oscillation is asymptotically second order stationary. Let us compute its autocovariance sequence.
Since R is a rotation matrix R(ω)k = R(kω) and RRᵀ = I. Therefore, from equation (8), it
comes:

E(xtxt
ᵀ) =aR(ω)E(xt−1xt−1

ᵀ)(aR(ω))ᵀ +Q

=Q
N∑
t=0

a2t

=Q/(1− a2) +O(a2N )

(28)

and:

E(xt+kxt
ᵀ) =aR(ω)E(xt+k−1xt)

=akR(kω)Q/(1− a2) +O(a2N+k)
(29)

We can hence write, for t = 1..N , k = 0..N − t, st,t+k = E(x1,t+kx1,t
ᵀ) = sk. As a consequence,

an oscillation can be approximated by a second order stationary process, and in virtue of the
Wiener-Khinchin theorem [36], its theoretical power spectral density is:

S(f) = lim
N→∞

1

Fs

(
s0 + 2

N∑
t=1

ste
−2iπtf/Fs

)
(30)

We now consider the ARMA(2,1):

x̃t = φ1x̃t−1 + φ2x̃t−2 + ũt + ψ1ũt−1, ũt ∼ N (0, σ̃2) (31)

to which we impose, for t = 1..N , k = 0..N − t: E(x̃tx̃
ᵀ
t+k) = sk. It follows that:

sk =φ1sk−1 + φ2sk−2, k > 2

s1 =
φ1s0 + ψ1σ̃

2

1− φ2

s0 =φ1s1 + φ2s2 + σ̃2(1 + φ1ψ1 + ψ2
1)

(32)

Taking:

φ1 =2a cos(ω)

φ2 =− a2
(33)

satisfies the first equality of equation (32). The remaining conditions can then be rewritten:

ψ1σ̃
2 = −aσ2 cos(ω)

0 = ψ2
1 +

1 + a2

acos(ω)
ψ1 + 1

(34)

from which we deduce 2 two negative roots ψ±1 ultimately leading to the same autocovariance
series. Overall, we choose:
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ψ1 =− 1

2

 1 + a2

a cos(ω)
+

√(
1 + a2

a cos(ω)

)2

− 4


σ̃2 =− aσ2 cos(ω)

ψ1

(35)

Applying the discrete Fourier transform to equation (31) yields:

F [x̃](f)(1− φ1e
−2iπf/Fs − φ2e

−4iπf/Fs) = F [ũ](f)(1 + ψ1e
−2iπf/Fs) (36)

since ũt is Gaussian noise, E(ũt ˜ut+k
ᵀ) = δkσ̃

2. Therefore, our ARMA(2,1) PSD is:

S[x̃](f) =
σ̃2

Fs

|1 + ψ1e
−2iπf/Fs|2

|1− φ1e−2iπf/Fs − φ2e−4iπf/Fs|2
(37)

Finally, the PSD of an oscillation centered in f0 is ;

S[x1,t](f) =
σ̃2

Fs

|1 + ψ1e
−2iπf/Fs|2

|(ae−2iπf/Fs − e−2iπf0/Fs)(ae−2iπf/Fs − e+2iπf0/Fs)|2
(38)

9.2 An Expectation-Maximization (EM) Algorithm for Independent and
Harmonic Oscillation Decompositions

Since all noise terms are assumed to be additive Gaussian, the complete data log likelihood for one
time window of length N is:

log L = log p(x1, ..., xN , y1, ..., yN )

$− N

2
log |Q| − 1

2

N∑
t=1

(xt − Φxt−1)ᵀQ−1(xt − Φxt−1)

− N

2
log |R| − 1

2

N∑
t=1

(yt −Mxt)
ᵀR−1(xt −Mxt)

(39)

We wish to maximize logL with respect to Θ = (Φ, Q,R) but we do not have access to the hidden
oscillations xt. We use an expectation maximization algorithm to alternatively and iteratively
estimate (E-Step) and maximize (M-Step) the log likelihood. At iteration r, we use the Kalman
filter to estimate xt given a set Θr which gives us access to:

Gr(Θ) = Er(log L|{yt}Nt=1) (40)

Then, we deduce Θr+1:

Θr+1 = argmax
Θ

Gr(Θ) (41)

9.2.1 Kalman Filter and Fixed Interval Smoother Estimates

We use the Kalman filter to estimate the hidden oscillations given the observations and the model
parameters. They first predict the state at the next time point, then compare that prediction
to the observation, and finally produce an updated estimate based on the most recently observed
data. Given the full observation time series, we can apply backward smoothing to refine the update
to account for the full observation series (i.e., fixed interval smoothing).

