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Abstract  
Molecular profiling of personal cancer genomes, and the identification of actionable 
vulnerabilities and drug-response biomarkers, are the basis of precision oncology. Tumors 
often present several driver alterations that might be connected by cross-talk and feedback 
mechanisms, making it difficult to mark single oncogenic variations as reliable predictors of 
therapeutic outcome. In the current work, we uncover and exploit driver alteration co-
occurrence patterns from a recently published in vivo screening in patient-derived 
xenografts (PDXs), including 187 tumors and 53 drugs. For each treatment, we compare the 
mutational profiles of sensitive and resistant PDXs to statistically define Driver Co-
Occurrence (DCO) networks, which capture both genomic structure and putative oncogenic 
synergy. We then use the DCO networks to train classifiers that can prioritize, among the 
available options, the best possible treatment for each tumor based on its oncogenomic 
profile. In a cross-validation setting, our drug-response models are able to correctly predict 
66% of sensitive and 77% of resistant drug-tumor pairs, based on tumor growth variation. 
Perhaps more interesting, our models are applicable to several tumor types and drug 
classes for which no biomarker has yet been described. Additionally, we experimentally 
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validated the performance of our models on 15 new tumor samples engrafted in mice, 
achieving an overall accuracy of 75%. Finally, we adapted our strategy to derive drug-
response models from continuous clinical outcome measures, such as progression free 
survival, which better represent the data acquired during routine clinical practice and in 
clinical trials. We believe that the computational framework presented here could be 
incorporated into the design of adaptive clinical trials, revealing unexpected connections 
between oncogenic alterations and increasing the clinical impact of genomic profiling. 
 

Background 
 
In light of the complexity and molecular heterogeneity of tumors, clinical and 
histopathological evaluation of cancer patients is nowadays complemented with genomic 
information. Genome-guided therapy has been shown to improve patient outcome [1, 2] 
and clinical trial success rate [3] and, despite some controversy [4], prospective molecular 
profiling of personal cancer genomes has enabled the identification of an increasing 
number of actionable vulnerabilities [5].  
 
Cancer genome sequencing initiatives have found that any given tumor contains from 
tens to thousands of mutations. However, only a few of them confer a growth advantage 
to cancer cells, driving thus the tumorigenic process. The most comprehensive study of 
‘driver’ genes published to date has analyzed over 9,000 tumor samples, across 33 tissues 
of origin, and has systematically identified driver mutations in 258 genes [6]. Approximately 
half (142) of those driver genes were associated with a single tumor type, whereas 87 genes 
seem to provide a growth advantage in several tumor types. The number of drivers 
detected per tumor type varies widely, ranging from 2 in kidney chromophobe cancer to 55 
in uterine cancer. Despite the large number of drivers identified per tumor type, every 
patient has a unique combination of mutations and copy number variants: ninety percent of 
patients show at least one putative driver alteration, but each sample only contains a 
median of three putative altered drivers [7].  
 
On top of identifying key alterations in tumor development, it is fundamental to pinpoint 
those that can shed light on the most appropriate therapy to treat each tumor (i.e. 
biomarkers). Often, patients with similar clinicopathological characteristics might be 
molecularly different [6], this inter-patient heterogeneity is one of the reasons why only a 
subset of them will actually respond to a given targeted treatment. Computational studies 
suggest that up to 90% of patients may benefit from molecularly-guided therapy when 
biomarkers of uncertain clinical significance, as well as off-label and experimental drugs, 
are used to guide treatment selection [7, 8].  Although randomized controlled trials are still 
considered the gold standard in the clinics, they cannot address all possible patient 
clinicopathologic and molecular subtypes [9]. Precision medicine has prompted the 
reconsideration of clinical drug development pipelines, with the implementation of more 
sophisticated clinical trial designs, such as umbrella, basket, and platform trials to account 
for inter-patient heterogeneity [10]. In particular, the implementation of adaptive enrichment 
strategies allows for continual learning and modification of the eligibility criteria as data 
accumulate, with the objective of recruiting those patients that are most likely to benefit 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 18, 2019. ; https://doi.org/10.1101/772673doi: bioRxiv preprint 

https://doi.org/10.1101/772673
http://creativecommons.org/licenses/by-nd/4.0/


 

 

from treatment [9-12]. However, despite the implementation of these novel experimental 
designs, currently only alterations in 25 genes have accumulated enough clinical evidence 
to be approved as biomarkers by the FDA [13]. Indeed, a recent comprehensive analysis of 
6,729 pan-cancer tumors could only identify actionable mutations with therapeutic options 
available in clinical practice (FDA-approved or international guidelines) or reported in late 
phase (III–IV) clinical trials in 5.2% and 3.5% of the samples, respectively [14]. These figures 
coincide with clinical trial enrolment rates [1], where only 89 out of 1,640 of patients could 
enter genotype-matched treatment trials, the vast majority of which involved mutations in 
four genes, namely PIK3CA, KRAS, BRAF and EGFR. This highlights an acute need to 
expand the current repertoire of response biomarkers to cover more drugs and patients.  
 
The eligibility criteria of most genomically-matched basket clinical trials are based on the 
single-gene biomarkers. However, most tumors do not present a single actionable mutation 
but have co-occurring driver alterations that might simultaneously alter key players of 
signaling pathways connected by cross-talk and feedback mechanisms [15, 16]. There are 
many documented cases of functionally relevant co-occurring oncogenic mutations, such 
as the concomitant inactivation of TP53 and RB1 [17], co-deletion of CDKN2A and 
CDKN2B [18], co-amplification of MDM2 and CDK4 [19, 20], 1p/19q co-deletion in glioma 
[21], MYC amplification and TP53 mutations [22] or activating alterations in KRAS and 
BRAF [5]. At pathway level, the concomitant activation PI3K signaling pathway with FGF 
signaling (FGFR2 and FGFR3), or with NRF2 mediated oxidative response have also been 
identified in several tumor types [16]. In this context, a single-gene based stratification of 
patients into subtypes and treatment arms might be over-simplistic, and novel frameworks 
that exploit co-mutational patterns might prove more effective.  
 
As in the identification of driver mutations, the discovery of drug response biomarkers 
requires large numbers of patient molecular profiles matched to treatment outcomes. 
Unfortunately, treatment history information of large-scale genomics endeavors has not 
been systematically collected (e.g. TCGA [23]) or is not yet publicly available (e.g. GENIE 
Consortium [24]). Even though better data sharing policies are needed, many concerns are 
raised regarding privacy, property and the preliminary nature of confidential biomedical 
data. Safer alternative ways of sharing biomedical data are already on the table [25] but, 
until the access to systematically annotated clinical records becomes a reality, the research 
community largely relies on drug response data gathered from pre-clinical models.  
 
Cancer cell lines are the most widely used in vitro model system, and have been 
fundamental tools to set the grounds of our understanding of cancer biology and to assess 
the efficacy of a broad spectrum of cancer drugs [26]. Unfortunately, cancer cell lines have 
been cultured as monolayers on plastic surfaces, and in growth-promoting conditions, for 
decades. As a consequence, most of them have suffered a substantial transcriptional drift, 
and they likely represent a cell subpopulation from the original primary tumor [27]. Those 
facts have fueled the debate regarding how well cancer cell lines resemble the tumors from 
which they were established and to which extent they are clinically relevant [15, 27]. A more 
realistic model to bridge the bench-to-bedside gap is the patient-derived mouse xenograft 
(PDX) [28]. To some extent, PDXs preserve inter- and intra-tumoral heterogeneity, and 
mimic the clinical course of the disease and response to targeted therapy, at least in certain 
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tumor types [29-31]. Indeed, a recent review reported a 91% (153 out of 167) 
correspondence between the clinical responses of patients and their cognate PDXs [32]. 
Although this data are more time-intensive and expensive to generate, it is still feasible to 
establish large in vivo screenings, covering a wide diversity of tumor types and drugs. PDXs 
are thus a clinically relevant platform for pre-clinical pharmacogenomic studies, and 
represent a more accurate approach to identify predictive biomarkers compared with the 
use of cancer cell lines [33].  
 
Here, we present a computational strategy to uncover and exploit driver alteration co-
occurrence patterns in PDXs. By comparing the molecular profiles of sensitive and resistant 
PDXs to a given drug, we identify driver co-occurrence networks and use them as a new 
type of drug-response indicators, applicable much beyond known biomarkers. We apply 
our strategy to the largest panel of PDXs and drugs available to date [28], and prospectively 
validate our findings in vivo. Finally, we adapt our strategy to derive response predictive 
models directly from continuous clinical outcome measures, such as progression free 
survival, and evaluate them on a cohort of breast cancer patients. 
 
 
Results and Discussion 

Driver co-occurrence networks of drug response  
 
Although thousands of genomic profiles of patient tumors are available, accurate 
information about pharmacological interventions and treatment outcome has not been 
systematically collected [23], or has not been disclosed yet [24]. Thus, to bypass these 
limitations, we compiled drug response data obtained in PDXs, since they preserve the 
overall molecular profile of the original tumor, and maintain its cellular and histological 
structure [32]. In particular, we based our study on 375 PDXs for which somatic mutations 
and copy number alterations have been characterized, together with their response to 62 
treatments across six indications, using the ‘one animal per model per treatment (1x1x1)’ 
experimental design [28]. As suggested by the authors, we adopted the Modified Response 
Evaluation Criteria in Solid Tumors (mRECIST) [28, 34] to assess the change in tumor 
volume in response to treatment. We considered to be ‘sensitive’ those PDXs that showed 
a Complete Response (CR), Partial Response (PR) or Stable Disease (SD), and ‘resistant’ 
those with a Progressive Disease (PD) status.  
 
Of the 62 drugs and drug combinations tested, we selected 53 treatment arms that showed 
significant inter-individual heterogeneity (i.e. a sufficient number of ‘sensitive’ and ‘resistant’ 
tumors) to model drug response. In total, these data comprised 3,127 experiments 
performed on 187 PDXs [28] for which we had, at least, 5 sensitive and 5 resistant PDXs. 
First, we assessed whether this set of PDXs is representative of the genomic diversity 
observed in human tumors by comparing their alterations to the oncogenomic profiles 
extracted from 13,719 cancer patients [35]. We found that the 187 PDXs considered 
broadly covered the whole oncogenomic landscape represented by the full cohort 
(‘PanCancer’ cohort in Figure 1). When analyzing tumor types individually, we observed 
that, while the mutational diversity of some of them is perfectly reflected in the PDX 
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samples (e.g. colorectal and cutaneous melanoma tumors), the distribution of mutated 
genes showed clear differences in others (e.g. pancreatic cancer). Overall, there are PDXs 
representing the most populated areas of the PanCancer cohort, suggesting that the full 
collection of PDXs may be used in downstream analyses. 
 
We used the Cancer Genome Interpreter [14] to filter out passenger mutations from PDX 
profiles, and only worked with driver somatic mutations and copy number alterations. For 
each treatment, we grouped sensitive and resistant PDXs, irrespective of the origin of their 
tumors. We then identified driver alterations that were overrepresented in sensitive or 
resistant PDXs, as well as pairs of driver alterations showing statistically significant patterns 
of co-occurrence in each subpopulation (see Materials and Methods for details). Finally, for 
each treatment, we built a Driver Co-Occurrence (DCO) network in sensitive PDXs 
consisting of overrepresented drivers (nodes) and pairs of co-occurring drivers (edges), 
another DCO network for resistant PDXs, and a third general one consisting of all drivers 
and co-occurrences associated with both treatment responses (Figure 2A). DCO networks 
for each of the 53 drugs are detailed in Table S1 and can be visualized using Cytoscape 
[36] (Supplementary Data S1). The total number of drivers and driver co-occurrences 
captured in the DCO networks varied substantially among treatments, ranging from 28 to 
196 driver genes (median of 109 nodes, IQR: 82-136) and 20 to 1,499 pairs of drivers 
(median of 300 edges, IQR: 220-471) overrepresented in PDXs treated with 
Ruxolitinib+Biminetinib and the tankyrase inhibitor LJC049, respectively. However, when 
considering individual animals, the number of altered drivers and pairs of drivers was small 
and remained quite stable across treatments, with a median of only 9 genes (IQR: 5-15) and 
7 driver co-occurrences (IQR: 2-29) per PDX (Figure 2B). 

We next sought to assess the novelty of our DCO networks by comparing the 
overrepresented driver genes, and the co-occurring pairs, to the set of annotated 
response/resistance biomarkers for each treatment [14]. Figure 2C shows that, although 
there is some overlap, our approach vastly expands the set of genes to be considered in 
downstream treatment prioritization applications. More specifically, 47 of the 58 genes 
annotated as approved or experimental response biomarkers are present in at least one 
DCO network, and 28 of them are related to the same drug or drug class. Additionally, our 
DCO networks include 331 novel genes that might be associated to treatment sensitivity or 
resistance. 

Exploring the functional relevance of DCO networks  
 
Even in targeted therapies, where the drugs are rationally designed to modulate well-
characterized oncogenic alterations (e.g. HER2 amplification or the BRAFV600 mutation), it is 
known that alterations in other proteins do also influence drug response. For example, 
activating alterations in the MAPK or in PI3K/AKT pathways have been related to resistance 
to BRAF inhibition [37]. We thus explored the functional relationship between the inferred 
DCO networks and the suggested mechanisms of action of each treatment through the 
analysis of the ten main oncogenic signaling pathways [16].  
 
As expected, we find that approved or experimental biomarkers of drug response are 
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directly related to the pathways where their intended targets belong (Fisher’s exact test 
odds-ratio (OR) 5.14, p-value 1.4·10-8). On the other hand, the genes in the DCO networks 
inferred for each treatment, while keeping certain functional coherence with the therapeutic 
targets (OR 1.59, p-value 0.090), show a larger functional diversity (Figure 3A, Table S2). 
For instance, we found that the DCO networks derived in response to tamoxifen are 
enriched in RTK/RAS/MAPK signaling proteins (OR 2.70, p-value 0.006; see Figure 3A and 
Table S2). When we analyzed separately sensitive and resistant DCO networks we found 
that the RTK/RAS/MAPK pathway, which is known to mediate resistance to this therapy 
[38], is indeed only overrepresented in the resistance DCO network (OR 3.08, p-value 
0.004). Interestingly, other DCO networks are enriched in pathways not directly related to 
the known mechanism of action of the drug (e.g. 5FU, Cetuximab or LJC049, see Figure 3A 
and Table S2). However, the most striking observation is that cell cycle related proteins 
seem to play a central role in the inferred DCO networks for more than half of the 
treatments (35 of 53), irrespectively of the mechanism of action of the drug administered. 
This trend is not apparent when considering differentially altered drivers alone (Figure 3A). 
 
