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ABSTRACT

Quantitative analyses of morphological variation using geometric morphometrics are often 

performed on 2D photos of 3D structures. It is generally assumed that the error due to the flattening 

of the third dimension is negligible. However, despite hundreds of 2D studies, few have actually 

tested this assumption and none has done it on large animals, such as those typically classified as 

megafauna. We explore this issue in living equids, focusing on ventral cranial variation at both 

micro- and macro-evolutionary levels. By comparing 2D and 3D data, we found that size is well 

approximated, whereas shape is more strongly impacted by 2D inaccuracies, as it is especially 

evident in intra-specific analyses. The 2D approximation improves when shape differences are 

larger, as in macroevolution, but even at this level precise inter-individual similarity relationships 

are altered. Despite this, main patterns of sex, species and allometric variation in 2D were the same 

as in 3D, thus suggesting that 2D may be a source of ‘noise’ that does not mask the main signal in 

the data. However, the problem is complex and any generalization premature. Morphometricians 

should therefore test the appropriateness of 2D using preliminary investigations in relation to the 

specific study questions in their own samples. We discuss whether this might be feasible using a 

reduced landmark configuration and smaller samples, which would save time and money. In an 

exploratory analysis, we found that in equids results seem robust to sampling, but become less 

precise and, with fewer landmarks, may slightly overestimate 2D inaccuracies.

Keywords: allometry, geometric morphometrics, landmarks, micro/macro-evolution, Procrustes, 
shape.

1. Introduction

1.1. 2D to 3D approximation in geometric morphometrics: what is the problem?

The quantitative study of morphological variation has not lost its centrality in evolutionary biology 

and has in fact lived a renaissance thanks to the development of geometric morphometrics (GMM) 

(Rohlf and Marcus, 1993; Adams et al., 2004; Cardini and Loy, 2013). Landmark-based GMM 

using Procrustes methods employs sets of anatomically corresponding points to quantify and 

compare the size and shape of biological forms (Cardini, 2013). Landmark data can be collected in 

a variety of ways, among which digitizing anatomical points on photos is very common (Cardini, 

2014). However, because most biological structures are highly three dimensional, and exceptions 

such as fly wings or plant leaves are relatively rare, 2D analyses of 3D anatomical features 

inevitably introduce an error by flattening the third dimension. This was stressed in the early days 

of applied GMM by Roth (1993) and has recently been brought again to the attention of the 
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morphometric community by Álvarez and Perez (2013) and (Cardini, 2014). For brevity, as in 

Cardini (2014), we will call the problem of approximating a three-dimensional object with a flat 

picture as the “Two to Three Dimensional approximation”, henceforth abbreviated with TTD.

The most obvious solution to TTD is to avoid the issue in the first place by collecting 3D 

data using digitizers (e.g., http://www.3d-microscribe.com) or three-dimensional models obtained 

with scanners or photogrammetric reconstructions. However, 3D data acquisition may raise 

practical issues in terms of speed and costs. Especially for costs, 3D photogrammetry is in fact 

interesting and increasingly applied in GMM, especially on mammals of both large (Evin et al., 

2016) and small size (Giacomini et al., 2019). This technique, pioneered in GMM by Fadda et al. 

(1997), allows to combine pictures of different views of an object to reconstruct a 3D model of its 

surface, thus, in a sense, ‘transforming’ a simple and relatively inexpensive digital camera in an 

accurate 3D scanner. 3D photogrammetry has made big technological progresses and, as the 

software for the construction of the 3D models is either free (Falkingham, 2012) or cheap (e.g., http

s://www.agisoft.com/), it offers an effective alternative to more expensive devices (high-resolution 

scanners, 3D digitizers etc.). Nevertheless, because of the large number of pictures necessary for an 

accurate reconstruction, plus the often long computational time necessary for building a 3D model, 

the technique requires much more time than taking one or a few pictures of, for instance, a cranium 

in ventral, lateral and dorsal view. There is an inevitable trade-off between pros and cons of 

different methods for data acquisition (Álvarez and Perez, 2013; Cardini, 2014; Navarro and Maga, 

2016; Buser et al., 2018) and a morphometrician may have to decide whether the better accuracy of 

3D landmarks is more important than having potentially larger samples using 2D photos. The 

answer to what is best is unlikely to be general and will depend on many factors, which will be 

often specific to each study. Thus, for a rigorous evidence-based decision, a preliminary analysis to 

compare 2D and 3D results may be necessary (Cardini, 2014).

Since Álvarez and Perez (2013) and Cardini (2014), more attention has been paid to TTD in 

GMM studies and several papers have focused on different aspects of the problem. For instance, 

Bakkes (2017) focused on a related issue, which is not specific of 2D images, but is likely to be 

more important in studies using flat images of 3D objects. This is the effect of the orientation on 

repeatability. Repositioning a specimen before collecting the data will add a source of error that is 

negligible only if the standardization of its position relative to the camera is extremely precise. 

Indeed, he found that, although repeatability of 2D data was high for the symmetric component of 

shape, variability in a specimen orientation introduced important differences in patterns of 

asymmetric variation in basis capituli of three species of ticks. That asymmetric variation, even 

when large, may be particularly affected by 2D analyses of pictures, was also suggested by a recent 

study (Hedrick et al., 2019). The authors employed slightly different landmark configurations to 
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capture the shape of dog-fish vaginas both in 2D and 3D. Despite a good correlation between the 

two types of data, they discovered that some results were strongly impacted by TTD. As in (Bakkes,

2017), the patterns of asymmetries were profoundly altered in the 2D dataset. Also, and even more 

worrying, group structure (reproductive vs non-reproductive females in the sample) was evident in a

PCA of 3D shape, but totally absent when the same analysis was done in 2D. This indicates that a 

dominant pattern of shape variation, evident in 3D, was totally lost (or hidden) in 2D.

A poor TTD may differentially affect different types of analyses and can even vary across 

taxa in a study. This was the case in a comparison of 2D and 3D data measuring the morphology of 

the head in Oligocottinae fishes (Buser et al., 2018). Although the main directions of shape 

variation suggested similar patterns, the authors found (p. 806) that “in taxa where shape variation 

in the z-axis is high, the 2D shape variables show sufficiently strong distortion to influence the 

outcome of the hypothesis tests regarding the relationship between mouth size and feeding 

ecology”. This meant that, despite working at a macro-evolutionary level, and thus presumably 

dealing with fairly large differences among taxa, only 3D data supported a well established 

ecomorphological relationship between mouth sizes and the proportion of preys in the diet. Also, 

2D data, unlike 3D ones, showed a strong divergence of one lineage, that happened to be the one 

with “the greatest degree of z-axis body depth within Oligocottinae” (p. 806). 

That large differences are no guarantee of a negligible TTD is also the conclusion of another

paper (Santana et al., 2019). These authors explored macro-evolutionary patterns using 

sophisticated comparative models across a vast range of chiropteran species and compared results 

from ventral, lateral and frontal 2D views of the cranium with 3D data. However, instead of using 

photos, they obtained the 2D data by simply removing one of the three coordinates of the 3D 

landmarks, after a convenient alignment, in order to approximate what one would get on real 2D 

pictures. Despite the macro-evolutionary level of their work, they found important differences in 

patterns of shape variation not only across 2D views, but also between 2D and 3D data. Variability 

in results between views might be simply related to the different aspects of anatomy being captured 

by each of them, and thus to their potentially differential evolutionary patterns and rates. In contrast,

incongruencies between 2D and 3D should not happen, if 2D is a faithful representation of 3D, and 

were therefore attributed by the authors to the loss of information in 2D. However, in this specific 

case and similar ones, an intriguing question is whether particularly sophisticated models, which 

make a large number of assumptions, often hard to test in real datasets, might be more sensitive to 

the effects of TTD.