For t, t1, t2 = 1..N , we note:

xNt = Er(xt|{yt}Nt=1), PNt1,t2 = covr(xt1 , xt2 |{yt}Nt=1), and PNt = PNt,t (42)

and compute those quantities using the forward smoothing algorithm:
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Prediction : xt−1
t = Φxt−1

t−1

P t−1
t = ΦP t−1

t−1 Φᵀ +Q

Kalman Gain : Kt = P t−1
t Mᵀ(MP t−1

t Mᵀ +R)−1

Update : xtt = xt−1
t +Kt(yt −Mxt−1

t )

P tt = P t−1
t −KtMP t−1

t

(43)

and a set of backward recursions [48]. For t = N..1, and t1 < t2:

Backward Gain : Jt−1 = P t−1
t−1 Φᵀ(P t−1

t )−1

Smoothing : xNt−1 = xt−1
t−1 + Jt−1(xNt − Φxt−1

t−1)

PNt−1 = P t−1
t−1 + Jt−1(PNt − P t−1

t )Jᵀ
t−1

Covariance : PNt1,t2 = Jt1P
N
t1+1,t2

(44)

9.2.2 E-Step

Here we describe Gr(Θ) for the state space oscillation decomposition with harmonic components.
An single oscillation is defined by a rotation matrix R(ω), a scaling parameter a and a process
noise covariance matrix Q = σ2I2×2. In what follows, we consider d independent oscillations,
which are respectively associated to h1, ..., hd harmonics. For j = 1..d, an oscillation with funda-
mental frequency ωj is the sum of h = 1...hj , harmonics respectively defined by R(hωj), aj,h and
Qj,h = σ2

j,hI2×2. We note D =
∑d
j=1 hj the total number of oscillatory components.

For V ∈ R2D×2D, j = 1..d and h = 1..hj , we note Vj,h the 2 by 2 diagonal block associated with
the hthj harmonic of oscillation j. Φ and Q are block diagonal matrices whose diagonal blocks are
aj,hR(hj,h) and Qj,h:

Φ = diag (a1,1R(ω1), ...a1,h1
R(h1ω1), ..., ad,1R(ωd), ...ad,hdR(hdωd)) (45)

Q = diag (Q1,1, ...Q1,h1 , ..., Qd,1, ...Qd,hd) (46)

Additionally, we will use M = [1 0 1 0 ... 0] ∈ R2D and for U ∈ R2×2, we note: rt(U) :=
U21 − U12 and tr(U) = U11 + U22.

Taking the conditional expectation of the log likelihood log L at iteration r for a fixed set of
parameter Θr = (Φ, Q,R)r, we obtain [21]:

G(Φ, Q,R)r $−
N

2
log |Q| − 1

2
tr
(
Q−1(C −BΦᵀ − ΦBᵀ + ΦAΦᵀ)

)
− N

2
log |R| − 1

2
tr

(
R−1(

N∑
t=1

(yt −MxNt )(yt −MxNt )ᵀ +MPNt M
ᵀ

)
$ G(Φ, Q)r +G(R)r

(47)

where:

A =

N∑
t=1

(PNt−1 + xNt−1(xNt−1)ᵀ)

B =
N∑
t=1

(PNt,t−1 + xNt (xNt−1)ᵀ)

C =
N∑
t=1

(PNt + xNt (xNt )ᵀ)

(48)
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9.2.3 M-Step

We can maximize Gr with respect to R and (Φ, Q) independently. We have:

∂Gr
∂R

(Rr+1) = 0 ⇐⇒ Rr+1 =
1

N

N∑
t=1

(
(yt −MxNt )2 +MPNt M

ᵀ
)

(49)

Since Q is (block) diagonal, we can write:

tr(Q−1V ) =
d∑
j=1

hj∑
h=1

tr(Q−1
j,hVj,h) =

d∑
j=1

hj∑
h=1

1

σ2
j,h

tr(Vj,h) (50)