Beyond the main oncogenic pathways, topological analysis of DCO networks revealed 
several large, strongly connected modules, composed of driver genes that had been co-
amplified or co-deleted as part of the same genomic segment. To account for this effect, 
we clustered driver genes that are close in the genome and show similar alteration patterns 
(Materials and Methods; Supplementary Figure S2). After the filtering, we could still 
recapitulate known cases of co-amplification and simultaneous overexpression of adjacent 
oncogenes shown to provide a cellular cross-talk between tumorigenic pathways. For 
instance, in the ribociclib (LEE011) + encorafenib, dacarbazine, sonidegib (LDE225), 
LGW813 (an IAP inhibitor), and TAS266 (a DR5 agonist) DCO networks, we find links 
between MDM2 and CDK4, which are frequently co-altered as part of the same amplicon in 
the 12q chromosomal region [19, 20]. Indeed, their hypothetical cooperation has triggered 
the use of CDK4/6 inhibitors as potentiators of MDM2 antagonists [20], which are currently 
being tested to treat liposarcoma in clinical trials (NCT02343172 and NCT01692496). 
Another example is the concomitant amplification of ERBB2 and TOP2A as part of the 7q12 
amplicon, which occurs in 40–50% of breast cancers [39] and provides a rational basis for 
the addition of anthracyclines targeting TOP2A as adjuvant chemotherapy in the treatment of 
HER2-positive breast cancer [40]. However, the addition of doxorubicin to the standard 
regimen can potentially increase cardiotoxicity and failed to demonstrate a significant clinical 
improvement with respect to trastuzumap+paclitaxel in a phase III trial [41], suggesting that 
further clinical evaluation is still needed. 

DCO networks do not only capture genome structure, but also functional relationships 
between oncogenic alterations found far apart in the genome. For instance, we observed 
that PDXs treated with the CDK4/6 inhibitor ribociclib show a markedly reduced response 
rate when they have co-occurring alterations in CCND2 and TP53 (27%, 3 out of 11) 
compared to PDXs with alterations in TP53 alone (41%, 29 out of 70) or wild-type TP53 and 
CCND2 (43%, 39 out of 90). Interestingly, alterations in TP53-CCND2 also tend to co-occur 
in a large collection of 74,247 pan-cancer samples compiled from 240 cancer studies [42], 
with TP53-CCND2 being co-altered in approximately 1% of the samples (751 patients, OR 
2.57, p-value < 0.001). In particular, TP53-CCND2 alterations significantly co-occur in three 
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out of five tumor-type specific cohorts: in 2,173 breast cancer patients (METABRIC, OR > 8, 
p-value < 0.001), in 479 patients with skin cutaneous melanoma (TCGA, OR 6.47, p-value 
0.01), and in 507 patients with lung adenocarcinoma (TCGA, OR 5.24, p-value 0.015). 
However, we found no evidence of TP53-CCND2 co-occurrence in patient cohorts of other 
tumor types, such as colorectal adenocarcinoma (220 samples from TCGA), or pancreatic 
adenocarcinoma (175 samples from TCGA). Although the role of TP53 status in response to 
CDK4/6 inhibition is controversial [43, 44], TP53 loss is thought to reduce the expression of 
its target p21CIP1 (CDKN1A) and consequently relieve CDK2 from its inhibition. On the 
other hand, cyclin D2 (CCND2) preferentially activates CDK2, although it can also activate 
CDK4 [45]. Thus, based on our observations and the available literature, we hypothesize 
that concomitant oncogenic alterations in TP53 and CCND2 could shift the CDK4/6 
dependency towards an alternative CDK2-dependent activation of G1/S transition, 
rendering those tumors insensitive to CDK4/6 inhibition (Figure 3B).  
 
PIK3CA-mutant tumors are sensitive to isoform-selective PI3K inhibitors such as alpelisib 
(a) [46-48]. However, PIK3CA-independent mechanisms of PI3K activation (e.g. activating 
alterations in PIK3CB or PTEN loss) often confer resistance to this treatment [49, 50]. The 
alpelisib DCO network contains four proteins involved in PI3K signaling, namely PIK3CA, 
PIK3R1, PIK3C2B and PTEN. Indeed, we observed a higher response rate (65%, 15 out of 
23) among PDXs with oncogenic PIK3CA alterations compared to PDXs with wild-type 
PIK3CA (44%, 52 out of 117), which agrees with the mechanism of action of alpelisib. More 
interestingly, we found that PIK3CA-altered PDXs having no co-occurring oncogenic 
alterations in the PI3K pathway (n=23) showed an even higher response rate (83 %, 10 out 
of 12) than those with co-occurring alterations in PIK3R1, PIK3C2B or PTEN (45%, 5 out of 
11). These co-occurring alterations likely activate PI3K signaling in a PIK3CA-independent 
manner, hence the limited response to alpelisib50 (Figure 3C). Out of the three genes co-
altered with PIK3CA, only PIK3C2B is found co-altered more often than expected in PDXs 
treated with alpelisib (4.06% inferred co-occurrence rate vs. 1.50% expected; expected 
value of the difference (e-value) 0.006), and we indeed observed that PDXs with PIK3CA-
PIK3C2B co-alteration showed a lower response rate (33%, 2 out of 6) than those with 
PIK3CA alteration alone (76%, 13 out of 17). Finally, PIK3CA and PIK3C2B alterations also 
co-occur in approximately 1% of the 74,247 pan-cancer samples (758 patients, OR 2.99, p-
value < 0.001), being particularly co-altered in breast cancer patients (METABRIC, OR 1.48, 
p-value < 0.001) and pancreatic adenocarcinoma patients (TCGA, OR > 8, p-value 0.002).  
 
Overall, DCO networks capture co-occurring alterations associated to drug resistance in 
PDXs, as illustrated by the concomitant alteration of CCND2-TP53 in relation to CDK4/6 
inhibition and that of PIK3CA-PIK3C2B in relation to PI3K inhibition. Moreover, many of 
these co-occurrence patterns are also found in patient cohorts, indicating a potential 
clinical translation of these findings. 

 

TCT4U:  A collection of 53 drug response classifiers for genome-driven treatment 
prioritization 
 
We then explored whether the sets of differentially (co-)altered genes in sensitive and 
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resistant PDXs can be used to predict drug response. For each treatment, we used the 
DCO networks to statistically classify PDXs as resistant or sensitive. The goal of this 
exercise is to identify, among the available treatments, the best possible option for each 
individual based on its oncogenomic profile. We thus named the set of developed drug 
response classifiers Targeted Cancer Therapy for You (TCT4U). 
 
In brief, for each treatment arm, we combined the probabilities assigned by three Naïve 
Bayes (NB) classifiers, trained with sensitivity, resistance and general DCO networks, into a 
single prediction score per drug-PDX pair. Figure 4A shows the performance of the NB 
classifiers in a leave-one-out cross-validation setting, whereby the oncogenomic profile of 
PDXs is used to predict response to each treatment. Additionally, to increase the clinical 
translatability of our approach, we repeated the calculations considering only those 
alterations detectable by the Memorial Sloan Kettering-Integrated Mutation Profiling of 
Actionable Cancer Targets (MSK-IMPACT) [51, 52] and the Foundation Medicine (FM) gene 
panels [53], which contain probes to detect 410 and 287 mutated genes, respectively, and 
are widely used in clinical settings. Finally, we assessed the effectiveness of TCT4U by 
comparing its predictive power to that of FDA-approved and experimental biomarkers (see 
Materials and Methods for details). 
 
We collected the change in tumor volume and the mRECIST classification for a total of 
3,127 experiments with reported treatment outcome, comprising 187 PDXs tested for 
response to 53 treatments. Figure 4B shows that TCT4U models are applicable to all drug-
PDX pairs (3,127), while alterations in approved and experimental biomarkers can only be 
found in about half of them (1,758). However, wherever applicable, the accuracy attained by 
both methods is almost identical: TCT4U correctly classified 64% of sensitive and 56% of 
resistant drug-PDX pairs, while approved or experimental biomarkers attained sensitivity 
and resistance accuracies of 65% and 55%, respectively. Overall, TCT4U models yielded 
correct predictions for 1,866 (60%) drug-PDX pairs, while the figure achieved by known 
biomarkers is 1,048 (33%). It is also remarkable that, even if they consider a much lower 
number of genes, both MSK-IMPACT and FM derived models achieved comparable 
prediction accuracies (Figure 4B, Supplementary Figure S3). 
 
In a treatment decision setting, we would not need to predict the effects of every possible 
drug on each patient, but only those drugs that might work best or, also importantly, those 
drugs that would not work. Thus, when we considered only the top-10 highest scoring 
sensitivity and resistance drugs for each of the 187 PDXs (i.e. high-confidence predictions), 
the precision of TCT4U significantly improved to 66% and 77%, respectively. We found 
very similar numbers for approved biomarkers (70% and 78%) although, in this case, they 
could only predict drug response in 210 of the drug-PDX pairs, spanning 59 PDXs (Figure 
4D). Overall, we obtained a strong association between predicted and observed drug 
responses when analyzing all TCT4U models (OR 2.65, p-value 2.4·10-40) that was even 
stronger when we focused on the high-confidence ones (OR 6.34, p-value 1.1·10-56). In both 
cases, these associations are two-fold stronger than the ones achieved by approved and 
experimental biomarkers (p-value 1.3·10-16). Finally, if we only focus on the drug with the 
highest probability of response per PDX (i.e. the most realistic scenario), TCT4U correctly 
predicted 56 effective drugs in 70 PDXs (80% accuracy) and 49 inefficacious drugs in 74 
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PDXs (66% accuracy), while the corresponding figures achieved by approved and 
experimental biomarkers are 16 out of 18 correct sensitive (89% accuracy) and 18 out of 23 
resistance predictions (83% accuracy). Please, note that for the remaining PDXs (117 
sensitive and 113 resistant), our top sensitivity and resistance predictions had no 
experimental data available and, thus, we cannot assess their accuracy. 
 
Finally, while the coverage of approved or experimental biomarkers is mostly limited to 
BRAF/MEK inhibitors, PI3K/mTOR inhibitors or cell cycle related treatments, the predictions 
made by TCT4U also cover other drug families including chemotherapies, RTK inhibitors, 
endocrine therapies, and more experimental treatments targeting WNT (WNT974), SHH 
(LDE225) or apoptosis related pathways (TAS266, LGW813), among others (Figure 4E).  
 

Experimental validation of TCT4U drug response predictions on a prospective PDX 
dataset 
 
Additionally, we sought to prospectively evaluate the performance of the TCT4U models in 
new tumors. To this aim, we selected, from our VHIO collection of molecularly-
characterized breast cancer PDXs, a subset of 15 tumors for which TCT4U prediction were 
of high confidence (i.e. in the top 10). Moreover, to assess the added value of our drug 
response predictors, we selected drug-PDX pairs for which the anticipated outcome did not 
agree with approved or experimental biomarkers, either because the individual 
oncogenomic profiles did not have any biomarker altered (n=9), or the TCT4U predictions 
were opposed to those suggested by known biomarkers (n=7). The final validation set 
consisted of 16 drug-PDX pairs, with 10 tumors predicted to be sensitive and 6 to be 
resistant, comprising an isoform-selective PI3Kα inhibitor (alpelisib, n=5), a CDK4/6 
inhibitor (ribociclib, n=2), the combination of both (alpelisib+ribociclib, n=3), a MEK inhibitor 
(selumetinib, n=2), an estrogen receptor antagonist (tamoxifen, n=2), and a taxane 
(paclitaxel, n=2). We subcutaneously implanted the tumors in immunocompromised mice 
and let the tumors grow until they reached a volume of 120-150 mm3. We then treated the 
PDXs for 15-57 days and measured their response to the administered drugs following the 
mRECIST guidelines (see Materials and Methods for details). The complete results of our 
study, including treatment setting (drug dose, duration, etc.) and tumor response (tumor 
growth, mRECIST classification, etc.) for every PDX can be found in Table S3, and are 
summarized in Figure 5. 
 
We treated five PDXs with alpelisib, four of which (PDX131, PDX293, PDX156 and PDX191) 
were predicted to be sensitive to the drug by TCT4U models, and one (PDX153) to be 
resistant. The four PDXs predicted to be sensitive showed co-alterations of CCND1, FGF3 
and FGF4. These genes are located in the 11q13.3 genomic segment, and DCO networks 
found this region to be amplified more often in sensitive than in resistant PDXs, with an 
alteration rate of 7.46% and 1.37%, respectively (e-value 0.05). It is worth noting that our 
model, which was derived from 140 PDXs of different tumor types (i.e. 38 BRCA, 42 
COADREAD, 25 NSCLC and 35 PDAC), did not show a significant tendency towards co-
occurrence of PIK3CA and the 11q amplicon (OR 2.69 p-value 0.26). 
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Dysregulation of FGFR signaling can lead to downstream activation of PI3K/AKT pathway 
and, indeed, a recent study reported that 73% of patients (8 of 11) with both an alteration in 
the PI3K/AKT/mTOR pathway and FGF/FGFR amplification experienced clinical benefit 
when treated with therapy targeting the PI3K/AKT/mTOR pathway, whereas only 34% of 
patients (12 of 35) with PI3K/AKT/mTOR alterations alone did so [54]. However, the 
implication of FGF signaling with respect to the clinical benefit of PI3K/AKT/mTOR 
blockage remains controversial. The retrospective analysis of a large subset of patients 
enrolled in the BOLERO-2 trial [55] showed that alterations in FGF signaling had a negligible 
impact (FGFR1) or slightly decreased (FGFR2) the clinical benefit of everolimus treatment. 
In line with these findings, ER+/ERBB2- metastatic breast cancer patients with FGFR1 and 
FGFR2 amplification did not derive a clinical benefit from alpelisib+letrozole [56]. Accumulating 
evidence suggests that FGF signaling by FGFR1/2 amplification attenuates the response to PI3K 
blockage in PIK3CA mutant breast cancer. However, the impact of FGF signaling in response to 
alpelisib in PIK3CA wild-type tumors originated from breast as well as from other tissues has yet 
to be determined. 
 
In our dataset, three out of the four PDXs responded to the treatment. In particular, in 
PDX293 we observed a partial response (PR) after 18 days of treatment, with a reduction of 
65% in the initial tumor volume. PDX131 and PDX156 showed a stable disease (SD) after 
20 and 11 days of treatment, respectively. On the other hand, in PDX191 the tumor 
increased its volume by 80% after 13 days of treatment (PD), and we thus considered it a 
wrong prediction. However, after 43 days of treatment, we could observe a halving in tumor 
growth (235%) with respect to untreated animals (501%) (Table S3). PDX153 was the only 
PDX with an oncogenic PIK3CA mutation (p.K111E) reported to confer sensitivity to the 
treatment [14] and, indeed, we observed a significant reduction of 83% in the tumor volume 
after 35 days of treatment (i.e. a PR outcome). Our model classified this PDX as resistant 
because it also had other alterations overrepresented among resistant PDXs, such as 
MAP2K4 (e-value 0.011) or NCOR1 (e-value 0.016). The DCO networks also considered 
PIK3CA status, which is more frequently altered in sensitive PDXs (22.29%) than in resistant 
PDXs (11.40%; e-value 0.071). However, it seems that the final prediction was driven by 
additional oncogenic alterations that showed stronger statistical association than PIK3CA 
status, although they proved to be less informative.  
 