Indeed, TTD seems to be strongly specific to the data and questions being investigated and, 

with relatively flat structures, 2D data could be adequate or even outperform high resolution 3D 

images in a cost-benefit assessment. This was suggested in a quantitative trait loci (QTL) analysis 
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of the mouse hemi-mandible (Navarro and Maga, 2016). In this study, the morphometricians 

compared 2D landmarks with 3D ones, using the same anatomical points, but also compared the 

former with 3D data augmented by a densely sampled set of semilandmarks on the surface of the 

hemi-mandibles. Although 3D data were more powerful to detect associations with genetic 

sequences, 2D landmarks recovered 17 QTLs compared to 19 found with 3D landmarks. The 

addition of almost 580 3D semilandmarks only increased the total number of QTL with four more 

new loci. Thus, the authors stressed that 2D morphometrics has benefits (simplicity and speed) in 

large phenotyping studies, even if accuracy is reduced, and concluded that using 3D data can in fact

increase power, but (p. 1160) on the other hand “the congruence of ... results pleads for robustness 

of our knowledge on the genetic architecture of the mouse mandible, built over a few decades and 

initially based on 2D imaging techniques”. 

1.2. TTD in megafauna: an example using equids

Current research on TTD clearly points towards a complex picture of the problem. It will require 

many more studies before researchers can try any generalization on when 2D is more or less 

appropriate. The brief overview we provided indicates that there are clearly several interesting 

avenues to explore in relation to TTD. Among these, an important but less obvious one is how TTD 

may impact analyses of really large anatomical structures. Indeed, none of the TTD studies we 

know has focused on the megafauna, an arbitrary and heterogeneous group of animals, whose body 

mass is larger than 45-50 Kg (Barnosky, 2008). This group includes some of the most charismatic 

living and recently extinct species, such as, among mammals, for instance, lions and sabre tooth 

tigers, elephants and mammoths, most marine mammals and many others. Research on anatomical 

and ecomorphological variation of modern and past representatives of the megafauna, whose partial

but rapid extinction on land at the end of the Pleistocene still poses an unresolved dilemma (Koch 

and Barnosky, 2006), attracts great interest. Indeed, large mammals and birds, but also ‘reptiles’ 

such as crocodyles and dinosaurs, have been the subject of innumerable morphological studies, 

including many 2D GMM analyses (e.g., Pierce et al., 2008; Amaral et al., 2009; Brombin et al., 

2009; Figueirido et al., 2009; Brusatte et al., 2012; Christiansen, 2012; Loza et al., 2015; Meloro et 

al., 2017; Page and Cooper, 2017; Angulo-Bedoya et al., 2019). 

To start filling this gap in 2D GMM research, we chose to investigate TTD in the living 

equids, a group which has been extensively studied by morphometricians, especially in relation to 

the evolution of the lineage (e.g., (Radinsky, 1984; Heck et al., 2018)) and the domestication of the 

horse (e.g., (Eisenmann and Baylac, 2000; Bignon et al., 2005; Heck et al., 2018)). We focused on 

adult crania, that in horses, zebras and wild donkeys, weighing up to several hundreds kilos, can be 

more than half a meter in length and, therefore, is much bigger than anything analysed in previous 
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TTD studies. More specifically, we analysed ventral cranial variation at both micro- and macro-

evolutionary levels, using the same configuration of landmarks in 2D and 3D. For the micro-

evolutionary analysis, where differences are typically small, we employed the largest available 

species sample, consisting of more than 100 plains zebras. For the macro-evolutionary study, with 

larger differences, we studied all seven living species of equids. Thus, to assess TTD, we compared 

results from the two sets of data using a variety of approaches, ranging from simple data 

visualizations and tests, performed in parallel for 2D and 3D data (1-3), to correlational methods (4)

and analyses in a ‘common shape space’ (5-6):

1) Graphical summaries. The congruence of 2D and 3D size and shape variation was first inspected 

using respectively box-plots and scatterplots of the first principal components (PCs; including PCs 

of mean shapes at the macro-evolutionary level). 

2) Group mean differences. The magnitude and significance of group differences in size and shape 

were tested, and 2D results were compared with 3D ones. In plain zebras, we tested sexual 

dimorphism, whereas in the macro-evolutionary analysis we analysed species differences. For 

shape, we also assessed group (sex or species) cross-validated classification accuracy. 

3) Allometry. The significance of allometry, the relationship between size and shape, was tested and

static (within species using adults) allometric trajectories were compared across groups. As in 2), 

groups were sexes for the micro-evolutionary level, and species for the macro-evolutionary study. 

At the macro-evolutionary level, we also estimated evolutionary allometry using species means. 

Results of each test were again compared between 2D and 3D analyses.

4) Correlations. The correlation of size and shape data were calculated at all the different levels 

(micro- and macro-evolutionary and using either all specimens or species means). If 2D is a faithful

representation of 3D, correlations should be very high.

5) Within the same data space, following the approach proposed by Cardini (2014) to bring 2D and 

3D data in the same shape space, we tested whether differences among individuals are larger than 

those between replicas using a hierarchical analysis of variance (ANOVA) (Klingenberg et al., 

2002; Viscosi and Cardini, 2011; Cardini, 2014). Replicas here are 2D and 3D descriptions of size 

and shape of each specimen, and thus quantify the difference between the two types of data.

6) Finally, using shape data in the same Procrustes space as in 5), we built phenograms (all 

individuals, for plain zebras and all equids, and species mean shapes, for the macro-evolutionary 

level) to verify if 2D and 3D data of each specimen clustered as pairs in the trees, as it should 

happen if TTD is good.

In all analyses, as well as in the interpretation of results, as in previous studies by us or other

researchers, the implicit assumption is that 3D is more accurate than 2D and, therefore, that smaller 

differences between the two types of data suggest a better TTD and thus a higher relative 2D 
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accuracy.

2. Methods

2.1. Samples, data and geometric morphometrics

Data were collected in museums (see Acknowledgements for a list of institutions) using only adult 

animals with fully erupted molars. Specimens (Table 1) came both from the wild as well as from 

zoos. Zoo specimens were included to increase sampling in species poorly represented in museum 

collections. However, individuals with evident abnormalities were not digitized and potential 

outliers had been excluded in a previous study (Cardini, 2019). For the classification, we relied on 

museum catalogues, which, for plains zebras (E. quagga Boddaert, 1785), still reported the old 

classification as E. burchelli. Table 1 shows the sample composition, which is clearly 

heterogeneous and includes a fairly large sample only for plains zebras, our main dataset for the 

micro-evolutionary analyses. Seven specimens were of unknown sex, with canine size, often a clear

dimorphic trait in equids, not providing unequivocal evidence to sex the animals. These few 

unsexed individuals were therefore excluded in all analyses of sex differences.

3D Cartesian coordinates of anatomical landmarks were collected using a Microscribe 3D 

digitizer (http://www.3d-microscribe.com/). Because the 3D data were obtained from a previous 

study with a different focus (Cardini, 2019), 3D landmarks were available only on the left side of 

the cranium and were mirror reflected to reconstruct the missing right side (Cardini, 2016). 

