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Abstract 1 

Purpose 2 

Delineating the swallowing and chewing structures in Head and Neck (H&N) CT scans is 3 

necessary for radiotherapy treatment (RT) planning to reduce the incidence of radiation-induced 4 

dysphagia, trismus, and speech dysfunction. Automating this process would decrease the manual 5 

input required and yield reproducible segmentations, but generating accurate segmentations is 6 

challenging due to the complex morphology of swallowing and chewing structures and limited 7 

soft tissue contrast in CT images.  8 

Methods 9 

We trained deep learning models using 194 H&N CT scans from our institution to segment the 10 

masseters (left and right), medial pterygoids (left and right), larynx, and pharyngeal constrictor 11 

muscle using DeepLabV3+ with the resnet-101 backbone. Models were trained in a sequential 12 

manner to guide the localization of each structure group based on prior segmentations. 13 

Additionally, an ensemble of models was developed using contextual information from three 14 

different views (axial, coronal, and sagittal), for robustness to occasional failures of the individual 15 

models. Output probability maps were averaged, and voxels were assigned labels corresponding 16 

to the class with the highest combined probability. 17 

Results 18 

The median dice similarity coefficients (DSC) computed on a hold-out set of 24 CT scans were 19 

0.87±0.02 for the masseters, 0.80±0.03 for the medial pterygoids, 0.81±0.04 for the larynx, and 20 

0.69±0.07for the constrictor muscle. The corresponding 95th percentile Hausdorff distances were 21 
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0.32±0.08cm (masseters), 0.42±0.2cm (medial pterygoids), 0.53±0.3cm (larynx), and 22 

0.36±0.15cm (constrictor muscle). Dose-volume histogram (DVH) metrics previously found to 23 

correlate with each toxicity were extracted from manual and auto-generated contours and 24 

compared between the two sets of contours to assess clinical utility. Differences in DVH metrics 25 

were not found to be statistically significant (p>0.05) for any of the structures. Further, inter-26 

observer variability in contouring was studied in 10 CT scans. Automated segmentations were 27 

found to agree better with each of the observers as compared to inter-observer agreement, 28 

measured in terms of DSC. 29 

Conclusions 30 

We developed deep learning-based auto-segmentation models for swallowing and chewing 31 

structures in CT. The resulting segmentations can be included in treatment planning to limit 32 

complications following RT  for H&N cancer. The segmentation models developed in this work 33 

are distributed for research use through the open-source platform CERR, accessible at 34 

https://github.com/cerr/CERR. 35 

 36 

 37 

 38 

 39 

 40 

 41 
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 43 

1. INTRODUCTION 44 

Delineating organs at risk (OAR) is central in radiotherapy (RT) treatment planning to limit normal 45 

tissue complications following RT. Manual delineation is time-consuming, subjective, and prone 46 

to errors due to factors such as organ complexity and level of experience [1]. Therefore, there has 47 

been a great deal of interest in automating this process to generate accurate and reproducible 48 

segmentations in a time-efficient manner. 49 

In head and neck (H&N) cancer treatment, isolating the larynx and pharyngeal constrictor muscle 50 

is of particular interest to limit speech dysfunction and dysphagia, respectively, following RT [2] 51 

[3]. The masseters and medial pterygoids have also been identified as critical structures in limiting 52 

radiation-induced trismus [4]. However, delineating these structures is challenging due to their 53 

complex morphology and the low soft tissue contrast in CT images.  54 

Few semi-automatic and automatic methods have been previously developed to segment OARs in 55 

the H&N. Conventional multi-atlas-based auto-segmentation (MABAS) methods involve 56 

propagating and combining manually-segmented OARs from a curated library of CT scans through 57 

image registration as in [5] and [6]. Other approaches offer strategies to further refine MABAS 58 

using organ-specific intensity [7] and texture [8] features or shape representation models [9] [10]. 59 