We administered ribociclib, a CDK4/6 inhibitor, to PDX4 and PDX244_LR1, with the TCT4U 
prediction that the two tumors would be resistant to the drug. PDX4 did not present any 
known biomarker of drug response, but it showed a heterozygous loss of NF2. Oncogenic 
alterations in NF2 are overrepresented among resistant PDXs in the DCO network (e-value 
0.037) and for this reason PDX4 was predicted to be resistant. Interestingly, loss of NF2 has 
been associated to increased CDK6 expression and was previously identified as 
mechanism of resistance to CDK4/6 inhibition in ER+ mestastatic breast cancer patients 
[57]. On the other hand, we also treated PDX244_LR1, which is a model of acquired 
resistance to ribociclib derived from a sensitive parental tumor (PDX244). Accordingly, 
PDX244_LR1 simultaneously showed known biomarkers of sensitivity (CDKN2A-CDKN2B 
co-deletion) and resistance (TP53 p.C176R) to the treatment [14]. Although both genomic 
events were also considered by TCT4U models and, in line with what has been reported, 
CDKN2A-CDKN2B co-deletion is slightly more common in sensitive than in resistant PDXs 
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(32.78% vs. 25.34%; e-value 0.200), we did not find a significant association of TP53 with 
resistance (44.65% vs. 48.39%; e-value 0.480), and thus it is not included in the ribociclib 
DCO network. Moreover, PDX244_LR1 presents an oncogenic mutation in RB1 
(p.M695Nfs*26), which showed a strong association with resistance to CDK4/6 inhibition in 
the DCO networks (4.29% vs. 12.65%, DiffD e-val 0.037). RB1 is the primary target of 
CDK4/6 and its status is a key determinant of CDK4/6 inhibition efficacy [58]. Accordingly, 
RB1 overexpression is reported to confer sensitivity to CDK4/6 inhibition in prostate cancer, 
but its loss or deletion is not currently reported as a resistance biomarker [14]. Our 
experiments showed that, and in agreement with TCT4U predictions, the tumors increased 
their volume between 45 and 215%, being thus catalogued as PD. 
 
We also treated three PDXs (PDX173, PDX98 and PDX39) with the same PI3Kα and 
CDK4/6 inhibitors in combination (alpelisib+ribociclib). The three of them had oncogenic 
mutations in TP53 (p.R249S, p.R249S and p.V157I), which are associated with resistance to 
CDK4/6 inhibition [14]. However, DCO networks found additional sensitivity-associated 
genomic features and thus TCT4U models predicted them as sensitive to this drug 
combination. More specifically, TBX3 disrupting mutation, present in PDX173 and PDX98 
DCO networks, is significantly associated to sensitivity to this treatment (6.19% vs. 0.05%; 
e-value 0.006). We found that, indeed, all three tumors responded to the combination 
treatment: PDX173 became completely tumor free (CR), PDX39 showed a reduction of 47% 
(SD), and PDX98 of 25% (SD). Interestingly, TBX3 is a transcriptional repressor of p21 and 
p14, which are directly upstream of cyclin-CDKs, and also of PTEN [59]. TBX3 has been 
shown to directly repress PTEN in neck squamous carcinoma cells [60], and thus TBX3 loss 
would result in PTEN up-regulation influencing the response to PI3K inhibition. Although 
this hypothesis seems plausible, TBX3 loss showed a low allelic fraction in PDX173 and its 
direct implication in response to this drug combination should be confirmed experimentally. 
 
Two PDXs were treated with the MEK inhibitor Binimetinib, with TCT4U models predicting 
PDX270 to be resistant and PDX288 to respond to the drug. Both PDXs presented RB1 loss 
(a loss-of-function mutation p.Y321* and a deletion, respectively), which is significantly 
associated to resistance in the DCO network (5.51% vs. 16.89%; e-value 0.015). Additional 
alterations necessarily contributed to the divergent prediction of those PDXs. The prediction 
of resistance in PDX270 was not likely to be driven by TP53 loss, since DCO networks did 
not find this alteration significantly associated to MEK inhibition response (51.53% vs. 
41.03%; e-value 0.165). The two PDXs also shared MYC amplification, which in our DCO 
networks is also not significantly associated to differential response to MEK inhibition 
(21.85% vs. 24.19%; e-value 0.730). However, we found that MYC was significantly co-
altered with SOX17 in PDX288. This co-alteration is distinctive of sensitive PDXs, with an 
observed co-occurrence rate of 13.11% with respect to an expected 3.09% (e-value < 1·10-

4), and drove the TCT4U prediction. In this case, neither tumor presented known biomarkers 
of response to MEK inhibition. When treated with Binimetinib, PDX270 was classified as 
non-responder (PD), as the tumor volume had increased by 144%, even more than in 
untreated animals (117%). On the contrary, and validating the TCT4U models, PDX288 
responded well to treatment (SD), and tumors did not show any significant growth. 
Interestingly, an integrative genomics screen performed in 229 primary invasive breast 
carcinomas identified the co-amplification of MYC and the 8p11-12 genomic region, 
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together with aberrant methylation and expression of several genes spanning the 8q12.1-
q24.22 genomic region [61]. This observation coincides with our DCO network derived from 
whole exome sequencing data, where we could detect the co-amplification of a large 
cluster of genes located in the 8p11-p12 (HOOK3, TCEA1) and 8q11.23-q24.22 genomic 
regions (SOX17, PLAG1, CHCHD7, NCOA2, COX6C, MYC, NDRG1) in sensitive PDXs, but 
not in resistant ones (Supplementary Figure S1C-D).  
 
We selected two additional PDXs to be treated with an estrogen receptor (ER) antagonist 
(tamoxifen) and, in agreement with TCT4U prediction,, we could confirm that both tumors 
were resistant to this treatment. PDX313 was ER+ but TCT4U models predicted it as 
resistant because it presents several alterations, namely AKT1 p.E17K (0.08% vs. 8.75%, e-
value 0.007), NTRK1 amplification in chromosome 1 (0.20% vs. 23.29%, e-value 0.004), 
and the co-amplification of CCND2-KDM5A in chromosome 12 (0.06% vs. 23.15%, e-value 
0.002; and 0.06% vs. 20.26%, e-value 0.002), that are associated to resistance in the DCO 
network. Moreover, this PDX had an oncogenic mutation in NF1 (p.L375V) that, despite 
being associated to tamoxifen sensitivity in neuroblastoma [14, 62], has been associated to 
endocrine resistance in HR+HER2− breast cancer patients [63]. 
 
Likewise, our models predicted resistance in STG201, an ER- PDX. It is noteworthy that the 
current implementation of TCT4U does not consider ER status because this biomarker 
cannot be determined from somatic DNA alterations. However, our method might still be 
able to detect subtype specific dependencies that might influence response to endocrine 
therapy. In tamoxifen DCO, the co-alteration of CDKN2A-CDKN2B, but not the alteration of 
CDKN2A alone (19.79% vs. 29.60%; e-value 0.515), is associated to resistance (17.89% vs. 
5.30%, e-value 0.019) and is the genomic feature that more likely driving this prediction. 
Moreover, both tumors present oncogenic alterations in TP53, CDKN2A-CDKN2B, CCND2 
and RB1 that might uncouple ER signaling and cell cycle progression (PDX313), which is a 
reported mechanism of resistance to endocrine therapy [64]. 
 
Finally, we explored the TCT4U prediction capacity in cytotoxic chemotherapy, where 
specific oncogenic characteristics should be less related to treatment efficacy. We selected 
PDX222 and PDX39 to be treated with Paclitaxel. While PDX222 did not present any known 
biomarker of response, PDX39 sowed an MCL1 amplification, which has been reported to 
promote resistance to antitubulin chemotherapeutics [14, 65]. Although PDX222 showed 
alterations that are slightly more common in resistant than in sensitive PDXs (EGFR, SOX17 
and APC, all with insignificant e-values), it also presented an ERBB2 amplification that in 
our model is strongly associated to sensitivity (14.70% vs. 0.05%; e-value 6·10-4), and a co-
amplification of FGFR4-NSD1 in chromosome 5, which also occurred more often than 
expected in sensitive than in resistant PDXs (7.33% vs. 0.54%, e-value 0.015). Regarding 
PDX39, the genomic feature with the strongest association in TCT4U was the same co-
amplification of FGFR4-NSD1 mentioned above, followed by the alteration of GNAS (7.49% 
vs. 2.81%; e-value 0.334), which is also slightly more frequent in sensitive than in resistant 
PDXs. Accordingly, we predicted that both tumors would respond to the drug. When 
treated with paclitaxel, both PDXs showed a progressive disease (PD), proving the TCT4U 
predictions wrong, although the growth of the tumors was 75% and 33% smaller in treated 
than in untreated mice. 
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Overall, TCT4U models correctly predicted the outcome of 12 of the 16 (75%) treatments 
tested, validating 70% of sensitivity (7 of 10) and 83% of resistance (5 of 6) predictions, 
which is in good agreement with the cross-validation results for high-confidence 
predictions (66-77% precision). However, in this challenging prospective validation, known 
biomarkers only predicted correctly 2 of the 16 (12%) treatment outcomes. In particular, 
two of the TCT4U misclassified responses were correctly predicted by known biomarkers, 
while the rest were either incorrect (5 of 7) or missing (9). 
 

Bringing TCT4U from the workbench to the clinics 
 
To explore the clinical potential of TCT4U methodology, we analyzed a cohort of 116 
metastatic breast cancer patients being treated at the Memorial Sloan Kettering Cancer 
Center [57], and for which we have recorded information of their oncogenomic profile and 
clinical outcome (Table S4). These metastatic patients had received between 1 and 17 
rounds of treatments (median of 2) before being selected for a trial to test a combination of 
CDK4/6 and aromatase inhibitors. Each tumor was genetically profiled, using the MSK-
IMPACT panel, and the clinical outcome of the treatment was recorded as progression free 
survival (PFS). In this study, one third of the patients did not derive a clinical benefit and 
relapsed before 5 months. At the other extreme of the distribution, one third of the patients 
could be treated for more than 10 months and were considered to present a durable clinical 
benefit. We are aware that a threshold of 10 months might not be relevant in a first line 
treatment setting, where this drug combination has shown to achieve a median PFS of 24 
months [66]. However, the PFS decreases in subsequent lines of therapy and, in a 
metastatic setting where over half of patients have received prior therapies, a PFS of more 
than 10 months might still be good surrogate measure of the clinical benefit.  
 
We did not have PDXs treated with a combination of CDK4/6 and aromatase inhibitors, and 
the best TCT4U model for it was derived in response to CDK4/6 inhibition (ribociclib), based 
on 71 sensitive and 100 resistant PDXs. Using this model, only 6 out of 216 patients were 
predicted to be sensitive to treatment, and only one of them showed a clinically significant 
PFS (13.5 months). The majority of patients (78%) relapsed within the first year of treatment 
but, unfortunately, we have no data in this clinical series as to whether the tumors 
regressed, at least initially. It thus seems that the outcome measure used to train the 
TCT4U model (mRECIST), based on relative tumor growth, is not appropriate in most 
clinical settings.  
 
Without a model for this specific drug combination, and with the aforementioned 
differences in outcome measures, we decided to adapt our methodology to classify 
patients based on the duration of the treatment before cancer relapsed. For this, we divided 
the cohort in three groups and considered the 40 patients for which the tumors relapsed 
before 4.2 months after the start of the treatment as resistant, and the 40 for which the time 
to progression was longer than 9.7 months as responsive to the treatment. The resulting 
DCO networks for this treatment, which are relatively small compared to TCT4U DCO 
networks, contain a total of 18 drivers and 16 co-occurring pairs (see Figure 6A). The 
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strongest associations captured by the DCO network are MYC, MAP3K1, ATR and ERBB2 
alterations, which happen more frequently in sensitive than in resistant patients (e-values of 
0.001, 0.002, 0.004, and 0.033, respectively). On the other hand, we find that MAP2K4, 
FGFR2, FAT1, ESR1 and BCL6 are more frequently altered in resistant than in sensitive 
patients (e-values of 0.005, 0.005, 0.014, 0.017 and 0.044, respectively; Table S1). Indeed, 
FAT1 loss has been recently associated to resistance to this treatment through a 
mechanism that involves the activation of Hippo pathway, leading to an increase in CDK6 
expression [57]. Oncogenic mutations in ESR1 are also common in metastatic and 
pretreated breast cancer, emerging as a mechanism of acquired resistance to endocrine 
therapies that can ultimately result in resistance to the combinational tehrapy [67]. 

Regarding driver co-occurrences, the triplet formed by FGF3-FGF4-CCND1 oncogenes, 
located in the 11q13.3 genomic region, is co-altered more often in resistant than in 
sensitive patients. However, those three oncogenes tend to be co-altered with PAK1 (in 
11q14.1), more often in sensitive than in resistant patients (e-values of 0.006, 0.007 and 
0.005). It has been suggested that the amplitude of the regions affected by copy number 
changes strongly determines patient prognosis [68]. Broader amplifications of this region 
(i.e spanning both 11q13 and 11q14) are likely to modify the dosage of multiple genes, 
which could have a cost in terms of cancer fitness and might contribute to the clinical 
benefit of the treatment.  

On the other hand, FGFR1 (8p11.23) alteration also tends to be co-altered with the four 
aforementioned genes (e-values of 0.008, 0.006, 6·10-4 and 0.002) although this does not 
seem to affect drug response. It rather seems to reflect the putative synergy between the 
gain of function of FGF3 and FGF4 ligands and their cognate receptor FGFR1. Another 
interesting co-occurrence is FGFR1-MDM2 co-alteration, which occurs more often than 
expected in resistant patients (e-value 0.020). 

Overall, we saw that, although they shared a CDK4/6 inhibitor, the DCO networks were 
indeed very different to those derived in response to ribociclib, with only 3 of the 35 driver 
genes (BCL6, FAT1, and MYC) and none of the co-occurrences in common. We then used 
the DCO networks to derive the corresponding TCT4U models, which should be able to 
predict whether a given patient will obtain a significant clinical benefit. 

In a leave-one-out cross validation, TCT4U models yielded confident scores for 78 out of 
the 116 patients (see Materials and Methods). Of these, we predicted that 43 patients would 
be sensitive and 35 resistant to the treatment. Indeed, we validated 19 of the 30 sensitive 
and 18 of the 27 resistant predictions (Figure 6), while the remaining 21 patients obtained 
an uncertain clinical benefit (i.e. TTP between 5 and 10 months). Put together, we obtained 
a significant association between the predicted and the observed clinical benefit (OR 3.45, 
p-value 0.022), with an overall accuracy of 67% (38 of 57). 

Additionally, a Kaplan-Meier analysis of the cross-validation showed that the 35 patients 
predicted to relapse early, with a median time to progression of 4.2 months, derived little 
clinical benefit compared to the 43 patients predicted to relapse later, whose median time 
to progression was significantly longer (8.3 months, log-rank test p-value 0.030). We 
obtained consistent results when fitting a Cox proportional hazards regression model 
(correlation coefficient -0.37, p-value 0.022), indicating that TCT4U scores are correlated 
with progression free survival. The performance of TCT4U models clearly surpasses that of 
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known biomarkers for this drug combination. Although 56% (65 of 116) of patients had at 
least one annotated biomarker, which is a good coverage compared to other treatments, 
we could not find a significant association between observed and predicted outcomes, at 
least in terms of PFS (Figure 6). 
 
Our results suggest that the proposed methodology could be used to derive DCO networks 
and train predictive models from the kind of data obtained from interim analyses in 
oncological clinical trials. Moreover, whenever the time to detect a clinical benefit is 
reasonable, such the 10 months in this study, TCT4U models could be derived with the first 
patients and used in population enrichment strategies to establish the bases for new 
recruitments in adaptive trials. 
 