Analyses on a range of mammals have shown that the inaccuracy introduced by using crania 

measured only on one side (an expedient to speed up data collection and increase sample size) is 

negligible (Cardini, 2017), if one is not interested in studying asymmetries and a structure has no 

evident directional differences between sides (Cardini, 2016). 

From the original configuration of 3D landmarks on the entire cranium, we selected a subset

of points that are clearly visible in pictures of ventral crania and are roughly coplanar (Fig. 1). On 

these pictures, landmarks were digitized in TPSDig (Rohlf, 2015). The photos were taken with a 

Panasonic Lumix DMC TZ6 camera that was held approximately parallel to the ventral surface of 

each cranium positioned upside down on a table. The distance and zoom of the camera varied and 

there might be small photographic distortions, which are therefore incorporated in the 2D error. As 

in previous TTD studies, differences between 2D and 3D include, in fact, also the precision in 

landmark digitization. However, it is likely that both small photographic distortions and 

landmarking errora are of modest size compared to the variation introduced by the 2D flattening of 

a 3D structure. For instance, Cardini (2014) showed that the error due to 2D flattening was almost 4
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times larger than the sum of differences related to positioning, digitizing and photographic device, 

and he found this in marmot hemi-mandibles, which are flat and, in terms of TTD, perform much 

better than crania. Nevertheless, although we do not mention these sources of error further, readers 

should bear in mind that they are part of our total estimate of measurement error and they may, 

therefore, slightly inflate the magnitude of TTD. Also, because the scale factor included in the 

pictures was not always consistently positioned on the ventral surface of the cranium in all 

specimens, we used the 3D measurement of condylobasal length to rescale the 2D landmarks. 

From the original Cartesian coordinates of the landmarks, size was measured using centroid 

size (CS - i.e., the square root of the sum of the distances of each landmark from its centroid) and 

shape was computed using a Procrustes superimposition to remove size variation and minimize 

translational and rotational differences (Adams et al., 2004). On pictures we landmarked both sides 

and later discarded small asymmetries in shape (Klingenberg et al., 2002) to compare 2D and 3D 

data. Estimates of 2D size and shape based on the full configuration or just, as in 3D, its left half 

were almost perfectly correlated (size r=1.00, shape r=0.97). Thus, the small inconsistency in the 

protocol of 2D and 3D data collection (one using both sides and the other only the left half) has no 

impact at all on the outcome of the TTD analyses.

2.2. Statistical analyses

Size (CS) and Procrustes shape coordinates were computed in MorphoJ (Klingenberg, 2011) and 

imported in R (R Core Team, 2018), where we conducted most of the analyses. Details on methods 

are provided below using the same subdivision as in the Introduction. As anticipated, analyses 1-4) 

were performed using separate 2D and 3D Procrustes shape spaces, whereas analyses 5-6) were 

done in a common shape space using the method developed by Cardini (2014). 

1) Box plots of CS were drawn in R (R Core Team, 2018) using ggplot (Wickham and 

Wickham, 2007) and compared between 2D and 3D data. The same R package was used for 

drawing scatterplots of the first shape PCs, which were computed in R using the prcomp function 

(R Core Team, 2018).

2) Mean group differences (sex, for plains zebra, and species, regardless of sex, for the 

macro-evolutionary analyses) were tested with ANOVAs using the adonis function of the vegan 

package (Oksanen et al., 2013)). Significance of size and shape was estimated using 10000 

permutations of Euclidean distances and effect size was estimated using R2 (univariate for CS and 

multivariate for shape). R2 is the percentage of variance accounted for by the effect being tested. 

The adonis function was used also in all other tests of groups, as well as in the allometric analyses 

(see below). 

The accuracy of shape for predicting groups (i.e., the classification according to sex or 
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species, respectively, at the micro- and macro-evolutionary levels) was estimated using leave-out 

cross-validations and two types of functions. One employed Euclidean shape distances to classify 

individuals in groups using a between-group principal component analysis (bgPCA (Cardini et al., 

2019), and references therein) in Morpho (Schlager, 2017). The other classification was obtained 

using Mahalanobis distances and a conventional leave-out linear discriminant function (DA) in 

MASS (Venables and Ripley, 2002)). Overall predictive accuracy was summarized in both analyses

using the average cross-validated percentage of correctly classified individuals. 

3) Allometric trajectories were calculated with multivariate regressions of shape onto CS 

(Klingenberg, 2016). Static allometries of adults were compared first between sexes in plains zebras

and then across all equid species (regardless of sex) using a permutational MANCOVA 

(multivariate analysis of covariance, CS by group, with CS as covariate (Anderson M.J., 2001; 

Zelditch et al., 2004; Oksanen et al., 2013)). In this analysis, the interaction between size and group 

tests the significance of the divergence of the allometric trajectories. Finally, evolutionary allometry

was estimated by regressing species mean shapes onto the corresponding mean CS. Regressions and

MANCOVAs were done in vegan using the adonis function (Oksanen et al., 2013).

4) The congruence between 2D and 3D data was assessed also by computing correlations. 

For CS, we used the correlation coefficient and, for shape, the matrix correlation between the 

Euclidean shape distances computed pairwise between observations in each shape space (i.e., 2D 

and 3D). Matrix correlations were calculated with the mantel function in vegan (Oksanen et al., 

2013).

5) To perform analyses in the same shape space, which allow to use the standard GMM 

ANOVA protocol (see below) for the assessment of measurement error (Arnqvist and Martensson, 

1998; Klingenberg et al., 2002; Viscosi and Cardini, 2011; Fruciano, 2016), we followed the 

method proposed by Cardini (2014): thus, we added a fake Z coordinate (equal to zero) to the 2D 

landmarks; merged the data with the 3D ones, and did a common 3D superimposition; and, in 

MorphoJ (Klingenberg, 2011), regressed the resulting shape coordinates onto a dummy variable 

coding for the type of data (i.e., 2D vs 3D) to compute residuals. Regression residuals are equivalent

to mean centered 2D and 3D data, an operation that could be done manually by subtraction (2D 

shapes minus their mean and 3D shapes minus the 3D mean). The advantage of using the residuals 

from MorphoJ is that this software automatically adds them to the grand mean of the data, so that 

the resulting coordinates can be reimported and used as shape data in this or other programs. Mean 

centering is an expedient to control for the bias due to the lack of a real Z coordinate (measuring 

depth) in the 2D data, but it does not change the relative shape distances within each dataset, 

because the quantity removed is in both cases a constant. This is easily verified by computing the 

matrix correlations of the 2D residuals with the original 2D shapes and by doing the same for the 
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3D data (both producing r=1.000). Cardini (2014) provides more details on the ‘mean centered-

common shape space approach’, as well as example data to replicate the analysis.

In plains zebras (micro-evolutionary level), the mean centered data in the common 

Procrustes shape space were analysed using a hierarchical multivariate ANOVA (MANOVA) with 

sex as main factor and individual as random factor (Arnqvist and Martensson, 1998; Fruciano, 

2016). Using the same design and type of ANOVA, but adding first species as a main factor 

(followed by sex and individuals), the analysis was repeated at the macro-evolutionary level 

including all species and specimens of known sex. The ANOVAs, performed also for CS, allowed 

to re-test in a common data space the main effects of species and sex, but also, and more 

importantly, to assess whether differences among individuals were significantly larger than those 

between replicas (2D vs 3D), our estimates of measurement error in relation to (mainly) 2D 

inaccuracies. 