However, MABAS is sensitive to inter-subject anatomical variations as well as image artifacts, 60 

and image registration is computationally intensive, requiring several minutes even with highly 61 

efficient implementations [11]. 62 

Convolutional neural networks (CNNs) have recently been applied successfully to various medical 63 

image segmentation tasks. Ibragimov et al. [12] trained 13 CNNs, applied in sliding-window 64 
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fashion to segment H&N OARs including the larynx and pharynx, which were further refined 65 

using Markov Random Field (MRF)-based post-processing. In [13], Ward van Rooij et al. 66 

employed the popular 3D U-net [14] architecture to segment H&N OARs including the pharyngeal 67 

constrictor muscle. Zhu et all. [11] extended the U-Net model by incorporating squeeze-and 68 

excitation (SE) residual blocks and a modified loss function to improve segmentation of smaller 69 

structures such as the chiasm and optic nerves. In [15], Men et al. segmented nasopharyngeal tumor 70 

volumes in H&N CT using a modified version of the VGG-16 [16] architecture, replacing fully-71 

connected layers with fully-convolutional layers and introducing improved decoder networks to 72 

rebuild high-resolution feature maps. Tong et al [17] trained a fully convolutional neural net 73 

(FCNN), incorporating prior information by training a shape representation model to regularize 74 

shape characteristics of 9 H&N OARs. The FocusNet [18] developed by Gao et al. utilizes multiple 75 

CNNs to segment H&N OARs including the larynx, first segmenting large structures, then 76 

segmenting smaller structures with specifically designed sub-networks. 77 

In this work, we present a fully automatic method to segment swallowing and chewing structures 78 

and examine its suitability for clinical use. To the best of our knowledge, this is the first [35] deep 79 

learning‐based method for segmenting the chewing structures in CT images. We propose a novel 80 

framework in which DeepLabV3+ segmentation models are trained sequentially to guide the 81 

localization of  each structure group  based on previously-segmented structures. Model ensembles 82 

are created using three orthogonal views (axial, sagittal, and coronal) in 2.5D and shown to 83 

improve segmentation accuracy of  H&N OARs compared to models trained on a single-view. 84 

2. MATERIALS AND METHODS 85 

2.1 Dataset 86 
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CT scans of 243 H&N cancer patients from our institution were retrospectively collected under 87 

IRB 16-142 and accessed under IRB 16-1488 to develop the auto-segmentation methods in this 88 

work. The dataset was randomly partitioned into training (80%), validation (10%), and testing 89 

(10%) sets. The validation set (10%) was used to estimate model performance while tuning 90 

hyperparameters, and the testing set (10%) was used for unbiased evaluation of the final model. 91 

Representative CT images showing considerable variation in head pose, shape, and appearance 92 

around the structures of interest, including slices with dental artifacts due to dental implants, were 93 

included in the dataset. Additional data characteristics are listed in Table 1. Manual segmentations 94 

of the masseters (left, right), medial pterygoids (left, right),  larynx, and constrictor muscle, 95 

generated using MSKCC’s in-house treatment planning system, served as the reference standard. 96 

Reference  contours of the masseters and medial pterygoids were available in 60% of the scans, 97 

and the constrictor muscle in 97% of the scans (larynx was provided in all scans).  98 

Table 1. Summary of data characteristics for axial images 99 

Attribute Median Min Max 5th percentile 95th percentile 

Number of slices 80 48 279 65 103 

In-plane spacing (mm) 0.78 0.51 1.37 0.61 1.17 

Slice thickness (mm) 3.00 1.25 6.00 2.50 3.27 

 100 

     2.2 CNN segmentation model 101 

The DeepLabV3+ CNN [19] was selected due to its impressive performance on the PASCAL VOC 102 