Concluding	remarks	
 
Cancer sequencing projects have unveiled hundreds of gene alterations driving 
tumorigenesis, enabling precision oncology. Indeed, current efforts now focus on the 
analyses of oncogenomic patterns to identify actionable alterations, drugs to modulate 
them and biomarkers to monitor response. Of particular interest are computational 
platforms such as OncoKB [13] or the Cancer Genome Interpreter [14], which not only 
identify oncogenic alterations and potential targets, but also estimate their potential clinical 
applicability. Most current strategies focus on the identification of a single vulnerability (i.e. 
driver gene) whose activity can be modulated by a drug. However, given the complexity 
and heterogeneity in tumors, and the high connectivity between cellular processes, every 
cancer might respond differently to a certain treatment, depending on its global 
oncogenomic profile. 
 
Indeed, the analysis of the mutational landscape of cancer has also uncovered the 
existence of mutual exclusivity and co-occurrence patterns among driver gene alterations 
[16, 69]. Many computational tools have been developed to identify those combinatorial 
patterns experimentally (i.e via CRISPR-Cas9 screens [70, 71]) or computationally [72-79]. 
Patterns of mutual exclusivity can arise from functional redundancy, context-specific 
dependencies (i.e tumor type or sub-type specific driving alterations), or synthetic lethality 
interactions. While functional redundancy has been used to reveal unknown functional 
interactions [79], the synthetic lethality concept has been very successfully applied to the 
identification of novel therapeutic targets [70, 71] or rational drug combinations [71], and to 
the prediction of drug response in cell lines [71] and patients [78].  
 
Although less studied, driver co-occurrences are often interpreted as a sign of synergy and 
in some cases they have shown to be functionally relevant [16-22].  However, they have not 
yet been exploited for drug response prediction. With the methodology presented in this 
manuscript, we compared the mutational profiles of tumors that are sensitive or resistant to 
a certain drug to define Driver Co-Occurrence (DCO) networks, which capture both 
genomic structure and putative oncogenic synergy. We then used the DCO networks to 
train classifiers to identify the best possible treatment for each tumor based on its 
oncogenomic profile. 
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The development of tools for personalized treatment prioritization based on genomic 
profiles is an active field of research. Recently Al-Shahrour and colleagues presented 
PanDrugs [80], an in silico drug prescription tool that uses genomic information, pathway 
context and pharmacological evidence to prioritize the drug therapies that are most suitable 
for individual tumor profiles. PanDrugs goes beyond the single-gene biomarker by taking 
into account the collective gene impact and pathway context of the oncogenic alterations 
identified in a given patient. However, it combines clinical evidence with in vitro drug 
screening data gathered from cancer cell line panels, which have limited clinical 
translatability [15, 27, 30, 81]. 
 
PANOPLY [82] is another computational framework that uses machine learning and 
knowledge-driven network analysis approaches to predict patient-specific drug response 
from multiomics profiles. This tool shows a great potential but the method strongly depends 
on whole genome and transcriptome patient data, which is not routinely acquired in clinical 
practice. Other methods like iCAGES [83] have been developed mainly to identify patient-
specific driver genes from somatic mutation profiles, which are later used to prioritize drug 
treatments. However, iCAGES only considers drugs that directly target the identified driver 
alterations based on current FDA prescription guidelines. All those methods rely on prior 
knowledge, which is incomplete and biased, and have not been conceived to identify novel 
co-occurrence patterns from the data and to exploit them for drug response prediction. 
 
With the current implementation of TCT4U, we present a collection of drug-response 
predictive models for 53 treatments belonging to 20 drug classes, including targeted and 
more conventional chemotherapies. In a cross-validation setting, our drug-response models 
attained a global accuracy similar to that of approved biomarkers, but could be applied to 
twice as many samples, including drug classes for which no biomarker is currently 
available. Moreover, in an in vivo prospective validation, our models correctly predicted 12 
out of 16 responses to 6 drugs tested on 15 tumors.  
 
Obviously, our approach also suffers from some limitations. Due to the lack of systematic 
reporting of treatment history of the patients enrolled in genomic studies [23], it is difficult to 
match response to a drug with individual molecular profiles from clinical data. This 
practically impairs the systematic assessment of the prediction accuracy in patients for 
computational frameworks like TCT4U, PanDrugs [80], PANOPLY [82], iCAGES [83], or 
other in silico drug prescription tools such as the Cancer Genome Interpreter [14] or 
OncoKB [13]. Experimental validation of computational approaches is time-intensive and 
very expensive. Therefore, beyond the thorough experimental validation presented in this 
manuscript, only PanDrugs and PANOPLY predictions were experimentally validated, 
although on a single case study performed on a PDX model that was treated with 5 drugs 
(PanDrugs) or 2 drugs (PANOPLY). 
 
Given the limited clinical representativity of drug screens performed on cell lines [15, 27, 
81], we relied on patient-derived xenografts (PDXs) to implement our strategy and to 
identify biomarkers of drug response. Although PDXs have shown a good level of 
agreement with the course of disease evolution and treatment response observed in the 
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tumors in the patient [30-33, 84, 85], they present some important drawbacks, such as the 
eventual loss of intratumoral heterogeneity [86, 87] or certain engraftment bias [30, 88]. 
Additionally, we have to consider that PDXs might not completely recapitulate the influence 
of the tissue of origin in tumors that have been implanted subcutaneously in 
immunodeficient mice and whose stroma has possibly regressed and/or been replaced by 
mouse stroma, altering thus their sub-clonal evolution and response to treatments [84, 89]. 
However, our strategy can be readily adapted to derive drug-response models from 
continuous clinical outcome measures, such as progression free survival, which better 
represent the data acquired during routine clinical practice and in clinical trials. Indeed, we 
derived response models on a clinical cohort of breast cancer metastatic patients being 
treated with a combination of CDK4/6 and aromatase inhibitors, showing a good correlation 
with progression free survival.  
 
Most importantly, TCT4U drug-response DCO networks are interpretable, and provide clear 
hints to identify the potential mechanisms of sensitivity or resistance present in each tumor. 
However, one key challenge in interpreting driver alteration co-occurrence patterns is that 
they can also emerge without necessarily being synergistic if a pair of genes is affected by 
a common mutagenic process. This commonly happens when several oncogenes are co-
amplified as part of the same genomic region and our method already accounts for this. 
However, co-occurrence patterns can also emerge as a result of the exposure to other 
mutagenic processes that increase the mutational burden, the chromosomal instability, or 
that leave specific mutational signatures [75, 76, 90]. Context or tumor type specific 
dependencies can also be a source of indirect associations with drug response. Although 
those confounding factors can obscure the biological interpretation of the DCO networks, 
they certainly provide valuable information for drug response prediction, especially in the 
case of ER status, which in most of the cases cannot be determined from somatic DNA 
alterations. Therefore, DCO networks are a valuable asset for hypothesis generation that 
need to be complemented with orthogonal sources of evidence, and functional validation 
will always be needed to demonstrate synergy. Indeed, we could find literature support for 
many of the candidate biomarkers identified, such as the loss of function of FAT1 and NF2 
and their role in the development of resistance to CDK4/6 inhibitors [57] (Figure5, Figure6). 
 
We also showed that our methodology is well suited to work with any custom gene panel, 
provided that the selected genes contribute to the differences in response to the drug being 
analyzed. As the cost of clinical molecular profiling continues to drop it is very likely that 
more types of data can be integratively analyzed to improve drug response prediction. 
However, in order to ensure the clinical translatability of our method in the short term, we 
decided to focus on well-supported oncogenic alterations that are readily detectable by 
cost effective methods in the clinical setting. We acknowledge that this is a very 
conservative decision and we accept that we might be missing biologically relevant 
information (i.e. non-coding alterations, methylation events or expression changes). Indeed, 
current clinical biomarkers for patient stratification are mostly based on the detection of 
histopathological, cytogenetic and immunohistochemical changes that are not always 
detectable at DNA sequence level. For example, breast cancer patient stratification 
strategies based on ER/PR and ERBB2 status have proven to been very informative, both in 
terms of prognosis and response to treatment [91]. Accordingly, TCT4U predictions should 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 18, 2019. ; https://doi.org/10.1101/772673doi: bioRxiv preprint 

https://doi.org/10.1101/772673
http://creativecommons.org/licenses/by-nd/4.0/


 

 

be regarded as a complementary source of information for clinical decision-making. 
 
We believe that the computational framework presented, which goes beyond the single 
gene approach by exploiting co-occurrence patterns, could represent a significant advance 
towards the development of effective methods for personalized cancer treatment 
prioritization, with potential applications in population enrichment strategies in the context 
of adaptive clinical trials. Overall, our strategy represents an opportunity to accelerate the 
identification and validation of complex biomarkers with the potential to increase the impact 
of genomic profiling in precision oncology. 
 

Materials	and	Methods		

Genomic	data	processing	
A total of 1,075 PDX models were established as part of a large pharmacogenomics 
screening that used the ‘one animal per model per treatment’ (1x1x1) experimental design 
to assess the population responses to 62 treatments [28]. We collected somatic mutations 
and copy number alterations for 375 of them, and used the Cancer Genome Interpreter 
resource [14] to classify protein-coding somatic mutations and copy number variants into 
predicted passenger or known/predicted oncogenic. In order to obtain comparable gene-
wise oncogenic alteration rate estimates from a larger dataset of cancer patients, we 
downloaded the Catalog of Driver Mutations (2016.5), a curated dataset of known and 
predicted oncogenic coding mutations identified after analyzing 6,792 exomes of a 
PanCancer cohort of 28 tumor types [7]. We complemented somatic driver mutations with 
copy number variation data for 4,058 patients representing 16 tumor types, accessed 
through cBioPortal [92]. We considered as oncogenic the deletion (GISTIC score  ≤  − 2) of 
tumor suppressor genes and the amplification (GISTIC score  ≥  2) of oncogenes. The role of 
driver genes was established by inspecting the Catalog of Cancer Genes [14]. In order to 
increase the clinical translatability, we subsampled both datasets to consider those 
oncogenic alterations covered by MSK-IMPACT [51] or by Foundation Medicine [53] 
targeted gene panels to obtain DCO networks and TCT4U models that could be directly 
used with those kind of molecular profiles, which are becoming widely used in the clinical 
setting.  
 
 
Drug response data 
In the original dataset, a total of 62 treatment groups were tested in 277 PDXs across six 
indications. Drug response was determined by analyzing the change in tumor volume with 
respect to the baseline along time. They combined two metrics (Best Response and Best 
Average Response) into a modified RECIST classification (mRECIST) with four classes: PD 
(progressive disease), SD (stable disease), PR (partial response) and CR (complete 
response). For our analyses, we considered PDXs whose tumors progressed upon 
treatment (PD) as resistant, and PDXs whose tumors stopped growing (SD) or regressed 
(PR, CR) as sensitive. After applying this binary classification, we had to exclude 9 
treatments for which there were less than 5 PDXs in one of the two response groups, 
lacking thus enough interindividual heterogeneity to model drug response. A total of 276 
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PDXs were treated in at least one of the 53 treatment groups considered, each treatment 
being tested in 29 to 246 animals, with a median of 43 (IQR: 38-93). We could obtain the 
molecular profile for 187 of them, which had been treated with a median of 18 (IQR: 14-20) 
drugs. The final dataset consisted on 3,127 experiments performed on 187 PDXs and 53 
treatment responses, across 5 tumor types: BRCA (breast cancer, n=38), CM (cutaneous 
melanoma, n=32), COREAD (colorectal carcinoma, n=51), NSCLC (non-small cell lung 
carcinoma, n=27), PAAD (pancreatic adenocarcinoma, n=38), and 1 PDX without tumor 
type annotation). 
 

Molecular representativity of PDXs 
We used the OncoGenomic Landscapes tool [35] to obtain a 2D representation of the 
molecular heterogeneity of the 187 PDXs being analyzed, and compared it to that of large 
reference cohorts of cancer patients. We downloaded the precomputed 2D projections of 
the following reference cohorts from the OncoGenomic Landscapes webserver 
(oglandscapes.irbbarcelona.org): PanCancer (n=15,212), BRCA (breast cancer, n=2,021), 
CM (cutaneous melanoma, n = 492), COREAD (colorectal carcinoma, n = 1,442), LUAD 
(lung adenocarcinoma, n = 1,486), LUSC (lung squamous cell carcinoma, n = 352), and 
PAAD (pancreatic adenocarcinoma, n = 442). We selected the 2D coordinates of the subset 
of TCGA and MSKCC patients of each reference cohort and represented their distribution in 
the PanCancer landscape as a level plot using the 2D kernel density estimate function of 
the ‘seaborn’ python library with 20 levels and a gray scale color-map as background. In 
order to highlight the territory occupied by the 187 PDXs, we obtained their 2D coordinates 
in the PanCancer landscape and generated a 2D kernel density estimate with the ‘kdeplot’ 
function using 10 levels, a transparent background, and contours colored using a color-
map that represents probability density as heat. 
 

Drug response prediction based on Cancer bioMarkers database  
We manually mapped the set of 53 drugs and drug combinations tested in the cohort of 
PDXs to the corresponding drug families in the Cancer bioMarkers database [14] using drug 
target information available in ChEMBL and DrugBank (see Supplementary Table S4). We 
successfully assigned 50 out of the 53 treatments, spanning 29 drug family annotations. We 
considered those genomic alterations showing a ‘complete match’ with any of the reported 
predictive biomarkers and collapsed them at gene level. We considered as ‘approved’ 
biomarkers those ones that are currently approved by the FDA or by the main clinical 
guidelines in the field, such as the National Comprehensive Cancer Network (NCCN), the 
College of American Pathologists (CAP), the Clinical Pharmacogenetics Implementation 
Consortium (CPIC), or the European LeukemiaNet guidelines. We considered the rest of 
biomarkers, with varying supporting evidence, as ‘experimental’ biomarkers. The Cancer 
bioMarkers database usually reports more than one biomarker per drug or drug family, and 
often a single patient (or PDX) harbors several biomarkers of response and/or resistance for 
the same drug or drug family. We grouped response and resistance biomarkers at gene 
level and calculated the balanced accuracy (BAcc; average between sensitivity and 
specificity) of the prediction made by each gene in each treatment arm.  
 
We weighted the binary predictions made by each gene and combined them to obtain a 
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final prediction per treatment and PDX (𝑤𝐶𝑜𝑚𝑏!"#).  
 
Eq. 1:  
 

𝑤𝐶𝑜𝑚𝑏!"# = 𝐵𝐴𝑐𝑐!  ∙  𝑠!
!∈!

 − 𝐵𝐴𝑐𝑐!  ∙  𝑠!
!∈!

 

 
𝑆: Set of genes with or without predictive biomarkers of sensitivity (𝑠! , binary )  
𝑅: Set of genes with or without predictive biomarkers of resistance (𝑠! , binary )  
𝐵𝐴𝑐𝑐: balanced accuracy of the predictive biomarker in a given treatment arm.  

 
 

Driver	Co-Occurrence	(DCO)	Networks		

Differentially	altered	drivers	(DiffD)		
For each treatment, we aimed at identifying single gene biomarkers by selecting those 
driver genes with a significant differential alteration rate (DiffD) between sensitive and 
resistant PDXs. To this end, we compared the posterior probability distribution of the 
alteration rate of a given gene in sensitive versus resistant PDXs. We used a gene-specific 
informative prior based on the alteration rate observed in the cohort of 4,058 TCGA patients 
described above. In order to set a prior information contribution on the posterior inference 
to 5%, we set the effective population size of the prior to a 5% of the population size of the 
sample. These are the parameters of the beta posterior probability distribution of the 
alteration rate of a given gene in a given response group:  
 
Eq. 2:  

𝑝 𝑔! 𝑅 ∼ 𝐵𝑒𝑡𝑎 𝑘! +
𝛼

𝛼 + 𝛽
∙ 𝜀 ∙ 𝑛! , 𝑛! − 𝑘! + 1 −

𝛼
𝛼 + 𝛽

∙ 𝜀 ∙ 𝑛!  