6) Finally, UPGMA (unweighted pair group method with arithmetic mean) phenograms 

were computed by applying the hclust function in R (R Core Team, 2018) to the matrix of 

Euclidean shape distances computed pairwise in the common shape space. For the micro-

evolutionary analysis, the phenogram was computed including only the 103 specimens of plains 

zebras. For the macro-evolutionary study, phenograms were computed both using all 200 specimens

as well as the species mean shapes.

3. Results 

Results are presented following the same order and numbering as in the Introduction and method 

sections on statistical analyses.

3.1. Graphical summaries

Figure 2 summarizes the patterns of variation in size within plains zebras, using separate sexes, and 

across species, with pooled sexes. CS is slightly (ca. 2% or less on average) underestimated in 2D 

data, but the congruence with 3D data is otherwise striking. For shape (Figs 3-4), the comparison of 

scatterplots of 2D and 3D data is less straightforward, but suggests fairly good congruence 

especially at macro-evolutionary levels (Fig. 4). Within plains zebras, 2D and 3D scatterplots of 

shape PCs indicate both a complete overlap of females and males (Fig. 3), although in 2D data PC1 

is more stretched and females appear to vary more than males. In the interspecific analysis, species 

overlap partially (Fig. 4), with confidence ellipses suggesting a very similar pattern of relative 

differences in 2D and 3D. As it had occurred at the micro-evolutionary level, also including all 
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specimens and species, PC1 accounts for more variance in 2D than in 3D. 

3.2. Group mean differences

Results of the tests of group mean differences run in parallel with data in separate spaces are shown 

in Table 2. In plains zebras (Table 2A), sexual dimorphism is totally absent in size (R2<0.1%) and 

very small in shape (R2<2%). This result is the same in 2D and 3D, and congruent with the patterns 

suggested by the box-plots (Fig. 2a-b) and PCAs (Fig. 3). Sex classification accuracy based on 

shape is virtually identical in 2D and 3D and negligibly better (ca. 60%) than an approximate 50% 

random chance expected for two groups of almost equal size. Thus, bgPCA and DA both confirm 

the absence of significant sexual dimorphism in ventral crania.

Also at the macro-evolutionary level (Table 2B), results of tests for species differences in 

2D and 3D are almost identical for both size and shape, with highly significant differences 

accounting for 80% of variance in size and slightly less than 30% in shape. Species average 

classification accuracy using shape is about 80% (regardless of method and type of data) with the 

exception of the bgPCA, that produces a lower accuracy (63%), but still one which is much higher 

than expected by random chance with seven groups (~14%, if they had the same size). Thus, despite

overlaps in the PCAs (Fig. 4), equids show significant ventral cranial differences and, consistently 

with similarities in both box-plots of size and scatterplots of shape, the pattern is almost identical in 

2D and 3D data.

3.3. Allometry.

As for group differences at both evolutionary levels, analyses of allometry produce similar results in

2D and 3D (Table 3). In plains zebras (Table 3A), static allometries are significant in both females 

and males, and account for approximately 5-10% of variance (slightly more in females than males), 

whereas slopes do not differ significantly between sexes. R2 of sex is small and intercepts are non-

significant or marginally significant after removing the interaction in the MANCOVA (results not 

shown). Thus, both 2D and 3D data lead to the same conclusion: a small amount of static allometric

variation in plains zebras, with almost overlapping trajectories in females and males. 

The results of the MANCOVAs for differences of species static allometries are also highly 

congruent between 2D and 3D data. Differences in slopes are small but significant and the effect of 

species is significant and large, which overall suggests clearly distinct and modestly divergent 

trajectories. Evolutionary allometry, tested using species means, does not reach significance, but is 

large both in 2D and 3D (respectively, with R2 of 36% and 26%) and the pattern of allometric shape

variation is very similar (Fig. 5). 
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3.4. Correlations

Correlations of 2D with 3D estimates of size and shape are shown in Table 4. As expected from 

previous analyses and especially from the strong similarities in the box-plots (Fig. 2), the 

correlations between estimates of CS in 2D and 3D are very high at all levels, ranging from 0.95 to 

almost 1 at respectively micro- and macro-evolutionary levels. In contrast, correlations of shape 

distances in the 2D and 3D spaces are much smaller, with plains zebras slightly below 0.5 whereas 

correlations at macro-evolutionary level vary between ca. 0.6 (all specimens and species) and 0.7 

(species means). 

3.5. ANOVAs in the common shape space

Table 5 shows the results of the ANOVAs in the common shape space, after mean centering the two

datasets. Because micro- (plains zebras) and macro-evolutionary analyses produced similar results, 

we mainly focus on the more inclusive macro-evolutionary level (Table 5B). For size, the effect of 

species is very large (almost 80% of variance explained), sex is totally negligible and individuals 

explain about 10 times more variance than measurement error (ca. 90% vs 9% and ca. 20% vs 2% 

of variance in respectively plains zebras and all species). For shape, the effect of species is highly 

significant and accounts for slightly more than 25% of variance. The effect of sex is, in contrast, 

very small (R2 ca. 1-1.5%), but statistically significant. This seems surprising, as the size of the 

effect (R2) is very small and previous tests in separate spaces (2) were never significant. As it is a 

minor point, we clarify here the reason for this, likely spurious, incongruence. The F test statistics in

the ANOVA has the advantage of simplicity and is generally robust, but it assumes isotropic 

variation around landmarks, which is a poor approximation for biological data (Klingenberg et al., 

2002). Other test statistics, such as Pillai’s trace, do not make this assumption and are potentially 

more accurate, but they are not available in the permutational ANOVA we used. However, the F 

statistics (parametric or based on permutations) and Pillai’s trace (available as a parametric test in 

MorphoJ) generally produce congruent P values. In this specific case, in contrast, sex is significant 

using F but not using Pillai’s trace (not shown); as Pillai’s trace does not assume isotropy and is in 

agreement with non-signficant results of the permutation tests in the separate shape spaces (2) (and 

also consistent with a tiny R2 for sex), it seems reasonable that the F test for sex was unreliable.

The most interesting effect tested in the ANOVA is, however, individual shape variation 

compared to differences between 2D and 3D shapes. This factor is highly significant and accounts 

for about three times more variance than the differences between the two types of data. Despite this,

TTD errors are clearly large for shape, as they account for about 1/5 (all species included) to ¼ 

(plains zebras) of sample variance.
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3.6. Phenograms in the common shape space

The effect of the large magnitude of TTD errors in shape becomes evident in the phenograms using 

individuals. The trees are better able to capture small differences between specimens compared to a 

PCA, but, with ca. 200-400 observations in the common 2D-3D space, they cannot be easily shown 

in a figure. The pattern they suggest is, however, very clear and can be summarized in words: only 

nine out of 103 specimens of plains zebras (9%) and only 16 out of 200 individuals (8%) in the total

equid sample have 2D and 3D shape replicas of an individual clustering as ‘sisters’ in the 

phenograms. This indicates a rather poor correspondence, if one inspects the precise inter-individual

similarity relationships of 2D and 3D shapes. Only with mean shapes (Fig. 7), 2D and 3D data of 

each species always cluster together as ‘sisters’, which supports the observation from the 

correlational analyses (4) that species means show the highest congruence between datasets and 

thus the best TTD. 