A is symmetric and Φ is a block diagonal matrix whose element are 2 × 2 rotation matrices, we
develop equation (47) and obtain:

Gr(Φ, Q) $ −N
d∑
j=1

hj∑
h=1

log σ2
j,h

−
d∑
j=1

hj∑
h=1

1

2σ2
j,h

[
tr(Cj,h)− 2aj,h(tr(Bj,h) cos(hωj) + rt(Bj,h) sin(hωj,h)) + a2

j,htr(Aj,h)
] (51)

Differentiating with respect to process noises covariances σ2
j,h, scaling parameter aj,h and funda-

mental frequencies ωj yields:
∂G
∂aj,h

(Φ, Q) = 0 ⇐⇒ aj,htr(Aj,h) = tr(Bj,h) cos(hωj) + rt(Bj,h) sin(hωj)

∂G
∂σ2

j,h
(Φ, Q) = 0 ⇐⇒ σ2

j,h = 1
2N

(
tr(Cj,h)− a2

j,htr(Aj,h)
)

∂G
∂wj

(Φ, Q) = 0 ⇐⇒
∑hj
h=1

h
σ2
j,h

[aj,h(tr(Bj,h) sin(hωj)− rt(Bj,h) cos(hωj))] = 0

(52)

We inject the upper equations of (52) into the third one and we note:

ω̃j,h =
1

h
tan−1

(
rt(Bj,h)

tr(Bj,h)

)
and Sjh =

2tr(Aj,h)tr(Cj,h)

rt(Bj,h)2 + tr(Bj,h)2
− 1 (53)

Using trigonometric identities, equations (52) can finally be rewritten:
∂G
∂aj,h

(Φ, Q) = 0 ⇐⇒ aj,htr(Aj,h) = tr(Bj,h) cos(hωj) + rt(Bj,h) sin(hωj)

∂G
∂σ2

j,h
(Φ, Q) = 0 ⇐⇒ σ2

j,h = 1
2N

(
tr(Cj,h)− a2

j,htr(Aj,h)
)

∂G
∂aj,h

(Φ, Q) = 0 ⇐⇒
∑hj
h=1

h sin(2h(ωj−ω̃j,h))
Sjh−cos(2h(ωj−ω̃j,h)) = 0

(54)

Overall, for j = 1..d, if hj > 1, we numerically solve for ωj using equation (54) and deduce aj,h
and σ2

j,h for h = 1..hj .

If hj = 1, we immediately have:

wj = tan−1 (rt(Bj)/tr(Bj))

aj =

√
rt(Bj)2 + tr(Bj)2

tr(Aj)

σ2
j =

1

2N

(
tr(Cj)− a2

j tr(Aj)
) (55)

9.3 Linear Regression: priors, hyperparameters, and normalizing con-
stants

As in [45], we use τβ = σ−2
β and we assume that the likelihood of the model defined in equation

(14) is:
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p(Af, φs|β, τβ) ∝ τ−N/2β exp
(
−τβ

2
(Af −X(φs)β)ᵀ(Af −X(φst)β)

)
1{β∈W (K)} (56)

where {Af
t}t = Af and {φst}t = φs. The conjugate prior is:

p(β, τβ) ∝ τ
ν̃+3
2 −1

β exp
(
−τβ

2

[
b̃ν̃ + (β − β̃)ᵀṼ (β − β̃)

])
1{β∈W (K)} (57)

We choose prior hyperparameters Ṽ , b̃ ν̃ and β̃ = [β̃0 β̃1 β̃2]ᵀ to convey as little information as
possible on the phase and the strength of the modulation. Marginalizing equation (57) over τβ ,
yields a truncated multivariate t-distribution:

p(β) ∝
(

1 +
1

ν̃
(β − β̃)ᵀ(Ṽ /b̃)(β − β̃)

)− ν̃+3
2

1{β∈W (K)} (58)

ν̃ ≥ 3 insures that the multivatiate-t variance is defined. It is: ν̃(ν̃− 2)−1b̃Ṽ −1. Then, we consider
the independent random variables Ã, K̃ and φ̃ such that:

Ã ∼ Γ(A0/c, c)

K̃ ∼ Uniform(0, 1)