 
𝑝 𝑔! 𝑅 :oncogenic  alteration probability of gene i in the response group R  
𝑘!: number of PDXs in response group R with alterations in gene i  
𝑛!: number of PDXs in response group R 
𝛼,𝛽: number of patients in TCGA with and without oncogenic alterations in gene i, respectively  
𝜀: constant representing the relative contribution of the prior to the posterior inference 

 
 
We obtained an empirical distribution of DiffD by sampling 10,000 times the sensitive and 
resistant alteration rate posterior probability distributions and then obtained the probability 
that DiffD differs from 0 (DiffD e-value). We repeated this procedure considering the whole 
treatment arm and separately for each of the two response groups in order to identify three 
sets of genes per treatment arm: (i) sens_DiffD are those genes with more than 95% 
probability of showing higher alteration rate in the sensitive PDXs, (ii) res_DiffD are those 
genes with more than 95% probability of showing higher alteration rate in the resistant 
PDXs, and (iii) global_DiffD are those genes with more than 95% probability of showing 
differential alteration rate between the two response groups. Additionally, we required that 
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the selected genes were altered more than once in the corresponding group, with a 
minimum inferred alteration rate of 5%.  

Driver	Pairs	(Ps)		
To identify pairs of driver gene alterations occurring more often than expected in each 
response group of a given treatment arm, for each pair of co-altered drivers observed more 
than once in a given set of PDXs, we compared the observed probability of co-occurrence 
to the expected one under the independence assumption. To obtain the posterior 
probability distribution of the observed driver co-occurrence (𝑝 𝑃!" 𝑅 ), we used a pair-
specific informative prior based on the co-occurrence rate of this pair in the cohort of 4,058 
TCGA patients, as described above. When this information was not available, we used a 
generic prior reflecting the average co-occurrence rate of any pair of drivers in TCGA. 
Again, we set a prior information contribution on the posterior inference to 5% by setting 
the effective population size of the prior to a 5% of the population size of the sample. These 
are the parameters of the beta posterior probability distribution of the co-occurrence rate of 
a given pair of gene alterations:  
 
Eq. 3:  

𝑝 𝑃!" 𝑅 ∼ 𝐵𝑒𝑡𝑎 𝑘! +
𝛼

𝛼 + 𝛽
∙ 𝜀 ∙ 𝑛! , 𝑛! − 𝑘! + 1 −

𝛼
𝛼 + 𝛽

∙ 𝜀 ∙ 𝑛!  

 
𝑝 𝑃!" 𝑅 : alteration probability of gene i in the response group R  
𝑘!: number of PDXs in response group R with co-alterations in genes i and j  
𝑛!: number of PDXs in response group R 
𝛼,𝛽: number of patients in TCGA with and without driver co-alterations in genes i and j, respectively  

          𝜀: constant representing the relative contribution of the prior to the posterior inference 
 
To obtain the expected probability distribution of co-occurrence if genes 𝑔! and 𝑔! were 
independent, we sampled 10,000 times the posterior probability distribution of the 
alteration rate of each gene in the corresponding response group and computed their 
product (𝑝 𝑔! 𝑅 ∙ 𝑝 𝑔! 𝑅 , see Eq. 2). We then obtained an empirical distribution of the 
difference between the observed and the expected co-occurrence rate (𝑝 𝑃!" 𝑅 − 𝑝 𝑔! 𝑅 ∙
𝑝 𝑔! 𝑅 , see Eq. 3) and determined the probability that this difference was larger than 0 (Ps 
e-value). We repeated this procedure considering the whole treatment arm and separately 
for each of the two response groups in order to identify three sets of co-occurring drivers 
per treatment arm: (i) sens_Ps are those pairs of drivers with more than 95% probability of 
co-occurrence in the sensitive PDXs, (ii) res_Ps are those pairs of drivers with more than 
95% probability of co-occurrence in the resistant PDXs, and (iii) global_Ps, which are those 
pairs of drivers with more than 95% probability of co-occurrence in the whole treatment 
arm. Additionally, we required that the selected pairs were altered more than once in the 
corresponding group, with a minimum inferred alteration rate of 5%. In the case of sens_Ps 
and res_Ps, we additionally required that the estimated co-occurrence rate was larger in the 
response group being considered than in the other one.  
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Driver	Co-Occurrence	(DCO)	networks	
The differentially-altered drivers (global_DiffD, sens_DiffD, res_DiffD) and pairs of co-altered 
drivers (global_Ps, sens_Ps and res_Ps) can be expressed in terms of co-occurrence 
networks, in which nodes representing differentially altered driver genes (DiffD) or driver 
genes involved in a pair of co-altered drivers (DiP) are connected according to significant 
co-occurrences (Ps). For each treatment arm, we obtained three of such networks: (i) a 
global network (global_DCO), (ii) a sensitivity network (sens_DCO), and (iii) a resistance 
network (res_DCO).  
 

Genome adjacency clustering 
We analyzed the topology of the DCO networks to characterize the genomic features of 
large densely connected modules (i.e Supplementary Figure S1C). We downloaded the 
genomic coordinates of human genes from UCSC genome browser to assess whether 
genomic linkage was influencing the probability of co-occurrence. For each DCO network, 
we computed the pairwise mutual information content between any pair of genes as 
follows. 
 
Eq. 4: 
 
 

𝑀𝐼 𝐴,𝐵 = 𝑃 𝑖, 𝑗 log
𝑃(𝑖, 𝑗)
𝑃 𝑖 𝑃(𝑗)

!

!!!

!

!!!

 

 
𝑀𝐼 𝐴,𝐵 : Mutual Information content calculated for the pair of genes 𝐴 and 𝐵 
𝑃 𝑖 ,𝑃 𝑗 :  probability that the status of gene 𝐴 falls in class 𝑖 in a PDX picked at random. 
Likewise for 𝑃 𝑗   
𝑃 𝑖, 𝑗 :  probability that the status of genes 𝐴 and B  fall in classes 𝑖 and 𝑗 in a PDX picked at random 

 
We then represented the pairwise mutual information of all driver genes in the DCO network 
sorted by genomic coordinates and computed the Spearman’s rank correlation between MI 
and physical distance in the genome for pairs of genes belonging to the same chromosome 
(i.e Supplementary Figure S2A). We applied an unsupervised clustering algorithm based on 
pairwise mutual information relative to genomic distance for pairs of drivers located in the 
same chromosome. More specifically, we retrieved a similarity graph from each DCO 
network after connecting every pair of driver genes located in the same chromosome by an 
edge weighted as follows. 
 
Eq. 5: 
 

𝐴𝑑𝑗𝐶𝑙𝑢𝑠𝑡 𝐴,𝐵 = log
𝑀𝐼 𝐴,𝐵

𝑇𝑆𝑆! − 𝑇𝑆𝑆!
         𝑐ℎ𝑟! = 𝑐ℎ𝑟!

𝑁𝑎𝑁,                          𝑐ℎ𝑟! ≠ 𝑐ℎ𝑟!
 

 
𝐴𝑑𝑗𝐶𝑙𝑢𝑠𝑡 𝐴,𝐵 :adjacency clustering metric for the pair of genes 𝐴 and 𝐵 
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𝑇𝑆𝑆!:chromosomal coordinates of the Transcriptional Start Site of gene 𝑔  
𝑐ℎ𝑟!:chromosome where gene 𝑔 is located 

 
Finally, we ran the MCL algorithm [93] with an inflation value of 2.5 and used the clusters 
with three or more driver genes for dimensionality reduction of the feature vectors 
describing the DCO networks.  
 

Functional Analysis of the collection of DCO networks 
We performed a functional analysis of the collection of DCO networks by calculating the 
enrichment of the 10 canonical cancer pathways identified and curated from the analysis of 
9,125 samples from 33 cancer types [16].  The pathways analyzed are: cell cycle 
(‘CellCycle’), Hippo signaling (‘HIPPO’), Myc signaling (‘MYC’), Notch signaling (‘NOTCH’), 
oxidative stress response/Nrf2 (‘NRF2’), PI-3-Kinase signaling (‘PI3K’), receptor-tyrosine 
kinase (RTK)/RAS/MAP-Kinase signaling (‘RTK-RAS’), TGFβ signaling (‘TGF-Beta’), p53 
(‘TP53’) and β-catenin/Wnt signaling (‘WNT’). Those pathways capture key genes that are 
recurrently altered in cancer and are, therefore relatively small and specific, involving a total 
of 334 genes and 3 to 85 genes per pathway. We performed a Fisher’s Exact test to assess 
whether the functions they represent were enriched or not among the set of biomarkers, the 
set of differentially altered drivers (DiffD), or the set of drivers in the DCO networks 
(DiffD_DiP) inferred for each treatment. We also checked whether each treatment was 
targeting a given pathway or not by mapping the drug target(s) of each treatment to the 
canonical cancer pathways. Finally, we performed a Fisher’s exact test to assess whether 
the pathways that are enriched in each DCO network are also the pathways that are 
associated to the known mechanism of action of each treatment, in terms of drug targets. 
 

TCT4U drug response classifiers 
We described the DCO networks with a matrix of Boolean vectors (1: altered, 0: unaltered) 
encoding the alteration status of differentially altered drivers, drivers in co-occurring pairs, 
and pairs of drivers (DiffD_DiP_Ps) in each PDX. When needed, we adjusted for genomic 
linkage by reducing the dimensionality of the feature vectors and aggregating all drivers into 
clusters, which we considered to be altered when one or more of its constituent drivers 
were altered.  We put together all those vectors in the form of a matrix and used it to train a 
Bernoulli Naïve Bayes (NB) classifier based on the observed responses to the treatment, 
also encoded as a Boolean vector (1: SD, PR, or CR; 0: PD). Please, note that we repeated 
the same procedure for each treatment arm with each of the three DCO networks described 
before (global_DiffD_DiP_Ps, sens_DiffD_DiP_Ps and res_DiffD_DiP_Ps). We assessed the 
accuracy and robustness of each of the three NB classifiers by performing an external 
leave-one-out cross validation (LOOCV) that involved both the inference of DCO networks 
and the prediction of drug response. We used the balanced accuracy of the LOOCV as 
weight to combine the global_DiffD_DiP_Ps, sens_DiffD_DiP_Ps and res_DiffD_DiP_Ps 
predictions generated for each drug-PDX pair into a final score, as described in Equation 5. 
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Eq. 6:  
 

𝑤𝐶𝑜𝑚𝑏 = 𝐵𝐴𝑐𝑐!"#$  ∙ 𝐼 !"#$!! · 𝑃! − 𝐵𝐴𝑐𝑐!"#$  ∙ 𝐼 !"#$!! · 𝑃! + 𝐵𝐴𝑐𝑐!"#  ∙ (𝐼 !"#!! · 𝑃!
− 𝐼 !"#!! · 𝑃!) 

 
𝑠𝑁𝐵𝐶: binary prediction made by sens_DiffD_DiP_Ps NBC. A value of 1 indicates sensitivity 
𝑟𝑁𝐵𝐶: binary prediction made by res_DiffD_DiP_Ps NBC. A value of 1 indicates resistance 
𝑁𝐵𝐶: binary prediction made by DiffD_DiP_Ps NBC. A value of 1 or 0 indicate sensitivity or resistance 
𝑃!,𝑃!: Probability estimate for sensitivity or resistance, respectively. 
𝐼 !"#!! : Indicator function that takes a value of 1 when NBC predicts class j or a value of 0 otherwise. 
 𝐵𝐴𝑐𝑐!"# :Balanced accuracy of the NBC in the LOOCV.  

 

Experimental validation in PDXs  
We collected all the available molecular profiles of the VHIO collection of breast cancer 
PDXs. Most PDXs were profiled using a hybridization-based capture panel of 410 genes 
(MSK-IMPACT) [51]. As we did for the training set, we used the Cancer Genome Interpreter 
resource [6] in order to filter out as many passenger alterations as possible. In the same 
way we did for the LOOCV, we described the molecular profile of each PDX according to 
the DiffD_DiP_Ps feature vectors associated to each DCO network and used them to 
predict the response to the 53 treatments in the TCT4U collection. For each PDX, we 
ranked all treatments based on the predicted response and focused on the 10 highest-
scoring predictions of sensitivity and resistance. In order to increase the novelty of our 
findings, we excluded those predictions that were in agreement with predictions made by 
known predictive biomarkers. Then, we selected the 5 highest-scoring predictions of 
sensitivity and resistance per treatment. At this point, we had 51 novel, high-confidence 
predictions involving 32 PDXs and the following treatments: MEK inhibitor (n=15), Pi3K 
inhibitor (n=14), taxane (n=7), Pi3K inhibitor + CDK4/6 inhibitor (n=5), CDK4/6 inhibitor 
(n=5), and ER antagonist (n=5). We could recover raw experimental data for 10 drug-PDX 
pairs, including PDXs treated with Pi3K and/or CDK4/6, alone or in combination. We also 
found out that STG201 had already been reported to be resistant to tamoxifen (ER 
antagonist) (BCaPE REF). In order to cover the remaining treatment classes, we picked 6 
additional drug-PDX pairs for experimental validation involving a MEK inhibitor (n=2), a 
taxane (n=2), and an ER antagonist (n=1). For each drug-PDX pair, 2 to 10 tumors were 
subcutaneously implanted in immunocompromised mice and grown until they reached a 
volume of 120-150 mm3. Tumors were treated with either vehicle or the corresponding drug 
or combination at a clinically relevant dose. Tumor growth was measured at least twice per 
week for approximately 20 to 40 days, when typically tumor volume in the control group 
had doubled twice or more. Caliper measurements were converted into tumor volume 
estimates using the formula 𝑙 · 𝑤 · 𝑤 · (𝜋 6), where 𝑙 and 𝑤 are the major and minor tumor 
axes, respectively. The response was determined following the mRECIST guidelines that 
were used in the PDX screening that we used as training set [28]. Basically, we calculated 
the percentage change in tumor volume from baseline (Δ𝑉𝑜𝑙! = (𝑉! − 𝑉!) 𝑉! · 100) and 
determined the BestResponse as the minimum value of Δ𝑉𝑜𝑙! after 10 or more days of 
treatment. In order to capture tumor growth dynamics, we also calculated the 
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BestAverageResponse as the minimum value of 1 𝑛 · Δ𝑉𝑜𝑙!!
!!!  after 10 or more days of 

treatment. PDXs were classified into response groups according to the mRECIST criteria 
applied in the following order: 
 
 CR: BestResp < -95% and BestAvgResp < -40% 

PR: BestResp < -50% and BestAvgResp < -20%  
SD: BestResp < 35% and BestAvgResp < 30% 
PD: BestResp ≥ 35% and BestAvgResp ≥ 30% 

	