2012 and Cityscapes datasets. Moreover, it has previously been applied successfully to medical 103 

image segmentation tasks, e.g., by Elguindi et al. [26] to segment the prostate in MR images and 104 
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by Haq et al. [27] to segment cardio-pulmonary substructures in CT images. This architecture 105 

offers the advantage of an encoder network that can capture contextual information at different 106 

scales using multiple dilated convolution layers applied in parallel at different rates and a decoder 107 

network capable of effectively recovering object boundaries.  108 

Here, training was performed using ResNet-101 [20] as the backbone of the encoder network. A 109 

publicly-distributed implementation [21] of DeepLabV3+ using the Pytorch [33] framework was 110 

utilized, and a soft-max layer was appended to obtain voxel-wise probabilities. On training a single 111 

multi-class model to segment all the structures of interest, it was observed that the imbalance in 112 

class labels due to large differences in OAR sizes led to poor performance on smaller structures. 113 

Augmenting the loss function based on class frequencies did not produce significant improvement, 114 

as previously observed in [18]. Consequently, three separate models were developed- one to 115 

segment the chewing structures and one each for the larynx and the constrictor muscle. A 116 

sequential segmentation strategy (figure 1) was utilized in which each segmented OAR was used 117 

to constrain the location of subsequently segmented OARs. Additionally, an ensemble of three 118 

models was developed per OAR group using 2D axial, sagittal, and coronal slices. As compared 119 

to 3D convolutional neural networks (CNNs) which are highly memory-intensive, training in 2D 120 

enabled us to employ a more complex CNN while still providing contextual information and 121 

increased redundancy from the three different orientations.  122 

A high-performance cluster with four NVIDIA GeForce GTX 1080Ti GPUs with 11GB of 123 

memory each was used in training. Batch-normalization was applied using mini-batches of 8 124 

images, resized to 320 x 320 voxels. Input images were standardized by scaling the intensities to 125 

[0,1] and normalizing to zero-mean and unit-variance. Data augmentation was performed through 126 

image scaling, cropping, and rotation. Input channels were populated using three consecutive slices 127 
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(axial, sagittal, and coronal, respectively, for the three models), and the cross-entropy loss was 128 

employed in training. Data preprocessing and export to HDF5 [28] format was performed using 129 

the Computational Environment for Radiological Research (CERR) [23]. Details of the individual 130 

models are presented in the following sections, and Table 2 summarizes the hyperparameters used.  131 

Figure 1. (a) Sequential framework for segmenting chewing and swallowing structures using deep 132 

learning, in which each segmented OAR group is used to improve localization of subsequently 133 

segmented OARs. (b) Example showing consensus segmentation of left masseter using ensemble 134 

model trained on 3 orthogonal views (axial, sagittal, and coronal). 135 

Input CT image    Extract outline   Localize chewing structures   Segment            Output mask 

    Localize larynx    Segment         Output mask   Localize constrictor  Segment       Output mask  
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 2.3 Chewing structures 136 

A multi-label model was trained to segment the left and right masseters and medial pterygoids. 137 

H&N CT scans were automatically cropped around the patient’s outline prior to training. The 138 

couch was first detected using the Hough transform and masked out. This was followed by 139 

intensity-based thresholding and morphological post-processing to extract the patient’s outline. A 140 

bounding box was generated around the outline and its posterior extent was limited by 25%. 2D 141 

axial, sagittal, and coronal images and corresponding masks of the chewing structures were 142 

extracted within these extents for training. 143 

 144 

Figure 2. Illustration of method to localize chewing structures in axial H&N CT scans. (a) Input 145 

CT image (b) Hough transform-based couch segmentation (c) Intensity thresholding to extract 146 

patient outline  (d) Morphological post-processing (e) Bounding box with reduced posterior extent. 147 

Model weights were optimized using Stochastic Gradient Descent (SGD) with hyperparameters 148 

listed in Table 2 and learning rate was decayed following the polynomial scheduling policy. An 149 

                          (d)                  (e)  