φ̃ ∼ Uniform(−π, π)

(59)

We note γ =
[
Ã ÃK̃ cos(φ̃) ÃK̃ sin(φ̃)

]ᵀ
, use b̃ = 1, ν̃ = 3 and we define β̃, and Ṽ such that:

β̃ = E(γ) and Ṽ −1 = Cov(γ)(ν̃ − 2)/ν̃ (60)

Additionally, we notice that if Af
t ≈ A0[1+Kmod cos(φst+φ

mod)] and since Es(
〈
cos(φst + φmod)

〉
t
) =

0 (where Es represents an average over trials or windows and 〈.〉t is a temporal average across a
given window), Es(

〈
Af
t

〉
t
) = A0 and

〈
Af
t

〉
t
∈ [0, 2A0]. Therefore, it is reasonable to use A0 =

〈
Af
t

〉
t

and c = 1. Overall:

ν̃ = 3 , Ṽ =
〈
Af
t

〉−1

t

3 0 0
0 12 0
0 0 12


β̃ =

〈Af
t

〉
t

0
0

 and b̃ = 1

(61)

Posterior parameters are then given by:

ν = ν̃ +N , V = Ṽ +X(φs)ᵀX(φs)

β = V −1
(
Ṽ β̃ +X(φs)Af

)
, b = (ν̃b̃+H)/ν

(62)

Where:

β̂OLS = (X(φs)ᵀX(φs))
−1
X(φs)ᵀAf and:

H =(Af −X(φs)β̂OLS)ᵀ(Af −X(φs)β̂OLS)

+ (β̂OLS − β)ᵀX(φs)ᵀX(φs)(β̂OLS − β)

+ (β̃ − β)ᵀṼ (β̃ − β)

(63)

We deduce the posterior distribution:

p
(
β, τβ |{Af

t, φ
s
t}t
)

=
1

Z
τ
− ν+3

2 −1

β exp
(
−τβ

2

[
bν + (β − β)ᵀV (β − β)

])
1(Wβ>0) (64)

The normalizing constant Z is obtained by integration and is:
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Z =
Γ(ν/2)(2π)3/2

|V |1/2(νb/2)ν/2
P(β ∈W (K)) (65)

where P(β ∈W (K)) is computed using the multivariate t-distribution of parameters ν, β and b−1V .

Finally, we deduce equation (17) by marginilizing equation (64) over τβ and have:

Z =
Γ (ν/2)

Γ ((ν + 3)/2)

(νπ)3/2

|V/b|1/2
× P(β ∈W (K)) (66)

Note that for large samples it might be useful to use:

Γ((ν + 3)/2)

Γ(ν/2)
=

(
ν + 1

2

)(ν
2

)1/2
(

1− 1

4ν
+

1

32ν2
+

1

128ν3
+O

(
1

ν4

))
(67)

9.4 Second State-Space
In this section, for a given AR order p, we estimate the parameters Rβ , Qβ and {hk}pk=1 defined
equation (22). Let Cm = E(βSSP

T
βSSP
T−m

ᵀ) be the autocovariance sequence of the modulation vectors
estimated with equation (18). We have:

Cm =

p∑
k=1

hkCm−k +Rβ(δ0,m − hm) +Qδ0,m (68)

where δi,j is the the Kronecker delta. Equation (68) can be rewritten:

C0 =
∑p
k=1 hkCk +Q

C1

C2

...
Cp

 =


C0 −Rβ C1 . . . Cp−1

C1 C0 −Rβ . . . Cp−2

...
...

. . .
...

Cp−1 C1 . . . C0 −Rβ



h1

h2

...
hp

 (69)

For an observation noise candidate R∗β , if we can invert equation (69), we immediately access Q∗β
and {h∗k}

p
k=1. Using the Kalman Filter, we hence deduce the likelihood of the candidate model as

in [20].

Therefore, we note Rmβ the smallest eigenvalue of the Toeplitz matrix C = (C|i−j|)i,j=0..p, and,
numerically 3 optimize the model likelihood with respect to R∗β in (0, Rmβ ), where we know that
(C− IR∗β) is full rank.

From Rβ we get Qβ and {hk}pk=1 then, once again, we use the Kalman Filter to estimate βdSSP
T

.