Adaptation of TCT4U to use continuous clinical outcome measurements 
We obtained both genomic and clinical data for a total of 116 patients with HR+/HER2- 
metastatic breast cancer that were treated with a CDK4/6 inhibitor in combination with an 
Aromatase Inhibitor in metastatic setting [57]. All patients underwent prospective clinical 
genomic profiling consisting on the identification of single nucleotide variants, small indels 
and copy number alterations detected from matched tumor-normal sequence data using 
the MSK-IMPACT targeted gene panels. We used the Cancer Genome Interpreter [14] to 
filter out passenger mutations and CNVs. and keep only known or predicted driver 
mutations or copy number alterations. Detailed treatment history data was collected for 
each patient and included all lines of systemic therapy from the time of diagnosis of 
invasive carcinoma to the study data lock in September 2017. The exact regimen, as well 
as the dates of start and stop of therapy were also recorded. For the current analysis, we 
considered the treatment duration time as a measure of clinical benefit derived by patients 
whose biopsies were collected prior to or within the first 60 days of therapy initiation.  
We used the TCT4U model of response to ribociclib to predicted response to CDK4/6 
inhibition, as described before. Due to the differences in clinical outcome measurements 
between the training and the clinical cohort, we decided to adapt the TCT4U methodology 
to use continuous clinical outcome measurements as training set, instead of binary 
classification of drug response based on tumor growth. Our strategy consisted on 
comparing extreme populations both to derive the DCO networks and to train the classifier. 
We partitioned the population into three equally sized sets and applied the methodology 
described above. In this exercise, we set the cut-offs at 4.2 months and 9.7 months. We 
selected as sens_DiffD or res_DiffD those genes with more than 95% probability of showing 
higher alteration rate in the one third of patients showing the most durable or shortest 
clinical benefit, respectively, compared to the third of patients at the other extreme of the 
distribution. Additionally, we selected as global_DiffD all those genes with more than 95% 
probability of showing differential alteration rate between the two extreme populations. The 
same strategy was applied in the identification of pairs of driver gene alterations occurring 
more often than expected considering all patients (global_Ps) or separately for the one third 
of patients that relapsed the latest (sens_Ps) or the earliest (res_Ps). The remaining steps 
were applied exactly as described for the binary TCT4U methodology. In this setting with 
only one treatment per patient, high confidence predictions were selected by optimizing the 
threshold of the global score to get a maximum false discovery rate of 30% in the LOOCV. 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 18, 2019. ; https://doi.org/10.1101/772673doi: bioRxiv preprint 

https://doi.org/10.1101/772673
http://creativecommons.org/licenses/by-nd/4.0/


 

 

Acknowledgments		
The authors would like to thank IRB Barcelona and VHIO colleagues for providing feedback 
on the work, and Dr David Torrents (ICREA-BSC) for critically reading the manuscript. V.S. 
thanks Faye Su (Novartis Oncology) for providing study reagents alpelisib (BYL719) and 
ribociclib (LEE011).  

Grant	Support	
L.M. is a recipient of an FPI fellowship. P.A. acknowledges the support of the Spanish 
Ministerio de Economía y Competitividad (BIO2016-77038-R) and the European Research 
Council (SysPharmAD: 614944). V.S. is recipient of a Miguel Servet grant from ISCIII 
(CP14/00228) and receives funds from AGAUR (2017 SGR 540). The PDX program is 
supported by a GHD-Pink (FERO foundation) grant to V.S.. A.G.-O. and M.P. received a FI-
AGAUR and a Juan de la Cierva (MJCI-2015-25412) fellowship, respectively. 
	

Conflicts	of	Interest	
PR reports consulting/advisory board for Novartis and institutional research support from 
Illumina and GRAIL, Inc. 
 

References		
 
1. Stockley TL, Oza AM, Berman HK, Leighl NB, Knox JJ, Shepherd FA, Chen EX, 

Krzyzanowska MK, Dhani N, Joshua AM et al: Molecular profiling of advanced solid 
tumors and patient outcomes with genotype-matched clinical trials: the Princess 
Margaret IMPACT/COMPACT trial. Genome Med 2016, 8(1):109. 

2. Schwaederle M, Zhao M, Lee JJ, Eggermont AM, Schilsky RL, Mendelsohn J, Lazar V, 
Kurzrock R: Impact of Precision Medicine in Diverse Cancers: A Meta-Analysis of Phase 
II Clinical Trials. J Clin Oncol 2015, 33(32):3817-3825. 

3. Jardim DL, Schwaederle M, Wei C, Lee JJ, Hong DS, Eggermont AM, Schilsky RL, 
Mendelsohn J, Lazar V, Kurzrock R: Impact of a Biomarker-Based Strategy on Oncology 
Drug Development: A Meta-analysis of Clinical Trials Leading to FDA Approval. J Natl 
Cancer Inst 2015, 107(11). 

4. Prasad V: Perspective: The precision-oncology illusion. Nature 2016, 537(7619):S63. 
5. Chang MT, Bhattarai TS, Schram AM, Bielski CM, Donoghue MTA, Jonsson P, Chakravarty 

D, Phillips S, Kandoth C, Penson A et al: Accelerating Discovery of Functional Mutant 
Alleles in Cancer. Cancer Discov 2018, 8(2):174-183. 

6. Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A, Colaprico A, 
Wendl MC, Kim J, Reardon B et al: Comprehensive Characterization of Cancer Driver 
Genes and Mutations. Cell 2018, 173(2):371-385 e318. 

7. Rubio-Perez C, Tamborero D, Schroeder MP, Antolin AA, Deu-Pons J, Perez-Llamas C, 
Mestres J, Gonzalez-Perez A, Lopez-Bigas N: In silico prescription of anticancer drugs to 
cohorts of 28 tumor types reveals targeting opportunities. Cancer Cell 2015, 27(3):382-
396. 

8. Senft D, Leiserson MDM, Ruppin E, Ronai ZA: Precision Oncology: The Road Ahead. 
Trends Mol Med 2017, 23(10):874-898. 

9. Das S, Lo AW: Re-inventing drug development: A case study of the I-SPY 2 breast 
cancer clinical trials program. Contemp Clin Trials 2017, 62:168-174. 

10. Simon R: Critical Review of Umbrella, Basket, and Platform Designs for Oncology 
Clinical Trials. Clin Pharmacol Ther 2017, 102(6):934-941. 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 18, 2019. ; https://doi.org/10.1101/772673doi: bioRxiv preprint 

https://doi.org/10.1101/772673
http://creativecommons.org/licenses/by-nd/4.0/


 

 

11. Pallmann P, Bedding AW, Choodari-Oskooei B, Dimairo M, Flight L, Hampson LV, Holmes J, 
Mander AP, Odondi L, Sydes MR et al: Adaptive designs in clinical trials: why use them, 
and how to run and report them. BMC Med 2018, 16(1):29. 

12. Thorlund K, Haggstrom J, Park JJ, Mills EJ: Key design considerations for adaptive 
clinical trials: a primer for clinicians. BMJ 2018, 360:k698. 

13. Chakravarty D, Gao J, Phillips SM, Kundra R, Zhang H, Wang J, Rudolph JE, Yaeger R, 
Soumerai T, Nissan MH et al: OncoKB: A Precision Oncology Knowledge Base. JCO 
Precis Oncol 2017, 2017. 

14. Tamborero D, Rubio-Perez C, Deu-Pons J, Schroeder MP, Vivancos A, Rovira A, Tusquets I, 
Albanell J, Rodon J, Tabernero J et al: Cancer Genome Interpreter annotates the 
biological and clinical relevance of tumor alterations. Genome Med 2018, 10(1):25. 

15. Jaeger S, Duran-Frigola M, Aloy P: Drug sensitivity in cancer cell lines is not tissue-
specific. Mol Cancer 2015, 14:40. 

16. Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, Dimitriadoy S, Liu DL, 
Kantheti HS, Saghafinia S et al: Oncogenic Signaling Pathways in The Cancer Genome 
Atlas. Cell 2018, 173(2):321-337 e310. 

17. Huun J, Lonning PE, Knappskog S: Effects of concomitant inactivation of p53 and pRb 
on response to doxorubicin treatment in breast cancer cell lines. Cell Death Discov 
2017, 3:17026. 

18. Tu Q, Hao J, Zhou X, Yan L, Dai H, Sun B, Yang D, An S, Lv L, Jiao B et al: CDKN2B 
deletion is essential for pancreatic cancer development instead of unmeaningful co-
deletion due to juxtaposition to CDKN2A. Oncogene 2018, 37(1):128-138. 

19. Dembla V, Somaiah N, Barata P, Hess K, Fu S, Janku F, Karp DD, Naing A, Piha-Paul SA, 
Subbiah V et al: Prevalence of MDM2 amplification and coalterations in 523 advanced 
cancer patients in the MD Anderson phase 1 clinic. Oncotarget 2018, 9(69):33232-33243. 

20. Laroche-Clary A, Chaire V, Algeo MP, Derieppe MA, Loarer FL, Italiano A: Combined 
targeting of MDM2 and CDK4 is synergistic in dedifferentiated liposarcomas. J Hematol 
Oncol 2017, 10(1):123. 

21. Lauber C, Klink B, Seifert M: Comparative analysis of histologically classified 
oligodendrogliomas reveals characteristic molecular differences between subgroups. 
BMC Cancer 2018, 18(1):399. 

22. Ulz P, Heitzer E, Speicher MR: Co-occurrence of MYC amplification and TP53 mutations 
in human cancer. Nat Genet 2016, 48(2):104-106. 

23. Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, Kovatich AJ, Benz 
CC, Levine DA, Lee AV et al: An Integrated TCGA Pan-Cancer Clinical Data Resource to 
Drive High-Quality Survival Outcome Analytics. Cell 2018, 173(2):400-416 e411. 

24. Consortium APG: AACR Project GENIE: Powering Precision Medicine through an 
International Consortium. Cancer Discov 2017, 7(8):818-831. 

25. Guinney J, Saez-Rodriguez J: Alternative models for sharing confidential biomedical 
data. Nat Biotechnol 2018, 36(5):391-392. 

26. Iorio F, Knijnenburg TA, Vis DJ, Bignell GR, Menden MP, Schubert M, Aben N, Goncalves E, 
Barthorpe S, Lightfoot H et al: A Landscape of Pharmacogenomic Interactions in Cancer. 
Cell 2016, 166(3):740-754. 

27. Gillet JP, Varma S, Gottesman MM: The clinical relevance of cancer cell lines. J Natl 
Cancer Inst 2013, 105(7):452-458. 

28. Gao H, Korn JM, Ferretti S, Monahan JE, Wang Y, Singh M, Zhang C, Schnell C, Yang G, 
Zhang Y et al: High-throughput screening using patient-derived tumor xenografts to 
predict clinical trial drug response. Nat Med 2015, 21(11):1318-1325. 

29. Einarsdottir BO, Bagge RO, Bhadury J, Jespersen H, Mattsson J, Nilsson LM, Truve K, 
Lopez MD, Naredi P, Nilsson O et al: Melanoma patient-derived xenografts accurately 
model the disease and develop fast enough to guide treatment decisions. Oncotarget 
2014, 5(20):9609-9618. 

30. Bruna A, Rueda OM, Greenwood W, Batra AS, Callari M, Batra RN, Pogrebniak K, Sandoval 
J, Cassidy JW, Tufegdzic-Vidakovic A et al: A Biobank of Breast Cancer Explants with 
Preserved Intra-tumor Heterogeneity to Screen Anticancer Compounds. Cell 2016, 
167(1):260-274 e222. 

31. Krepler C, Sproesser K, Brafford P, Beqiri M, Garman B, Xiao M, Shannan B, Watters A, 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 18, 2019. ; https://doi.org/10.1101/772673doi: bioRxiv preprint 

https://doi.org/10.1101/772673
http://creativecommons.org/licenses/by-nd/4.0/


 

 

Perego M, Zhang G et al: A Comprehensive Patient-Derived Xenograft Collection 
Representing the Heterogeneity of Melanoma. Cell Rep 2017, 21(7):1953-1967. 

32. Pompili L, Porru M, Caruso C, Biroccio A, Leonetti C: Patient-derived xenografts: a 
relevant preclinical model for drug development. J Exp Clin Cancer Res 2016, 35(1):189. 

33. Byrne AT, Alferez DG, Amant F, Annibali D, Arribas J, Biankin AV, Bruna A, Budinska E, 
Caldas C, Chang DK et al: Interrogating open issues in cancer precision medicine with 
patient-derived xenografts. Nat Rev Cancer 2017, 17(4):254-268. 

34. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van 
Glabbeke M, van Oosterom AT, Christian MC et al: New guidelines to evaluate the 
response to treatment in solid tumors. European Organization for Research and 
Treatment of Cancer, National Cancer Institute of the United States, National Cancer 
Institute of Canada. J Natl Cancer Inst 2000, 92(3):205-216. 

35. Mateo L, Guitart-Pla O, Duran-Frigola M, Aloy P: Exploring the OncoGenomic Landscape 
of cancer. Genome Med 2018, 10(1):61. 

36. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, 
Ideker T: Cytoscape: a software environment for integrated models of biomolecular 
interaction networks. Genome Res 2003, 13(11):2498-2504. 

37. Haarberg HE, Smalley KS: Resistance to Raf inhibition in cancer. Drug Discov Today 
Technol 2014, 11:27-32. 

38. McGlynn LM, Kirkegaard T, Edwards J, Tovey S, Cameron D, Twelves C, Bartlett JM, Cooke 
TG: Ras/Raf-1/MAPK pathway mediates response to tamoxifen but not chemotherapy 
in breast cancer patients. Clin Cancer Res 2009, 15(4):1487-1495. 

39. Arriola E, Marchio C, Tan DS, Drury SC, Lambros MB, Natrajan R, Rodriguez-Pinilla SM, 
Mackay A, Tamber N, Fenwick K et al: Genomic analysis of the HER2/TOP2A amplicon in 
breast cancer and breast cancer cell lines. Lab Invest 2008, 88(5):491-503. 

40. Gennari A, Sormani MP, Pronzato P, Puntoni M, Colozza M, Pfeffer U, Bruzzi P: HER2 
status and efficacy of adjuvant anthracyclines in early breast cancer: a pooled analysis 
of randomized trials. J Natl Cancer Inst 2008, 100(1):14-20. 

41. Baselga J, Manikhas A, Cortes J, Llombart A, Roman L, Semiglazov VF, Byakhov M, 
Lokanatha D, Forenza S, Goldfarb RH et al: Phase III trial of nonpegylated liposomal 
doxorubicin in combination with trastuzumab and paclitaxel in HER2-positive 
metastatic breast cancer. Ann Oncol 2014, 25(3):592-598. 

42. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha 
R, Larsson E et al: Integrative analysis of complex cancer genomics and clinical profiles 
using the cBioPortal. Sci Signal 2013, 6(269):pl1. 

43. Patnaik A, Rosen LS, Tolaney SM, Tolcher AW, Goldman JW, Gandhi L, Papadopoulos KP, 
Beeram M, Rasco DW, Hilton JF et al: Efficacy and Safety of Abemaciclib, an Inhibitor of 
CDK4 and CDK6, for Patients with Breast Cancer, Non-Small Cell Lung Cancer, and 
Other Solid Tumors. Cancer Discov 2016, 6(7):740-753. 

44. Knudsen ES, Witkiewicz AK: The Strange Case of CDK4/6 Inhibitors: Mechanisms, 
Resistance, and Combination Strategies. Trends Cancer 2017, 3(1):39-55. 

45. Sweeney KJ, Sarcevic B, Sutherland RL, Musgrove EA: Cyclin D2 activates Cdk2 in 
preference to Cdk4 in human breast epithelial cells. Oncogene 1997, 14(11):1329-1340. 