            (a)                   (b)                                       (c)
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early stopping strategy was employed to avoid overfitting if there was no improvement in the 150 

validation loss. 151 

2.4 Swallowing structures 152 

2.4.1 Larynx 153 

CT scans were cropped further, with the anterior, left, right, and superior limits defined by the 154 

corresponding extents of the previously segmented chewing structures, as shown in figure 3. 2D 155 

axial, sagittal and coronal images and corresponding masks of the larynx were extracted within the 156 

resulting bounding box and optimization was performed using SGD.  157 

 158 

Figure 3. Bounding box (yellow) for localization of larynx using previously segmented chewing 159 

structures (red). 160 

2.4.2 Constrictor muscle 161 

To localize the constrictor muscle, CT scans were cropped with the anterior, left, right, and 162 

superior limits defined by the corresponding extents of the chewing structures. The posterior and 163 

inferior limits were defined by corresponding extents of the larynx, with sufficient padding. 2D 164 

axial, sagittal,  and coronal images and corresponding masks of the constrictor muscle were 165 
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extracted within the resulting bounding box, shown in figure 4. Optimization was performed using 166 

adaptive moment estimation (Adam) [22].  167 

 168 

Figure 4. Bounding box (yellow) for localization of constrictor muscle using previously 169 

segmented chewing structures and larynx (red). 170 

For each of the above OARs, probability maps returned by the three models (axial, sagittal, and 171 

coronal) were averaged and voxels were assigned to the class with the highest resulting probability 172 

to produce stable consensus segmentations, robust to occasional failures of the individual models. 173 

The segmentation masks were further post-processed to remove isolated voxels by discarding all 174 

but the largest connected component. Morphological processing was performed to fill holes and 175 

obtain smooth contours. 176 

Table 2. Summary of hyperparameters for training. 177 

Model Structure(s) Learning rate Optimizer Momentum Weight Decay 

1 

MMLa, MMRb, 

 PMLc, PMRd 

Axial: 0.002 

SGD 0.9 0.0001 Sagittal: 0.003 

Coronal: 0.002 
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2 Larynx 

Axial: 0.0003 

SGD 0.9 0.0002 Sagittal: 0.0003 

Coronal: 0.0003 

3 CMe 

Axial: 1x10-6 

Adam 0.9 0.0001 Sagittal: 8x10-7 

Coronal : 2x10-6 

a Masseter (left); b masseter (right); c medial pterygoid (left); d medial pterygoid (right); e 

constrictor muscle. 

     3. RESULTS 178 

     3.1 Comparison to reference standard  179 

The performance of the proposed method was evaluated on the test set of 24 H&N cancer patients 180 

by comparing the results against existing manually delineated segmentations. The Dice Similarity 181 

Coefficient (DSC) was used to assess the degree of overlap between manual (A) and automated 182 

(B) segmentations, computed as: 183 

𝐷𝑆𝐶 = 2  
|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
 184 

Additionally, the 95th percentile of the Hausdorff distance (HD95), i.e., maximum distance between 185 

boundary points of A and B, was computed to capture the impact of a few sizeable segmentation 186 

errors on the overall segmentation quality. Both DSC and HD95 were measured for the individual 187 
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models (axial, sagittal, coronal) as well as the ensemble to investigate the benefits of a multi-view 188 

ensemble.  189 

Examples of segmentations resulting from our algorithm are presented in figure 5 for qualitative 190 

assessment. Box plots of DSC and HD95 are presented in figure 6. 191 

  192 

Figure 5. Auto-segmentation results for chewing structures (row-1) and swallowing structures 193 

(row-2), shown in four axial cross‐sections. Manual reference segmentations are depicted in green 194 

and deep-learning-based auto-segmentations in red.  195 
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Figure 6. Performance of deep learning models (axial, sagittal, coronal, and ensemble) compared 196 

to manual reference segmentations in terms of (a) DSC  and (b) HD95. Of the 24 test patients, the 197 

number with  manual contours available for comparison is noted in parentheses. MML, MMR: 198 

masseters (left and right), PML, PMR: medial pterygoids (left and right), CM : constrictor muscle. 199 