9.5 Modulogram Equivalence
We derive an approximated parametric modulogram for a window of length δt = N/Fs centered
in τ . We will use:

l = fsδt

t = k/Fs

Ωτ = {t, t ∈ [τ − δt/2, τ + δt/2]}

Ωτ,ψ = {t ∈ Ωτ , φ
s
t ∈ [ψ − δψ

2
, ψ +

δψ

2
]}

Ω̃τ,ψ = {t ∈ Ωτ , tωs ∈ [ψ − δψ

2
, ψ +

δψ

2
]}

(70)

For clarity we will use t or k without distinction and we remind that:
3golden section search and parabolic interpolation
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Af
k = A0[1 +Kmod

τ cos(φsk − φmod
τ )] + εk, εk ∼ N (0, σ2

β) (71)

PAM(τ, ψ) =

∫ τ+δt/2

τ−δt/2
∫ ψ+δψ/2

ψ−ψδ/2 A
f
tδ(φ

so
t − ψ′)dtdψ′

2π
∫ τ+δt/2

τ−δt/2 A
f
tdt

=
P2

P1
(72)

Additionally, we assume that:

• for k ∈ Ωτ , φsk = ωs
Fs
k + ηk, where E(ηk) = 0, Var(ηk) = σ2

φ and σ2
φ <<

ωs
Fs
< 1

• and, for simplicity, for ψ ∈ [−π, π], for all h : R+ → R smooth ,
∑
k∈Ωτ,ψ

h(k) ≈
∑
k∈Ω̃τ,ψ

h(k)

From the central limit theorem,
∑
k∈Ωτ

εk = Op(
√
N) and

∑
k∈Ωτ

ηk = Op(
√
N).

We hence have:

P1 =
A0

Fs

∑
k∈Ωτ

(
1 +Kmod

τ cos

(
ωsk

Fs
− φmod

τ + ηk

))
+

1

Fs

∑
k∈Ωτ

εk

=
A0

Fs

∑
k∈Ωτ

(
1 +Kmod

τ cos

(
ωsk

Fs
− φmod

τ

))
+

1

Fs

∑
k∈Ωτ

(
εk −A0K

mod
τ sin

(
ωsk

Fs
− φmod

τ

)
ηk +O(ηk)

)
=
A0

Fs

∑
k∈Ωτ

(
1 +Kmod

τ cos

(
ωsk

Fs
− φmod

τ

))
+Op(

√
N)

(73)

But
∑
k∈Ωτ

cos
(
ωsk
Fs
− φmod

τ

)
= cos

(
ωs

2Fs
(N − 1)− φmod

τ

)
sin(Nws/(2Fs))
sin(ωs/(2Fs))

≤ 2Fs
ωs

. Therefore:

P1 = A0
N

Fs
+Op(

√
N) (74)

On the other hand:

P2 =
1

Fs

∑
k∈Ωτ,ψ

Af
k

=
A0

Fs

∑
k∈Ω̃τ,ψ

(
1 +Kmod

τ cos

(
ωsk

Fs
− φmod

τ + ηk

))
+

1

Fs

∑
k∈Ω̃τ,ψ

εk

(75)

But
∑
k∈Ω̃τ,ψ

εk = Op(δψ
√
l) and l ∝ N so:

P2 =
A0

Fs

∑
k∈Ω̃τ,ψ

(
1 +Kmod

τ cos

(
ωsk

Fs
− φmod

τ + ηk

))
+Op(

√
N) (76)

Using the same argument as the one detailed above we get:

P2 =
A0

Fs

∑
k∈Ω̃τ,ψ

(
1 +Kmod

τ cos

(
ωsk

Fs
− φmod

τ

))
+Op(

√
N) (77)

Additionally:

A0

Fs

∑
k∈Ω̃τ,ψ

(
1 +Kmod

τ cos

(
ωsk

Fs
− φmod

τ

))

=
A0

δψ

∫ τ+ δt
2

τ− δt2

∫ ψ+ δψ
2

ψ− δψ2

(
1 +Kmod

τ cos
(
ωst− φmod

τ

))
δΩ̃τ,ψdtdψ + γ(ws/Fs)

(78)
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Where γ is a function such that γ(x) −−−→
x→0