4. Discussion

Before moving to the main conclusions from our TTD study, we will touch on a number of smaller, 

but nevertheless important points and methodological issues. As size is well approximated in 2D, 

and shape is clearly the main component strongly affected by TTD, shape will be the main focus of 

the Discussion.

4.1. Bringing 2D and 3D in the same data space: meaning, limitations and importance for shape

The second approach, that brings data into the same shape space, controlling for the bias between 

2D and 3D, may not seem very intuitive. What is exactly the difference we have removed and why 

did we do it specifically for shape? 

2D and 3D shape data, even if based on the same identical landmark configuration, belong 

to separate shape spaces of different dimensionality. Adding a zero Z coordinates to make a 

common superimposition possible is an expedient to bring them in the same Procrustes shape space.

However, this is not enough to make the similarity relationships captured by each of type of data 

comparable. To appreciate why, one can look at Figure 8A, which shows a scatterplot of the first 

two PCs of shape of the combined data: 2D and 3D shapes are perfectly separated, and very distant 

one from the other, along PC1. The visualization of shape change along this axis, in correspondence

of the mean of each cluster, shows that it is capturing the depth of the cranium, orthogonal to the 

ventral view (as it is particularly clear in side view, where the 2D shape is perfectly flat). For 2D 

data, this is missing information, as we cannot measure depth in a flat picture. This is clearly the 
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major difference between the two types of data. Yet, what really matters for assessing TTD is 

whether, despite this lack of information, 3D similarity relationships are not distorted in 2D data. 

Crudely speaking and using an analogy, this is akin to having two scorers of an application for 

funds, with one who tends to be, for instance, consistently more positive than the other. Because 

this is a directional error, in order to make the assessment of the applicants comparable and check 

how well, despite it, the two sets of scores match, we might want to control for the bias. This can be

achieved by subtracting the mean difference from the more positive set of scores or, which is 

equivalent, by mean centering the scores of both. Similarly, with the 2D/3D data brought in the 

same shape space by adding a zero Z coordinates to the 2D landmarks, the factor dominating the 

difference between them is the missing information in relation to the ‘thickness’ of the structure. As

for the scorer example, mean centering controls for this bias without changing the relative 

differences within each dataset (the ranking of applicants by scorer one and two, or the similarity 

relationships of equids in 2D and 3D). Thus, with data mean centered in the same shape space (Fig. 

8B), we can finally directly compare how well 2D corresponds to 3D. 

This approach is simple, but has some limitations. A systematic difference is necessarily 

present between 2D and 3D data, but the method assumes that this bias is the same across all 

individuals and taxa. This may be true only as an approximation, and probably more likely when the

depth (in the Z direction) of the different landmarks does not vary a lot across taxa. Also, the 

‘common shape space’ approach may be effective to remove the bias, but it does not correct for 

differences in variance and covariance. These are another important aspect of morphological 

variation, that could be part of the assessment of TTD. We did not perform an specific test of 

similarities in variance and covariance (homoscedasticity), but the scatterplots of the first two PCs 

(Figs 3-4) seem to suggest that 2D shapes vary more than 3D ones.

A lack of homoscedasticity (i.e., heteroscedasticity) of 2D and 3D data may have an impact 

on tests relying on this assumption, such as the ANOVA in the common shape space, that should, 

therefore, be interpreted with caution. In subtle ways, in fact, differences in variance and covariance

may affect also some of the analyses that do not assume homoscedasticity, such as the cluster 

analysis. The phenograms using individuals, unlike most other analyses, did suggest a rather poor 

TTD, and this could have been in part a consequence of heteroscedasticity. To understand why, one 

has to consider what happens if, compared to 3D, 2D shapes truly have more variance and a 

stronger covariance, as implicated by their larger and more elongated scatters on PC1-2 (Figs 3, 4 

and 8B). If this really indicates heteroscedasticity, even if in relative terms inter-individual positions

had been almost the same (e.g., specimen 1 relatively closer to 2 than to 3 in both datasets, and 

similarly for other individuals), 2D and 3D replicas of the same specimen could have ended up very

distant one from the other in the shape space, and, therefore, in the phenogram. This is simply 
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because, with heteroscedasticity in shape, the 2D space may be bigger or have, for instance, a 

longer PC1 and thus a different geometry. This type of variance-related problems is, using the 

simplistic analogy of the scorers, like having the same relative rankings but a larger spread of the 

scores by one of the two scorers. In our study, 2D shape variance is probably truly larger and thus a 

likely contributor to the differences between 2D and 3D shape relationships: unlike size, where 

variances were virtually identical in the two sets of data (not shown), total 2D shape variance was 8-

27% (respectively at micro- and macro-evolutionary levels) larger than in 3D data (2D vs 3D shape 

variance in units of Procrustes distance in the common shape space: plains zebras, 0.00105 vs 

0.00097; all species, 0.00137 vs 0.00118; species mean shapes: 0.00065 vs 0.00051). 

Then, why is 2D shape variance in equid ventral crania larger than in 3D? We can only 

speculate about the reasons. For instance, it might be that 2D variance was inflated by the small but 

non-negligible inaccuracies in the standardization of the photos, because it is often hard to keep the 

same precise orientation of the camera relative to a study structure (Bakkes, 2017). If this is true, we

would expect it to happen for most of the 2D data unless this aspect is extremely well standardized. 

This seems congruent with Cardini (2014), who found shape variance in 2D hemi-mandibles to be 

slightly larger than in 3D. However, this happened only for 2D data obtained using a flat-bed 

scanner, on which hemi-mandibles are difficult to be consistently positioned in the same way. In 

contrast, all other 2D data in that study used photos taken with a fairly sophisticated procedure 

(Cardini and Tongiorgi, 2003) to keep precisely the same orientation and distance of the camera to 

the structure. Indeed, these photos showed no increase in 2D shape variance, that was in fact even 

smaller than in 3D. If positioning errors are large and difficult to control for in the protocol for data 

acquisition, they could be reduced by a specific a posteriori mathematical manipulation of the 

landmark data (e.g., excluding the uniform component (Cardini, 2013) of shape?), but any 

correction of this kind would have to be carefully validated. In any case, in our study, 

heteroscedasticity may have contributed to the poor TTD in the phenograms of the individual 

specimens, but it is not its main explanation, as it did not happen with mean shapes (despite their 

largest relative difference in 2D/3D shape variance) and topologies in those trees differed even if 

computed separately for 2D and 3D (not shown).

Finally, in this first section of the Discussion, focusing on the ‘common shape space’ 

approach (Cardini, 2014), we would like to clarify better why it was only applied to shape. Part of 

the reason is that, with shape, there is no alternative in order to combine the 2D and 3D data and 

analyse them together in an ANOVA or a cluster analysis. However, if one is mainly interested in 

relative differences and there is a strong 2D to 3D bias also in size, this can be controlled for by 

mean centering, as for shape. In fact, with an accurate scale factor, we do expect 2D estimates of CS

to be consistently smaller than 3D ones, because depth makes distances between 3D landmarks and 
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their centroid larger. In our dataset, we did find this type of bias, but it was tiny: size was on 

average 10 mm larger in 3D (i.e., <2% of the mean 3D CS of 578 mm), and the variance explained 

by this difference was only 1.4%. Thus, we decided not to control for the TTD bias in size, whereas 

for shape it was crucial, as the bias accounted for 61% of variance in the common shape space. The 

reason why, unlike shape, CS showed a negligible 2D to 3D bias is probably simply that we 

carefully selected almost coplanar landmarks. The landmarks are, of course, not exactly on the same

plane, but the differences in depth span at most a few centimeters, which is a very short distance in 

crania with an average condylobasal length of almost half a meter. Thus, the bias was negligible and

TTD excellent for size.