46. Juric D, Janku F, Rodon J, Burris HA, Mayer IA, Schuler M, Seggewiss-Bernhardt R, Gil-
Martin M, Middleton MR, Baselga J et al: Alpelisib Plus Fulvestrant in PIK3CA-Altered and 
PIK3CA-Wild-Type Estrogen Receptor-Positive Advanced Breast Cancer: A Phase 1b 
Clinical Trial. JAMA Oncol 2019, 5(2):e184475. 

47. Juric D, Rodon J, Tabernero J, Janku F, Burris HA, Schellens JHM, Middleton MR, Berlin J, 
Schuler M, Gil-Martin M et al: Phosphatidylinositol 3-Kinase alpha-Selective Inhibition 
With Alpelisib (BYL719) in PIK3CA-Altered Solid Tumors: Results From the First-in-
Human Study. J Clin Oncol 2018, 36(13):1291-1299. 

48. Andre F, Ciruelos E, Rubovszky G, Campone M, Loibl S, Rugo HS, Iwata H, Conte P, Mayer 
IA, Kaufman B et al: Alpelisib for PIK3CA-Mutated, Hormone Receptor-Positive 
Advanced Breast Cancer. N Engl J Med 2019, 380(20):1929-1940. 

49. Nakanishi Y, Walter K, Spoerke JM, O'Brien C, Huw LY, Hampton GM, Lackner MR: 
Activating Mutations in PIK3CB Confer Resistance to PI3K Inhibition and Define a 
Novel Oncogenic Role for p110beta. Cancer Res 2016, 76(5):1193-1203. 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 18, 2019. ; https://doi.org/10.1101/772673doi: bioRxiv preprint 

https://doi.org/10.1101/772673
http://creativecommons.org/licenses/by-nd/4.0/


 

 

50. Juric D, Castel P, Griffith M, Griffith OL, Won HH, Ellis H, Ebbesen SH, Ainscough BJ, Ramu 
A, Iyer G et al: Convergent loss of PTEN leads to clinical resistance to a PI(3)Kalpha 
inhibitor. Nature 2015, 518(7538):240-244. 

51. Cheng DT, Mitchell TN, Zehir A, Shah RH, Benayed R, Syed A, Chandramohan R, Liu ZY, 
Won HH, Scott SN et al: Memorial Sloan Kettering-Integrated Mutation Profiling of 
Actionable Cancer Targets (MSK-IMPACT): A Hybridization Capture-Based Next-
Generation Sequencing Clinical Assay for Solid Tumor Molecular Oncology. J Mol Diagn 
2015, 17(3):251-264. 

52. Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, Srinivasan P, Gao J, Chakravarty 
D, Devlin SM et al: Mutational landscape of metastatic cancer revealed from 
prospective clinical sequencing of 10,000 patients. Nat Med 2017, 23(6):703-713. 

53. Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, Schnall-Levin M, White 
J, Sanford EM, An P et al: Development and validation of a clinical cancer genomic 
profiling test based on massively parallel DNA sequencing. Nat Biotechnol 2013, 
31(11):1023-1031. 

54. Wheler JJ, Atkins JT, Janku F, Moulder SL, Stephens PJ, Yelensky R, Valero V, Miller V, 
Kurzrock R, Meric-Bernstam F: Presence of both alterations in FGFR/FGF and 
PI3K/AKT/mTOR confer improved outcomes for patients with metastatic breast cancer 
treated with PI3K/AKT/mTOR inhibitors. Oncoscience 2016, 3(5-6):164-172. 

55. Hortobagyi GN, Chen D, Piccart M, Rugo HS, Burris HA, 3rd, Pritchard KI, Campone M, 
Noguchi S, Perez AT, Deleu I et al: Correlative Analysis of Genetic Alterations and 
Everolimus Benefit in Hormone Receptor-Positive, Human Epidermal Growth Factor 
Receptor 2-Negative Advanced Breast Cancer: Results From BOLERO-2. J Clin Oncol 
2016, 34(5):419-426. 

56. Mayer IA, Abramson VG, Formisano L, Balko JM, Estrada MV, Sanders ME, Juric D, Solit D, 
Berger MF, Won HH et al: A Phase Ib Study of Alpelisib (BYL719), a PI3Kalpha-Specific 
Inhibitor, with Letrozole in ER+/HER2- Metastatic Breast Cancer. Clin Cancer Res 2017, 
23(1):26-34. 

57. Li Z, Razavi P, Li Q, Toy W, Liu B, Ping C, Hsieh W, Sanchez-Vega F, Brown DN, Da Cruz 
Paula AF et al: Loss of the FAT1 Tumor Suppressor Promotes Resistance to CDK4/6 
Inhibitors via the Hippo Pathway. Cancer Cell 2018, 34(6):893-905 e898. 

58. Shapiro GI: Genomic Biomarkers Predicting Response to Selective CDK4/6 Inhibition: 
Progress in an Elusive Search. Cancer Cell 2017, 32(6):721-723. 

59. Willmer T, Peres J, Mowla S, Abrahams A, Prince S: The T-Box factor TBX3 is important in 
S-phase and is regulated by c-Myc and cyclin A-CDK2. Cell Cycle 2015, 14(19):3173-
3183. 

60. Burgucu D, Guney K, Sahinturk D, Ozbudak IH, Ozel D, Ozbilim G, Yavuzer U: Tbx3 
represses PTEN and is over-expressed in head and neck squamous cell carcinoma. 
BMC Cancer 2012, 12:481. 

61. Parris TZ, Kovacs A, Hajizadeh S, Nemes S, Semaan M, Levin M, Karlsson P, Helou K: 
Frequent MYC coamplification and DNA hypomethylation of multiple genes on 8q in 
8p11-p12-amplified breast carcinomas. Oncogenesis 2014, 3:e95. 

62. Byer SJ, Eckert JM, Brossier NM, Clodfelder-Miller BJ, Turk AN, Carroll AJ, Kappes JC, Zinn 
KR, Prasain JK, Carroll SL: Tamoxifen inhibits malignant peripheral nerve sheath tumor 
growth in an estrogen receptor-independent manner. Neuro Oncol 2011, 13(1):28-41. 

63. Razavi P, Chang MT, Xu G, Bandlamudi C, Ross DS, Vasan N, Cai Y, Bielski CM, Donoghue 
MTA, Jonsson P et al: The Genomic Landscape of Endocrine-Resistant Advanced 
Breast Cancers. Cancer Cell 2018, 34(3):427-438 e426. 

64. Thangavel C, Dean JL, Ertel A, Knudsen KE, Aldaz CM, Witkiewicz AK, Clarke R, Knudsen 
ES: Therapeutically activating RB: reestablishing cell cycle control in endocrine 
therapy-resistant breast cancer. Endocr Relat Cancer 2011, 18(3):333-345. 

65. Wertz IE, Kusam S, Lam C, Okamoto T, Sandoval W, Anderson DJ, Helgason E, Ernst JA, 
Eby M, Liu J et al: Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 
and FBW7. Nature 2011, 471(7336):110-114. 

66. Tanguy ML, Cabel L, Berger F, Pierga JY, Savignoni A, Bidard FC: Cdk4/6 inhibitors and 
overall survival: power of first-line trials in metastatic breast cancer. NPJ Breast Cancer 
2018, 4:14. 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 18, 2019. ; https://doi.org/10.1101/772673doi: bioRxiv preprint 

https://doi.org/10.1101/772673
http://creativecommons.org/licenses/by-nd/4.0/


 

 

67. Preusser M, De Mattos-Arruda L, Thill M, Criscitiello C, Bartsch R, Ruhstaller T, de Azambuja 
E, Zielinski CC: CDK4/6 inhibitors in the treatment of patients with breast cancer: 
summary of a multidisciplinary round-table discussion. ESMO Open 2018, 3(5):e000368. 

68. Smith JC, Sheltzer JM: Systematic identification of mutations and copy number 
alterations associated with cancer patient prognosis. Elife 2018, 7. 

69. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, Xie M, Zhang Q, McMichael JF, 
Wyczalkowski MA et al: Mutational landscape and significance across 12 major cancer 
types. Nature 2013, 502(7471):333-339. 

70. Behan FM, Iorio F, Picco G, Goncalves E, Beaver CM, Migliardi G, Santos R, Rao Y, Sassi F, 
Pinnelli M et al: Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. 
Nature 2019, 568(7753):511-516. 

71. Szlachta K, Kuscu C, Tufan T, Adair SJ, Shang S, Michaels AD, Mullen MG, Fischer NL, 
Yang J, Liu L et al: CRISPR knockout screening identifies combinatorial drug targets in 
pancreatic cancer and models cellular drug response. Nat Commun 2018, 9(1):4275. 

72. Wu H, Gao L, Li F, Song F, Yang X, Kasabov N: Identifying overlapping mutated driver 
pathways by constructing gene networks in cancer. BMC Bioinformatics 2015, 16 Suppl 
5:S3. 

73. Szczurek E, Beerenwinkel N: Modeling mutual exclusivity of cancer mutations. PLoS 
Comput Biol 2014, 10(3):e1003503. 

74. Kim YA, Madan S, Przytycka TM: WeSME: uncovering mutual exclusivity of cancer 
drivers and beyond. Bioinformatics 2017, 33(6):814-821. 

75. Dao P, Kim YA, Wojtowicz D, Madan S, Sharan R, Przytycka TM: BeWith: A Between-
Within method to discover relationships between cancer modules via integrated 
analysis of mutual exclusivity, co-occurrence and functional interactions. PLoS Comput 
Biol 2017, 13(10):e1005695. 

76. Canisius S, Martens JW, Wessels LF: A novel independence test for somatic alterations 
in cancer shows that biology drives mutual exclusivity but chance explains most co-
occurrence. Genome Biol 2016, 17(1):261. 

77. Mina M, Raynaud F, Tavernari D, Battistello E, Sungalee S, Saghafinia S, Laessle T, 
Sanchez-Vega F, Schultz N, Oricchio E et al: Conditional Selection of Genomic Alterations 
Dictates Cancer Evolution and Oncogenic Dependencies. Cancer Cell 2017, 32(2):155-
168 e156. 

78. Lee JS, Das A, Jerby-Arnon L, Arafeh R, Auslander N, Davidson M, McGarry L, James D, 
Amzallag A, Park SG et al: Harnessing synthetic lethality to predict the response to 
cancer treatment. Nat Commun 2018, 9(1):2546. 

79. Vandin F, Upfal E, Raphael BJ: De novo discovery of mutated driver pathways in cancer. 
Genome Res 2012, 22(2):375-385. 

80. Pineiro-Yanez E, Reboiro-Jato M, Gomez-Lopez G, Perales-Paton J, Troule K, Rodriguez 
JM, Tejero H, Shimamura T, Lopez-Casas PP, Carretero J et al: PanDrugs: a novel method 
to prioritize anticancer drug treatments according to individual genomic data. Genome 
Med 2018, 10(1):41. 

81. Domcke S, Sinha R, Levine DA, Sander C, Schultz N: Evaluating cell lines as tumour 
models by comparison of genomic profiles. Nat Commun 2013, 4:2126. 

82. Kalari KR, Sinnwell JP, Thompson KJ, Tang X, Carlson EE, Yu J, Vedell PT, Ingle JN, 
Weinshilboum RM, Boughey JC et al: PANOPLY: Omics-Guided Drug Prioritization 
Method Tailored to an Individual Patient. JCO Clin Cancer Inform 2018, 2:1-11. 

83. Dong C, Guo Y, Yang H, He Z, Liu X, Wang K: iCAGES: integrated CAncer GEnome Score 
for comprehensively prioritizing driver genes in personal cancer genomes. Genome 
Med 2016, 8(1):135. 

84. Hidalgo M, Amant F, Biankin AV, Budinska E, Byrne AT, Caldas C, Clarke RB, de Jong S, 
Jonkers J, Maelandsmo GM et al: Patient-derived xenograft models: an emerging 
platform for translational cancer research. Cancer Discov 2014, 4(9):998-1013. 

85. Izumchenko E, Paz K, Ciznadija D, Sloma I, Katz A, Vasquez-Dunddel D, Ben-Zvi I, Stebbing 
J, McGuire W, Harris W et al: Patient-derived xenografts effectively capture responses to 
oncology therapy in a heterogeneous cohort of patients with solid tumors. Ann Oncol 
2017, 28(10):2595-2605. 

86. Villacorta-Martin C, Craig AJ, Villanueva A: Divergent evolutionary trajectories in 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 18, 2019. ; https://doi.org/10.1101/772673doi: bioRxiv preprint 

https://doi.org/10.1101/772673
http://creativecommons.org/licenses/by-nd/4.0/


 

 

transplanted tumor models. Nat Genet 2017, 49(11):1565-1566. 
87. Eirew P, Steif A, Khattra J, Ha G, Yap D, Farahani H, Gelmon K, Chia S, Mar C, Wan A et al: 

Dynamics of genomic clones in breast cancer patient xenografts at single-cell 
resolution. Nature 2015, 518(7539):422-426. 

88. Willyard C: The mice with human tumours: Growing pains for a popular cancer model. 
Nature 2018, 560(7717):156-157. 

89. Wang M, Yao LC, Cheng M, Cai D, Martinek J, Pan CX, Shi W, Ma AH, De Vere White RW, 
Airhart S et al: Humanized mice in studying efficacy and mechanisms of PD-1-targeted 
cancer immunotherapy. FASEB J 2018, 32(3):1537-1549. 

90. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli 
N, Borg A, Borresen-Dale AL et al: Signatures of mutational processes in human cancer. 
Nature 2013, 500(7463):415-421. 

91. Onitilo AA, Engel JM, Greenlee RT, Mukesh BN: Breast cancer subtypes based on ER/PR 
and Her2 expression: comparison of clinicopathologic features and survival. Clin Med 
Res 2009, 7(1-2):4-13. 

92. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, 
Heuer ML, Larsson E et al: The cBio cancer genomics portal: an open platform for 
exploring multidimensional cancer genomics data. Cancer Discov 2012, 2(5):401-404. 

93. Enright AJ, Van Dongen S, Ouzounis CA: An efficient algorithm for large-scale detection 
of protein families. Nucleic Acids Res 2002, 30(7):1575-1584. 