0. Since:

∫ τ+ δt
2

τ− δt2

∫ ψ+ δψ
2

ψ− δψ2

(
1 +Kmod

τ cos
(
wst− φmod

τ

))
δΩ̃τ,ψdtdψ + γ(ωs/Fs)

=
L

ωs
×
∫ ψ+ δψ

2

ψ− δψ2

(
1 +Kmod

τ cos
(
φ′ − φmod

τ

))
dφ′ +O(1)

=
Lδψ

ωs

(
1 +

sin (δψ/2)

δψ/2
Kmod
τ cos

(
ψ − φmod

τ

))
+O(1)

(79)

For ωs
Fs

"sufficiently small", we can write:

P2 =
A0l

ωs

(
1 +

sin (δψ/2)

δψ/2
Kmod
τ cos

(
ψ − φmod

τ

))
+Op(

√
N) (80)

Finally:

PAM(τ, ψ) =
1

2π

(
1 + sin(δψ/2)

δψ/2 Kmod
τ cos(ψ − φmod

τ ) +Op(1/
√
N)
)

1 +Op(1/
√
N)

=
1

2π

(
1 +

sin(δψ/2)

δψ/2
Kmod
τ cos(ψ − φmod

τ )

)
+Op(1/

√
N)

(81)

9.6 Initialization of the EM algorithm
Although EM insures convergence, the log likelihood which is to be maximized is not always con-
cave [20]. To address this issue, Matsuda and Komaki initialize a signal composed of d oscillations
with the parameters of the best autoregressive (AR) process of order p ∈ [|d, 2d|]. Nevertheless,
because of the electrophysiological signal’s aperiodic component, such procedure might bias the
initialization. Indeed, the aperiodic components are usually described by a 1/fχ power-law func-
tion [43] [44] which might be regressed by the AR process. In such cases, the initialization could
fail to account for an actual underlying oscillation.

To help mitigate this potential problem, we adapt Haller, Donoghue and Peterson’s FOOOF algo-
rithm [25] to the state space oscillation framework. Our initialization algorithm aims to disentangle
the oscillatory components from the aperiodic one before fitting the resulting spectra4 with the
parametric PSD of the oscillation (equation (38)).

The power spectral density (PSD) for the observed data signal yt is estimated using the multitaper
method [36]. We set the frequency resolution rf (typically to 1Hz) which yields the time bandwidth
product TW =

rf
2
N
Fs

. The number of taper K is then chosen such that K << b2TWc − 1.

First of all, we estimate the observation noise R0 (used to initialized R) using:

10 log10

R0

Fs
= lim
f→∞

PSD(f) (82)

and we remove this offset from the PSD.

9.6.1 Regressing out the non oscillatory component

The aperiodic signal PSD in dB, at frequencies f is then modeled by:

g(f) = g0 − log (1 + (f/f0)χ) (83)

χ controls the slope of the aperiodic signal, g0 the offset and f0 the "knee" frequency. A first pass
fit is applied to identify the frequencies corresponding to non oscillatory components: only f0 is
fitted while χ and g0 are respectively set to χ = 2 and g0 = PSD(f = 0). (Fig. 9-a). We fix a
threshold (typically 0.8 quantile of the residual) to identify frequencies associated to the aperiodic

4All fits in this initialization procedure use interior point methods to minimize L2 norms.
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Figure 9: Steps for the initialization procedure. A first pass fit is applied to the raw multitaper
power spectral density (PSD) estimate (a). We remove this fit from the raw PSD and fix a threshold
to identify non-oscillatory components (b). A second pass fit is applied (c) which yields a redressed
PSD (d). We then fit the parametric expression of the PSD for a fixed number of oscillations (d).
The fitted parameters are then used to initialize the EM algorithm.

signals (Fig. 9-b).

A second pass fit is then applied only on those frequencies from which we deduce g0, f0 and χ (Fig.
9-c). We remove g(f) from the raw PSD in dB and use it for the second step of the algorithm
(9-d).