4.2. Exploring the 2D approximation using the truss method

We already said at the beginning of the paper that, instead of trying to generalize from the few 

available studies, the best way to decide whether 2D data are appropriate for one’s own research is 

to preliminarily explore TTD in a subsample representative of the variation expected in the study. 

However, to do it, one needs 3D landmarks, that require either ad-hoc devices, such as potentially 

expensive 3D digitizers, or time and expertise for building detailed 3D models and digitize the 

landmarks on their surface. 

There are, in fact, a few options to obtain 3D landmarks cheaply and relatively quickly. The 

R package stereomorph (Olsen and Westneat, 2015) allows to reconstruct 3D landmarks and 

outlines using two digital cameras and a calibration procedure to derive the 3D coordinates. After 

the calibration, the method should be efficient but requires not to change the zoom and position of 

the cameras, which might make it less suitable for specimens with a wide range of sizes. However, 

there is an even simpler low-tech/low-cost alternative to obtain 3D landmarks efficiently at least for

small configurations of points. This is the reconstruction of 3D coordinates using linear inter-

landmark distances and the truss method (Carpenter et al., 1996), available in Morpheus et al. 

(Slice, 1999), but also implementable in R (Claude, 2008). In Morpheus et al. the procedure is 

especially simple, as there is an option (“truss import”, in the file menu) to import linear distances, 

as well as a list of pairs of landmarks between which the distances were taken (both as simple txt 

files with renamed extensions, as explained in the “contents-trusses” of the help and exemplified in 

the TRUSS folder). To aid the 3D reconstruction, one can also add an optional template file with 

example landmark coordinates for a single individual, that can be made up by the user and will be 

later discarded. The approach has, nevertheless, some limitations and one may have to fiddle with 

the options and/or exclude a few individuals, if the algorithm fails to converge in the reconstruction.

More importantly, the truss method becomes impractical for configurations with a large number of 

landmarks. However, to reduce measurements and save time, morphometricians can approximate 
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the results from the full configuration by selecting a convenient subset of landmarks spanning the 

most important anatomical regions under investigation. 

To provide an empirical example of this approach, we quickly explored its application in a 

sample of 30 randomly selected plains zebras, using five landmarks from the complete 

configuration of Figure 1 (i.e., landmarks 1, 5, 6, 10, 14). These landmarks capture the relative 

proportions of the main ventral cranial regions, which are the palate and cranial base. To apply the 

truss method, one should take caliper measurements between the 10 pairs of landmarks defined by 

those five points in the 30 individuals (in fact, with a careful selection, one could make the 

reconstruction using less inter-landmark measurements (Claude, 2008)). As this is an example, and 

the real specimens were no longer available to us for the caliper measurements, we simply 

computed the linear distances from the 3D Cartesian coordinates we already had and imported them

in Morpheus et al. (Slice, 1999) as if they were actual caliper measurements. Finally, with the truss 

coordinates reconstructed and the corresponding 2D landmark data, we repeated some of the TTD 

tests in order to see if the results of the main study could be replicated with the ‘truss approach’ in a

reduced dataset.

In the ‘truss dataset’, we found totally negligible sex differences, almost identical in 

magnitude (R2<1-2% for respectively size and shape) to those of the complete dataset (Table 2A). 

In both sexes allometry accounted for 11% of variance in 2D and 9% in 3D, which is about the 

same as in the complete dataset for females, but about twice bigger than that for males (Table 3A). 

Despite small differences, therefore, the ‘truss approach’ in a reduced dataset led to the same 

observation of very good congruence between 2D and 3D in relation to both sexual dimorphism and

allometry. Correlational analyses also replicated well the findings of the main study (Table 4), with 

correlations between 2D and 3D estimates of size and shape of respectively 1.00 and 0.27. These 

are very similar to those from the main dataset for size, and only slightly lower for shape. Finally, 

individual variation in the ANOVA was, compared to differences between 2D and 3D data, two 

orders of magnitude bigger for size (R2s respectively of 99.5% and 0.1%) and three times larger for 

shape (R2s respectively of 75% and 24%), with the remaining tiny amounts of variance accounted 

for by sex. As in the previous analyses of the ‘truss dataset’, the ANOVA confirmed the results of 

the main study and, in fact, for shape produced almost identical estimates of R2s.

In summary, with few minor differences, we reached the same conclusions, as in the 

complete dataset, by using the ‘truss approach’ in a reduced set of data. This method, thus, seems a 

promising low-cost and time-saving expedient to explore the appropriateness of 2D data. As in all 

preliminary investigations using smaller datasets, a morphometrician will have to interpret its 

findings with caution. However, even a preliminary and simplified assessment of TTD will be better

than a complete lack of it, which has been unfortunately the rule in 2D GMM until now. 
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4.3. Sampling issues? Heterogeneous N, smaller samples and number of landmarks

Comparative studies should ideally be done on samples of equal (or almost equal) size. That has a 

number of advantages in terms of design and statistics (for instance, it avoids issues with the choice 

of sum of squares in ANOVAs or with unbalanced samples in DAs (Kovarovic et al., 2011)). 

However, in zoology and especially with large animals from museum collections, one has to rely on

what is available and try to maximize the output of data collection, which often depends crucially 

on the availability of funds (or, increasingly often in taxonomy, on a lack of them). The equids 

analysed in this paper are a good example of this problem: samples are very heterogeneous in size 

and certainly too small in some species to produce robust results (Cardini et al., 2015). This is less 

of an issue in a methodological study, whose main interest is to explore how well 2D data 

approximate 3D ones, but, even in this case, a potential effect of sampling on the accuracy and 

robustness of TTD results should be considered. 

For instance, the large sample of plains zebras could have strongly influenced the outcome 

of the macroevolutionary analyses, as it accounts for about half of total N and is on average more 

than six times larger than those of other species. This is a genuine concern, but also one that, unlike 

problems with the small N of some other species, can be easily explored by repeating the analyses 

after selecting a random subsample of plains zebras. We did this (results not shown) using 16 

specimens, which is the average sample size in the other species, and found a few minor 

differences, such as slightly larger correlations of 2D and 3D shape distances, as well as slightly 

inflated R2s (as expected in small samples (Cramer, 1987)). However, overall results were very 

similar to those of the total sample, suggesting robustness to this aspect of the highly unbalanced 

sampling of our study.

Total sample size may also be important in the assessment of TTD. Small samples produce 

unreliable estimates of means, variances and covariances, and shape data seem particularly sensitive

to the problem (Cardini and Elton, 2007; Cardini et al., 2015). Small samples may also bias some of

the results and, if this is less of an issue for R2, as it is inflated in both 2D and 3D data and therefore

does not change the conclusion on TTD, an over- or under-estimate of matrix correlations, that also 

showed small differences in the analyses using subsamples of plains zebras, would be a concern. 