Differences in mean dose, previously identified [29-30]   as a possible factor in radiation-induced 200 

complications were also computed between deep learning-based and manual contours, and the 201 

Wilcoxon signed-rank test was applied to investigate potential statistical disparities (Table 3). 202 

Differences in mean dose were not found to be statistically significant for all tested structures at 203 

significance level 5%. 204 

Table 3. Comparison of mean doses extracted using manual and auto-generated contours. Median, 205 

first and third quartiles of percentage differences are presented.  206 

Structure Metric Difference (%) p-value No. test patients 

MMLb U MMRc Ipsilaterala 

mean dose 

-0.01 (-1.20, 1.32)  1.00 11 

PMLd U PMRe Ipsilaterala 

mean dose 

0.53 (-0.77, 1.11) 0.70 11 

Larynx Mean dose 0.38 (-2.02, 6.59) 0.33 24 

CMf Mean dose 0.15 (-0.49, 1.28) 0.29 22 

aIpsilaterality for the paired structures was decided based upon the side with the highest dose. b 

Masseter (left); c masseter (right); d medial pterygoid (left); e medial pterygoid (right); f 

constrictor muscle.  

3.2 Variability of reference standards 207 
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The manual reference segmentations came from various sources: the larynx was delineated for 208 

treatment planning by multiple observers with variation in level of expertise; the constrictors and 209 

chewing structures were each delineated post-treatment by one of two radiation oncology residents 210 

for studying dysphagia and trismus, respectively [29] [30]. Regardless of origin, these contours 211 

are referred to as observer-1. A randomly selected subset of 10 CT scans from the testing dataset 212 

were then re-segmented by a medical physicist (observer-2) to provide a second reference 213 

standard. The agreement between the independent observers was measured in terms of DSC and 214 

compared to agreement of each observer with the deep learning-based contours (figure 7). 215 

Automated segmentations showed better agreement with each observer as compared to the inter-216 

observer agreement.   217 

 218 

Figure 7. Comparing agreement of deep learning-based segmentations (DLS) with independent 219 

observers vs. inter-observer agreement. MML, MMR: Masseters (left and right), PML, PMR: 220 

medial pterygoids (left and right), CM (constrictor muscle) 221 

3.3 Comparison to previously reported methods  222 

We compared the performance of our method with H&N OARs segmentation models from the 223 

published literature. These included state-of-the-art CNN models such as the 3D Unet [13], 224 
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FocusNet [18], a H&N OAR-focused CNN [12], commercial atlas-based segmentation tool SPICE 225 

[5] and other atlas-based methods [24,25]. The mean DSCs for the different methods are 226 

summarized in Table 4. The performance of our segmentation models matched or exceeded 227 

previously presented methods. However, it should be noted that these results were reported on 228 

different datasets and do not represent a direct comparison performed on our testing dataset.  229 

3.4 Distribution of trained models 230 

The segmentation models developed in this work are publicly distributed as a part of CERR’s 231 

library of model implementations [31]. Model dependencies were encapsulated using Singularity 232 

[34] containers, enabling deployment on a variety of scientific computing architectures and aiding 233 

in portability and reproducibility. This also facilitates further analysis through integration with 234 

CERR’s radiomics toolbox [32] and dosimetric models [31]. CERR can be downloaded from 235 

https://github.com/cerr/CERR. The list of currently available segmentation containers and 236 

corresponding links for download are available at https://github.com/cerr/CERR/wiki/Auto-237 

Segmentation-models. It should be noted that the segmentation models are distributed strictly for 238 

research use. Clinical or commercial use is prohibited. CERR and containerized model 239 

implementations have not been approved by the U.S. Food and Drug Administration (FDA). 240 