9.6.2 Oscillation Initialization

From the redressed PSD, we fit a given number d0 (e.g d0 = 4) of independent oscillations using
the theoretical PSD given in equation (38). To do so, we identify PSD peaks of sufficient width
(wider than rf/2) before fitting an oscillation theoretical spectra in a neighborhood of width 2rf
around this peak. For oscillation j, we deduce (fj)0, (aj)0 and (σ̃2

j )0. Since (σ̃2
j )0 represents the

offset of a given oscillation after removing the aperiodic component, we adjust it to estimate σ2
j :

10 log10

(
(σ̃2
j )0

Fs

)
≈ 10 log10

(
(σ2
j )0

Fs

)
+ g((fj)0) (84)

The resulting spectra PSDj are then subtracted and the process is repeated until all oscillations are
estimated (9-e, blue). We finally estimate the power Pj of an an oscillation j in the neighborhood
of (fj)0 and estimate its contribution to the total power P0 by −10 log10

(
1− Pj

P0+2rfR0/Fs

)
.

Oscillation are sorted and the resulting parameters are used to initialize the EM algorithm with
the d ∈ [|1, d0|] first oscillations.

9.6.3 Additional Results

In this section we present additional results to support the validation and comparison of our algo-
rithm:
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Fig. 10 is the PAC profile of another subject infused with increasing target effect site concentration
of propofol.

Fig.11 is a comparison of the modulation dynamic estimation between standard analysis and our
dSSP.

Fig.12 are typical 6s signal traces of signal generated with equation (25).

Fig.13, 14 and 15 Are the modulation phase (φmod) and frequency (fs, ff) recovery estimation and
comparison between standard methods, DAR and SSP.
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Figure 10: Phase Amplitude Coupling profile of another subject infused with increasing target ef-
fect site concentration of propofol. Left: response probability curves (a) aligned with modulograms
(c) (distribution of alpha amplitude with respect to slow phase) computed with standard (top) and
parametric (bottom) techniques. Right: propofol infusion target concentration (b) aligned with
corresponding Modulation Indices (d). Standard technique significance was assessed using 200
random permutations and CI where estimated using 200× 200 samples
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12 for typical signal traces
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Figure 13: Modulation phase φmod estimation and comparison between standard methods (black),
DAR (pink) and SSP (blue). 400 windows of 2 seconds were generated with: a slow oscillation
(filtered from white noise around fs = 3Hz with ∆fgens and normalized to standard deviation
σs) and a modulated fast oscillation (φmod = −π/3, modeled with a sinusoid fs = 50Hz and
normalized to σf). We added unit normalized Gaussian noise and we used 3 Signal To Noise Ratio
(SNR) conditions ((σs, σs) = (2, 1.5), (1, 0.6) and (0.7, 0.3)). We show typical signal traces for
these different conditions in Supplementary Materials Fig 15.
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Figure 14: Slow and Fast oscillation recovery using different algorithms: standard methods (black),
DAR (pink) and SSP (blue). 400 windows of 6 seconds were generated with: a slow oscillation
(filtered from white noise around fs = 1Hz with bandwidth ∆fgens and normalized to standard
deviation σs) and a modulated fast oscillation (φmod = −π/3, modeled with a sinusoid fs = 10Hz
and normalized to σf). We added unit normalized Gaussian noise and we used 3 Signal To Noise
Ratio (SNR) conditions ((σs, σs) = (2, 1.5), (1, 0.6) and (0.7, 0.3)). We report typical signal traces
for the different conditions (top), slow oscillation recovery alongside the true slow frequency PSD
(middle), and fast frequency recovery (bottom). The red arrow indicates the true multitaper PSD
(TW=4, K=5 tapers) peak for each oscillation.
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Figure 15: Slow and Fast oscillation recovery using different algorithm: standard methods (black),
DAR (pink) and SSP (blue). 400 windows of 2 seconds were generated with: a slow oscillation
(filtered from white noise around fs = 3Hz with bandwidth ∆fgens and normalized to standard
deviation σs) and a modulated fast oscillation (φmod = −π/3, modeled with a sinusoid fs = 50Hz
and normalized to σf). We added unit normalized Gaussian noise and we used 3 Signal To Noise
Ratio (SNR) conditions ((σs, σs) = (2, 1.5), (1, 0.6) and (0.7, 0.3)). We report typical signal traces
for the different conditions (top), slow oscillation recovery alongside the true slow frequency PSD
(middle), and fast frequency recovery (bottom). The red arrow indicates the true multitaper PSD
(TW=4, K=5 tapers) peak for each oscillation.
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