Indeed, in the small sensitivity analysis of the previous paragraph, using a random subsample of 16 

plains zebras, matrix correlations were consistently larger than in the main study; yet, they were 

smaller in the subsample of 30 individuals used for the ‘truss approach’. This variability does not 

seem to suggest a clear bias, but it is only two examples and the ‘truss dataset’ may not be strictly 

comparable, because it included only ca. 1/3 of all landmarks. The distribution and number of 

landmarks is indeed another important aspect of TTD, but one that we did not investigate, because 
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our configuration consists of too few landmarks. However, despite the obvious limitations, we 

briefly explored the sensitivity of 2D-3D shape matrix correlations to both sample size and the 

number of landmarks. As for the ‘truss approach’, this was not a main aim of our study, which is 

why the sensitivity analysis is concisely presented and discussed here.

We first focused on sample size. Thus, we extracted random subsamples of 5, 10, 25 and 50 

individuals either in plains zebras or in the total sample with all seven species, and calculated 

matrix correlations between 2D and 3D shape distances. For each subsample, we repeated the 

analysis 500 times. The analyses showed that, although smaller samples had a larger range of 

correlations, both the mean and median of the 500 runs were virtually constant regardless of N (in 

plains zebras, mean r ranged from 0.43 in smaller subsamples to 0.46 in larger ones, whereas 

median r was 0.45-0.46 in all instances; in the total sample with all species, the mean ranged 

between 0.55 with N=5 and 0.61 with N=50, with the median being about 0.61 regardless of N). 

Thus, smaller samples do not seem to produce biased estimated of TTD, at least in terms of 

correlations between 2D and 3D shape data. However, as expected from De Moivre’s equation 

(Wainer, 2007), uncertainties increase in smaller samples and therefore the precision of TTD 

assessments is reduced. 

After looking at the effect of sampling, we investigated the consequences of using fewer 

landmarks. We did this by selecting random configurations of six and nine landmarks from the total

configuration, using a randomization that preserved pairs of bilateral landmarks. For each random 

configuration, we Procrustes superimposed the data and recomputed the correlations between 

matrices of 2D and 3D shape distances, both using only plains zebras or including the total sample 

of all 200 equids. For each sub-configuration, we replicated the random selection 500 times, which 

is enough to exhaust all possible combinations of six points and probably almost all those with nine 

landmarks. We found that, as with sample size, on average, having less landmarks did not seem to 

make a large difference: both mean and median correlations, using either six or nine landmarks, 

were about 0.4 and 0.55 respectively at micro- and macro-evolutionary levels. Nevertheless, 

compared with the slightly larger correlations from the main analysis including all 16 landmarks 

(respectively 0.47 and 0.61), it seems that having fewer landmarks could lead to slightly worse 2D 

approximations of 3D shapes. These results are, however, very preliminary: they may be specific to 

the dataset, and certainly are not robust enough to make generalizations. We clearly do not advise to

increase the number of landmarks as a ‘quick fix’ for TTD problems. In fact, the choice of the 

landmark configuration must be hypothesis driven (Klingenberg, 2008; Oxnard and O’Higgins, 

2011) and, in some analyses, more is not better (Cardini et al., 2019). The problem of a potential 

effect of the number and distribution of landmarks on TTD will have to be explored more 

extensively in future studies using larger sets of points and ideally many taxonomic groups and 
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structures.  

4.4. Conclusions: 2D or not 2D?

The question from the title of another TTD study (Buser et al., 2018) (p. 806), “2D or not 2D?”, 

looks like a clear dichotomy, but the answer is not a simple “yes” or “no”. The picture emerging 

from TTD research is complex. In our study, for instance, it is evident that 2D data approximate 3D 

size very well, but are less good at quantifying shape, despite the selection of almost coplanar 

landmarks. However, there are several nuances and some apparent contradictions. 

As in Cardini (2014), 2D cranial data appear to be inaccurate at capturing the fine details of 

shape relationships at micro-evolutionary level in homogeneous samples (same age class). In fact, 

although the range of correlations between 2D and 3D shape distance matrices is similar in these 

studies (and also similar to those of Cardini and Thorington’s (2006) 2D and 3D ontogenetic 

analysis of marmots), the percentage of 2D shapes clustering with their 3D replica in the 

phenograms is much lower in the equids (<10%) than in marmots (37-85% – Cardini 2014). The 

equid sample is in fact four or more times larger than any of the marmot samples, and this is 

something that may have increased the chances of a mismatch between 2D and 3D shapes. Yet, 

even in marmots, despite their smaller samples and with the exception of the fairly flat hemi-

mandibles, the 2D-3D mismatch in the phenograms occurred in about half of the individuals, which 

clearly does not suggest a good TTD. Overall, these are worrying results, because intraspecific 

variation is a main field of study in morphometrics. 

With larger differences, however, such as those among different species, TTD improves and 

may be thus less of a concern at supraspecific level, as well as in many ontogenetic analyses of 

large age-related morphological differences (Cardini and Thorington, 2006). Can we, therefore, 

conclude that TTD is problematic only when measuring small amounts of biological variation? 

Some of the research summarized in the Introduction suggests potential problems even with macro-

evolutionary analyses (e.g., (Buser et al., 2018; Hedrick et al., 2019)). In our work too, although 

TTD improves at supra-specific level, it is still large especially if judged in terms of the not so high 

correlations between shape matrices (ca. 0.6-0.7) and the large R2 of measurement error (ca. 1/5 of 

total shape variance). Besides, the percentage of 2D-3D replicas of an individual clustering as 

‘sisters’ in the phenogram of all 200 equids is no better than using only plains zebras. This again 

suggests poor accuracy in the description of subtle inter-individual relationships and seems to lead 

to the conclusion that 2D ventral cranial shape data in equids are in fact problematic at all levels, 

micro- as well as macro-evolutionary. 

However, TTD must be assessed in relation to the hypotheses under investigation. In this 

respect, despite the substantial differences in details, answers to the main biological questions we 
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used as examples in our study are almost identical in 2D and 3D: sexual dimorphism in plains 

zebras is negligible (R2<2%); species differences are present and large (accounting for ca. ¼ to 

more than ¾ of variance in respectively shape and size); and patterns of group and allometric 

variation are very similar (Figs 2-5 and 7). Moreover, a strong congruence between the 2D and 3D 

results is also supported by the angles between 2D and 3D main vectors of variation in the common 

shape space, which, for the large majority, are small. For instance, for the first two PCs, they are 

16° or less in the total sample, 19-32° using mean shapes and 34-59° including only plains zebras; 

for the allometries, angles between 2D and 3D vectors are 27-34° in respectively females and males

of plains zebras and 25° using species means.

Thus, unlike for instance (Hedrick et al., 2019), who reported important differences in 2D 

versus 3D results (e.g., in asymmetric changes, as well as group differences, found only in 3D), we 

reached almost identical conclusions on patterns of ventral cranial variation in equids using either 

2D or 3D analyses. This seems paradoxical given the clearly non-negligible differences in the fine 

details of inter-individual shape variation (the modest matrix correlations, large R2s of 2D-3D 

differences, and the inaccuracies in phenograms, that we mentioned above). However, similarities 

in main patterns despite variability in precise inter-individual differences can be reconciled, if the 

distortion of 2D shapes is mostly occurring in non-patterned components of shape variance. This 

would mean that the 2D approximation of ventral crania in living equids increases the measurement

error in the data, but does so in a random fashion, which makes the data ‘noisier’ without 

significantly perturbing the main signal of morphological variation in relation to sex, species, and 

allometry.