Table 4. DSC (mean ± std. deviation) for swallowing and chewing structures using the proposed 241 

method (column-1) and results from previously published methods.  242 

 243 
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1Deep learning based  2 atlas based. 244 

4. DISCUSSION 245 

We trained three distinct model ensembles to segment structures of different sizes and constrained 246 

the location of each structure group based on the extents of previously identified structures. This 247 

sequential localization framework was able to handle imbalance in class labels due to differences 248 

in the sizes of the OARs. Additionally, we used an ensemble of models trained on three different 249 

image orientations to capture important contextual information and provide redundancy in case of 250 

failures of the individual models. The performance of the of the multi-view ensemble in terms of 251 

DSC either matched or out-performed the individual models and showed lower variance across all 252 

structures, as evidenced by tighter bounds in the box plots (figure 6). Further, the multi-view 253 

consensus reduced the worst-case segmentation errors (as captured by HD95) across all the 254 

structures. This suggests that employing a multi-view ensemble may help produce more stable 255 

segmentations than single-view models 256 

Of the structures considered, the pharyngeal constrictor muscle was most challenging to segment 257 

due to its morphological complexity, high anatomical variability, and low soft tissue contrast. This 258 

Structure Proposed 

                  

van Rooij 

et al. [13]  

( 2019 ) 1 

               

Gao et al. 

[18]       

  ( 2019 ) 1 

         

Ibragimov  

et al. [12]  

( 2017 ) 1 

                    

Tao et al. 

[5]                     

(2015) 2 

          

Thomson 

et al. [24]                  

( 2015 )2 

               

Han et 

al.  [25]                              

( 2008 )2 

Masseters 0.87  ± 0.02 - - - - - 0.83 

Pterygoids 0. 80  ± 0.03 - - - - - 0.83 

Larynx 0.81 ± 0.04 0.78 ± 0.05 0.66±0.29 0.86 ± 0.04 0.73 ± 0.04 0.58 - 

Constrictor 

muscle 

0.68 ± 0.07 0.68 ± 0.09 - 0.69 ± 0.06 0.65 ± 0.06 0.50 - 
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was reflected in our analysis of manual segmentations by different observers. The lowest inter-259 

observer agreement was observed in delineating the constrictor. In some cases, segmentation was 260 

further complicated by tumor infiltration around the periphery.  For the larynx, standardizing the 261 

reference segmentations (generated by multiple observers with varying levels of experience) prior 262 

to training could potentially yield better results. We also observed a few spurious and 263 

discontinuous detections of the larynx when using models trained only on axial or sagittal images. 264 

This was mitigated by generating a consensus segmentation using information from all 3 views 265 

(e.g. figure 8). Finally, the deep learning models for all structures were found to generalize well as 266 

the auto-generated results showed good agreement with delineations by a new (unseen) observer.  267 

We further investigated the potential for clinical application of the trained models by comparing 268 

mean doses extracted from manual and automated segmentations. No statistical differences were 269 

observed at the 5% significance level. 270 

Figure 8. Sagittal cross sections showing auto-segmented larynx using (a) axial only (b) sagittal 271 

only (c) coronal only and (d) ensemble models.        272 

 5. CONCLUSIONS 273 

We developed a fully-automatic, accurate, and time-efficient method to segment swallowing and 274 

chewing structures in CT images and demonstrated its potential for clinical use. The proposed 275 

(a)    (b)     (c)    (d) 
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method introduces a novel framework for sequential localization and segmentation to handle 276 

imbalances in OAR sizes. Additionally, the potential advantage of a multi-view ensemble over a 277 

single-view model was investigated. As hypothesized, the ensemble models were found to yield 278 

more stable segmentations across all structures. This ensemble approach could be applied to 279 

improve segmentation quality in other sites as well. The trained models are publicly distributed 280 

for research use through the open-source platform CERR using Singularity containers.  281 
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