 	

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 18, 2019. ; https://doi.org/10.1101/772673doi: bioRxiv preprint 

https://doi.org/10.1101/772673
http://creativecommons.org/licenses/by-nd/4.0/


 

 

Figures and Tables 
 

 
 
 
Figure 1. Molecular representativity of PDXs. OncoGenomic Landscape 2D representations 
of the molecular heterogeneity of the 187 PDXs annotated with both drug response data 
and oncogenic alterations, compared with that of their corresponding reference cohorts of 
cancer patients from TCGA and MSKCC. The points represent the location of each 
individual PDX, colored by tumor type. The distribution of the 187 PDXs can be compared 
to the distribution of patient samples, represented as density color-scale map in the 
background. PanCancer (n=15,212), BRCA (breast cancer, n=2,021), CM (cutaneous 
melanoma, n=492), COREAD (colorectal carcinoma, n=1,442), LUAD (lung adenocarcinoma, 
n=1,486), LUSC (lung squamous cell carcinoma, n=352), PAAD (pancreatic 
adenocarcinoma, n=442). Non-small cell lung cancer PDXs were mapped on top of both 
LUSC and LUAD reference populations. 
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Figure 2. Computational strategy and description of Driver Co-Occurrence (DCO) networks. 
(A) We inferred DCO networks from the analysis of 3,127 in vivo experiments that screened 
the efficacy of 53 treatments against a panel of 187 molecularly characterized PDXs of 
several tumor types. We first compared the patterns of oncogenic mutations and CNVs. in 
sensitive and resistant PDXs, regardless of the tissue of origin of the tumors. Next, we 
identified sets of driver genes showing differential alteration rates between responders and 
non-responders (DiffD), which are represented as red or blue nodes in DCO networks, 
respectively. Additionally, we identified pairs of genes whose alteration co-occurred more 
often than expected given the alteration rate of each driver (Ps), and that did so more often 
in one of the two response groups. We represented each pair of co-altered drivers as two 
nodes connected by an edge. We derived a sensitivity, resistance and global DCO network 
for each treatment. (B) Gray bars show the number of drivers and pairs of co-occurring 
drivers included in each DCO network derived from whole exome sequencing data. Red 
boxplots show the distribution of the number of drivers or driver co-occurrences identified 
in each individual PDX. (C) Blue and red boxes represent the overlap between DCO drivers 
and genes with annotated biomarkers of resistance or sensitivity, respectively. We show in 
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light blue and light red the number of drivers in the resistance and sensitivity DCO networks 
that were not previously associated to drug response. Likewise, gray bars indicate the 
number of drug response associated genes that were not included in our DCO networks. In 
this analysis, we only considered as drug response associated those genes with biomarkers 
identified in two or more PDXs, which is a requirement that any driver needs to satisfy in 
order to be incorporated to a DCO network. 
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Figure 3. Functional analysis of Driver Co-Occurrence (DCO) networks. (A) The three 
heatmaps show the enrichment of 10 main oncogenic signaling pathways across the set of 
genes with FDA-approved biomarkers, the set of drivers with differential alteration rate 
between responders and non-responders (DiffD), and the whole set of drivers and pairs of 
drivers in the DCO networks (DiffD_DiP). Associations with a one-sided Fisher’s Exact test 
p-value < 0.05 are squared in black. White circles denote the presence of at least one drug 
target in a pathway, which is informative of the mechanism of action of each treatment. This 
representation shows that reported biomarkers tend to be enriched in the same pathways 
they are directly targeting, whereas DCO networks expand beyond the drug target, with the 
potential to uncover more distant functional relationships. Cell cycle related proteins seem 
to play a central role in the DCO networks inferred for almost half of the treatments (35 of 
53), irrespectively of the mechanism of action of the drug. (B) The DCO network of 
ribociclib, a CDK4/6 inhibitor, is enriched in cell cycle related proteins, such as CCND2, 
CCND3, CDKN2A, CDKN2B, CDK6 or RB1 (OR 6.54, p-value 0.0028; see Table S2). Based 
on the observed driver alteration co-occurrence patterns, we propose that the co-alteration 
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of TP53 and Cyclin D2 (CCND2) might abrogate CDK4/6 dependency, rendering tumors 
insensitive to ribociclib. More specifically, we hypothesize that TP53 loss would relieve 
CDK2 from the inhibitory activity of one of its major transcriptional targets, p21CIP1. This 
would synergize with the gain of function of CCND2, which preferentially binds to and 
activates CDK2, facilitating an alternative CDK4/6-independent activation of G1/S 
transition. (C) The DCO network of alpelisib (BYL719), an isoform-selective PI3K inhibitor, 
includes four proteins that are involved in PI3K signaling: PIK3CA, PIK3R1, PIK3C2B and 
PTEN. Tumors that depend exclusively on PIK3CA for the activation of PI3K signaling 
respond well to this treatment (65.2% response rate), whereas tumors in which PIK3CA 
alteration co-occurs with either PIK3R1, PIK3C2B or PTEN alterations show a response rate 
very similar tot that of wild-type PIK3CA tumors (45.45% and 44%, respectively). PIK3C2B, 
a member of class II PI3K family, tends to be co-altered with PIK3CA more often than 
expected, and more frequently in resistant than in sensitive PDXs. PIK3C2B contributes to 
phosphatydil inositol signaling by phosphorylating the third position of the inositol ring, 
taking as substrates both phosphatidyl inositol and phosphatidyl-4-phosphate inositol. The 
resulting products might directly or indirectly contribute to cell survival, growth or 
metastasis in a PIK3CA-independent manner, which would represent a novel mechanism of 
resistance to PIK3CA inhibition.  
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Figure 4. Targeted Cancer Therapy for You (TCT4U), a collection of Naïve Bayes drug 
response classifiers based on DCO networks. (A) Given a new tumor sample, we compare it 
to the patterns of driver alterations and co-alterations associated to sensitivity or resistance 
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to any of the treatments in TCT4U, and rank the drugs accordingly, predicting whether a 
drug will or not be effective. Since the number of driver alterations that tumors typically 
have is relatively small, we can know which are the molecular determinants used by the 
classifier and use this information for functional interpretation of the predictions. (B) 
Waterfall plot representation of the outcome of the in vivo pharmacogenomic screening 
used to infer our collection of DCO networks and TCT4U drug response classifiers. Each 
bar represents the best average response of one of the 3,127 in vivo experiments, sorted 
(left to right) from the worst to the best response to treatment, and colored according to the 
mRECIST classification as PD (progressive disease), SD (stable disease), PR (partial 
response) and CR (complete response), as proposed by [28]. The heatmaps below show 
the predictions of TCT4U in a leave-one-out cross validation setting and the predictions 
made on the basis of known biomarkers. Each heatmap has three rows, which correspond 
to the predictions obtained when examining the whole exome (WES) or a subsampled 
molecular profile containing the genes covered by MSK-IMPACT (IM) or Foundation 
Medicine (FM) targeted gene panels. The number of predictions and their balanced 
accuracy are annotated along the y-axis. The set of ‘high-confidence’ predictions refers, on 
the one hand, to the subset of 10 highest scoring sensitivity and resistance predictions per 
PDX, and to the subset of clinically approved biomarkers on the other hand. (C) 
Contingency tables showing the association between the observed and the predicted drug 
responses based on WES profiles. (D) The precision of each set of predictions is illustrated 
by the red and blue sections of the stacked bar plots, which represent the proportion of 
correct sensitivity and resistance predictions. Analogously, incorrect predictions are 
represented in faint colors. Missing predictions (NA) are represented in white to offer a 
comparative overview of the recall. (E) Stacked bar plots representing the precision and 
recall of all TCT4U predictions and all reported biomarkers, covered by WES profiles split 
by treatment arm. 
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Figure 5. In vivo validation of 16 high-confidence TCT4U predictions based on MSK-
IMPACT profiles with missing or conflicting reported biomarkers. (A) The circular plot 
summarizes the results of 16 in vivo experiments comprising 5 PDXs treated with the 
alpelisib (BYL719) isoform-selective PI3K inhibitor (PI3Ki), 2 PDXs treated with ribociclib 
(LEE011) CDK4/6 inhibitor (CDKi), 3 PDXs treated with the combination of both 
(PI3Ki+CDKi), 2 PDXs treated with binimetinib MEK inhibitor (MEKi), 2 PDXs treated with 
tamoxifen ER antagonist (ERi), and 2 PDXs treated with paclitaxel. The innermost track 
shows the experimentally determined treatment outcome, in which responder tumors 
showing disease stabilization or regression are represented in red, and non-responders are 
represented in blue. The middle track represents the predictions based on reported 
biomarkers and the genes to which they are annotated, when available. The outermost 
track represents the predictions based on TCT4U and their underlying molecular 
determinants. TCT4U predictions are sorted from correct to incorrect following clockwise 
and anticlockwise directions for sensitivity and resistance, respectively. (B) Contingency 
table showing the association between the observed and predicted responses to treatment.  
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Figure 6. Application of TCT4U to predict treatment outcome in a clinical cohort of 
HR+/HER2- metastatic breast cancer patients. (A) Driver Co-Occurrence networks (DCO) 
representing the oncogenic alterations and pairs of alterations that are overrepresented in 
patients that relapsed early (resistant) or in in patients that derived a durable clinical benefit 
(sensitive) from CDK4/6 inhibition in combination with hormonal therapy combined with a. 
(B) Stacked bar plots representing the precision and recall of TCT4U cross-validated 
predictions and that of approved and experimental biomarkers. The blue and red sections 
of the stacked bar plots represent the proportion of correct predictions, in terms of the 
classification into early or late relapse. Analogously, incorrect predictions are represented in 
faint colors. Missing predictions are represented in white, offering a comparative overview 
of the recall. (C) Kaplan-Meier analysis of progression free survival (PFS). TCT4U high-
confidence predictions are better able to discriminate between patients that would 
experience early and late relapse than known biomarkers, with a median time to 
progression of 4.2 and 8.3 months respectively (log-rank test p-value 0.03 and Cox’s PH 
coefficient of -0.37, p-val 0.02). (D) The contingency tables show the concordance between 
observed and predicted clinical benefit. 
 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 18, 2019. ; https://doi.org/10.1101/772673doi: bioRxiv preprint 

https://doi.org/10.1101/772673
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 

Supplementary Data 
 
Supplementary Table S1. DCO Networks. This dataset contains the whole collection of 
TCT4U DCO networks. The Nodes Table contains the information about each individual 
gene in each DCO network it participates in. We provide information about the specific 
treatment arm from which the DCO network was inferred (drug), the number of sensitive 
and resistant PDXs with and without driver alterations in it (mut_sens, mut_res, 
no_mut_sens, and no_mut_res), the estimated probability that the alteration rate is higher in 
resistant than in sensitive (DiffD), and the two-sided e-value associated to it (DiffD e-val). 
We also provide the chromosomal location of each gene (chrom, chromStart, and 
chromEnd), together with the genome adjacency clusters it has been assigned to in the 
global, sensitivity and resistance DCO networks (global_mcl, sens_mcl, and res_mcl), if any. 
We also indicate whether a given gene is covered by MSK-IMPACT and 
FoundationMedicine targeted gene panels. The three accompanying Edge Tables (global, 
sensitivity, and resistance) describe the pairs of drivers (prot1 – prot2) that appear co-
altered more often than expected in each of the three DCO networks inferred from a 
treatment arm (drug). We provide information about the number of sensitive and resistant 
PDXs with and without a given pair of co-occuring driver alterations in (coocurr_sens , 
coocurr_resist, no_cooccurr_sens, no_cooccurr_resist), the estimated difference between 
the observed and expected co-alteration rate (Ps), and the e-value associated to it (Ps e-
val). We also indicate whether a given pair co-occurs more often in sensitive than in 
resistant PDXs (Ps_diff), whether the pair represents a within-cluster co-alteration 
(Genomic_Linkage), and their Mutual Information content (MI). 
 
Supplementary Table S2. DCO Functional Analysis. The tables show the results of the 
functional enrichment analysis of the set of approved and experimental biomarkers, the set 
of differentially altered drivers (DiffD), and the set of genes considered in all the DCO 
networks (DiffD_DiP) inferred from each treatment. We also report the results of the same 
analysis performed separately for sensitive (sensDiffD, sensDiffD_DiP) and resistance DCO 
networks (resDiffD, resDiffD_DiP). We report the contingency tables, the Odds Ratio (OR) 
and the nominal p-value of a one-sided Fisher’s exact test, and the list of genes in the 
intersection. We used as gene universe the set of 58 genes with annotated biomarkers on 
one hand, and the set of 676 genes with detected driver alterations in the dataset, on the 
other hand. 
 
Supplementary Table S3. Summary of the experimental validation of 16 high confidence 
TCT4U drug response predictions that were not in agreement with approved or 
experimental biomarkers. For each drug-PDX pair we report the anticipated response 
according to approved or experimental biomarkers (bioMarkers db) or by TCT4U, together 
with the experimentally determined response. Drug-PDX pairs were classified following the 
mRECIST criteria into responders (SD, PR or CR) and non-responders (PD). Additionally, we 
report the time at which the Best Response was observed and the tumor growth achieved 
at this time point with respect to the baseline, both in the treatment and placebo arms. We 
also provide the tumor growth inhibition in the treatment arm with respect to the placebo. 
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Supplementary Table S4. Clinical and molecular profile (Mutations and CNAs) of a cohort 
of 216 advanced metastatic breast cancer patients treated with a CDK4/6 inhibitor in 
combination with an aromatase inhibitor at the Memorial Sloan Kettering Cancer Center 
(MSKCC). We report the somatic mutations and copy number alterations detected in pre-
treatment biopsies of the tumors using MSK-IMPACT gene panel. Genomic data has been 
annotated using MSKCC knowledge base database (OncoKb REF) and also with clinical 
data indicating the line of therapy (txline), the time to progression in months (pfsm), and the 
outcome variable (pfs_event), which takes a value of 1 when the treatment was 
discontinued because of tumor progression or a value of 0 for other causes of 
discontinuation such as toxicity, medical doctor decision or decease.  
 
Supplementary Table S5. TCT4U drug family annotation. Mapping of TCT4U drugs to drug 
families and drugs for which we could identify at least one approved or experimental 
biomarker of response reported in the Cancer bioMarkers database accessed in the 25th of 
August 2017. 
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Supplementary Figure S1. Characterization of the DCO networks derived from targeted 
gene panels. (A) DCO networks derived from MSK-IMPACT gene panel have 10 to 79 driver 
genes (median of 47, IQR: 34-57) and 5 to 230 pairs of drivers (median of 45, IQR: 25-64). 
Each PDX has a median of median of 5 altered drivers (IQR: 3-7) and 2 driver alteration co-
occurrences (IQR: 1-4). (B) DCO networks derived from Foundation Medicine gene panel 
have 10 to 56 driver genes (median of 34, IQR: 23-42) and 5 to 85 pairs of drivers (median 
of 27, IQR: 16-40). Each PDX has a median of 4 altered drivers (IQR: 2-5) and 1 driver 
alteration co-occurrence (IQR: 0-3). 
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Supplementary Figure S2. Genomic linkage in whole exome sequencing profiles. As an 
illustrative example, we show the genomic linkage of driver genes considered in binimetinib 
(MEK inhibitor) DCO network. (A) Correlation between pairwise mutual information content 
(MI) with respect to genomic distance of intra-chromosomal pairs of drivers. (B) Heatmap 
representation of mutual information content of pairs of drivers sorted by genomic 
coordinates. The different colors indicate the labels of a MCL clustering of adjacent drivers 
with high MI. Highlighted genes belong to two large clusters that tend to be co-altered with 
MYC. (C) Partial view of binimetinib DCO network, showing the pivotal role of MYC 
alteration, which is associated with sensitivity when co-altered with its adjacent genes in 
chr8 p11-12 and chr8 q11-24 (orange cluster), or with resistance when co-altered with a 
cluster of distant genes that are mostly located in chr1 q21-23 region. (D) Adjusting for 
genomic linkage improved the overall performance of the whole exome sequencing (WES) 
derived models, had very little impact on MSK-IMPACT derived models, and worsened the 
performance of Foundation Medicine derived models.  
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Supplementary Figure S3. Evaluation of TCT4U models derived from the subset of 
alterations that would be detectable by two widely used targeted gene panels. (A) MSK-
IMPACT [51] and (B) Foundation Medicine [53]. The contingency tables show the 
association between the observed and the predicted drug responses. The precision and 
recall of each set of predictions is illustrated by the red and blue sections of the stacked bar 
plots, which represent the proportion of correct sensitivity and resistance predictions. 
Analogously, incorrect predictions are represented in faint colors. Missing predictions are 
represented in white to offer a comparative overview of the recall. 
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