As most of the time morphometricians focus on broad patterns, our finding of very good 

congruence in the results of the main biological hypotheses we tested provides a degree of optimism

on the possibility of an effective use of 2D data to approximate variation in 3D biological 

structures. As pointed out by Navarro and Maga, 2016, although 3D shape is more accurate, 2D 

data might often correctly capture the main big picture of evolutionary and developmental change. 

Nevertheless, for now, we must also acknowledge that there are too few studies to draw a solid 

conclusion and, therefore, the question of the appropriateness of 2D analyses of 3D shapes is still 

open. 

To further stress that any generalization is premature and cannot be based on a small amount

of case-specific evidence, we end the Discussion by comparing the only two studies we know, 

Álvarez and Perez (2013) and  Cardini (2014), that analysed TTD using the same structure (hemi-

mandibles) in the same order of animals (the rodents). Álvarez and Perez (2013) investigated shape 

variation across different genera of caviomorph rodents and found general agreement in 2D and 3D 

macro-evolutionary patterns, but also some differences, with dissimilarities especially pronounced 
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when they restricted the analyses to intrageneric variation. Cardini (2014), in contrast, using a fairly

similar set of landmarks on marmot hemi-mandibles, suggested that the 2D flattening may be much 

less problematic in supraspecific analyses. The two studies may not be strictly comparable because 

of differences in methods, as well as some of the landmarks. Yet, if TTD errors in interspecific 

comparisons of caviomorph hemi-mandibles are truly larger than in marmots, this may largely 

depend on the lateral flaring of the hystricognath hemi-mandible, that makes it more 3D than those 

of sciurognaths. This again suggests that the accuracy of 2D data may be influenced by a complex 

range of factors, that do not only include the magnitude of the differences, but also landmark 

coplanarity and taxon-specific anatomical variability. 

Openshaw et al. (2017) suggested that “studies restricted to a 2D geometric morphometric 

analysis of a complex 3D biological structure can combine carefully designed 2D landmark 

configurations describing alternative planes [e.g., ventral, side and dorsal views] to maximize shape

coverage”. That may be true, but could also, as in many other cases, be specific to their study. 

Using different 2D views may indeed increase the amount of information in the data, but does not 

guarantee that any of those views is a good approximation of the 3D anatomy. More generally, 

morphometricians should rely less on untested assumptions and more on objective assessments of 

measurement error (including TTD) in their own data and in relation to the specific study 

hypotheses. This means that one should seriously consider preliminary exploratory analyses, before 

investing energy, money and time in extensive collections of 2D data, whose accuracy may or may 

not be adequate for the specific aim, structure and taxon.
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Figure legends

Fig. 1. Landmark configuration on ventral crania of equids.

Fig. 2. Box and jitter plots of CS in females (left, pink colour) and males (right, blue colour) of 

plains zebras (A, 2D and B, 3D) and in the total sample subdivided by species regardless of sex (C, 

2D and D, 3D).

Fig. 3. Separate shape spaces: scatterplots of PC1-PC2 with 95% confidence ellipses for females 

(pink) and males (blue) in 2D (A, variance accounted for by PC1-2: 21-13%) and 3D (B, variance 

accounted for by PC1-2: 15-12%).

Fig. 4. Separate shape spaces: scatterplots of PC1-PC2 with 95% confidence ellipses for different 

species (regardless of sex) in 2D (A, variance accounted for by PC1-2: 26-14%) and 3D (B, 

variance accounted for by PC1-2: 18-14%).

Fig. 5. Evolutionary allometric variation in 2D (grey) and 3D (black), with wireframe visualization 

(Klingenberg, 2013) of ventral views predicted by the allometric trajectories at the opposite 

extremes of species mean size variation (magnified twice to aid comparisons). Opposite extremes 

correspond to the smallest and largest species, which are respectively the onager and Grevy’s zebra 

(pictures modified from 

https://en.wikipedia.org/wiki/File:Onager_Asiatischer_Wildesel_Equus_hemionus_onager_Zoo_Au

gsburg-10.jpg - licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license

– and from https://commons.wikimedia.org/wiki/File:Grevy%E2%80%99s_Zebra.jpg - available 

under the Creative Commons CC0 1.0 Universal Public Domain Dedication ). Although allometric 

analyses were done in separate shape spaces, as a more effective and concise summary of the 

results, we visualized here the trajectories using a PCA of the predicted allometric shapes (Adams 

and Nistri, 2010) in the common space of 2D and 3D data (variance accounted for by PC1-2: 92.0-

4.3%).

Fig. 6. Separate shape spaces: scatterplots of CS (left column) and pairwise shape distance matrices 

(right column) from 2D (horizontal axis) and 3D (vertical axis) data: A) plains zebras; B) all 

individuals and species; C) species means. 

Fig. 7. Common shape space mean-centered 2D-3D data analysis: UPGMA phenogram of species 
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mean shapes.

Fig. 8. Common shape space analysis: scatterplots of PC1-PC2 of shape before (A) and after (B) 

mean-centering the 2D (grey colour) and 3D (black colour) data. Variance accounted for by PC1-2 

are respectively 61.6% and 14.7% (A) and 37.6% and 15.0% (B). For (A), the ventral and side 

views of crania, corresponding to PC1 mean scores of 2D and 3D samples, are visualized below the 

scatterplot using wireframes (Klingenberg, 2013). In (B) 95% confidence ellipses are shown to 

emphasize the larger and more elongated pattern of variation in 2D compared to 3D. 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 20, 2019. ; https://doi.org/10.1101/772624doi: bioRxiv preprint 

https://doi.org/10.1101/772624
http://creativecommons.org/licenses/by-nd/4.0/


Table 1

Sample composition.

(1) A recent study suggests that living Przewalskii horse might in fact descend from an ancient 

group of domestic horses (Gaunitz et al., 2018). For brevity, in the figures we will refer to this 

sample simply as E. Przewalskii.

Table 2

Group (sex or species) differences tested using permutational ANOVAs for size and shape and 

cross-validated classification accuracy estimated using bgPCAs and DAs of shape data to predict 

group affiliation. (A) Micro-evolutionary level testing sexual dimorphism in plains zebras. (B) 

Macro-evolutionary level testing inter-specific differences. (Here and elsewhere in the tables 

P<0.05 are in italics and, in analyses using separate data spaces, 2D results are emphasized with a 

grey background).

(A)

(B)
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Table 3

Tests of static and evolutionary allometry. (A) Static allometry at micro-evolutionary level: sex by 

CS MANCOVA of shape, and multivariate regressions of shape on CS using separate sexes. (B) 

Macro-evolutionary level: species by CS MANCOVA of shape (static allometry), and multivariate 

regression of mean species shape onto mean species CS (evolutionary allometry).

(A)

(B)

Table 4

Correlations of size and shape (distances) at micro- and macro-evolutionary levels.
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Table 5

ANOVA in common data space at micro- (A) and macro-evolutionary (B) levels.
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......

Fig. 1 
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Fig. 2

(B)(a)

(D)

(c)
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Fig. 3 

(A)

(B)
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Fig. 4 

(A)

(B)
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Fig. 5
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Fig. 6 
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Fig. 7
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Fig. 8
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(B)
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