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Abstract

Long-term evolution of quantitative traits is classically and usefully described as the directional

change in phenotype due to the recurrent fixation of new mutations. A formal justification for such

continual evolution ultimately relies on the ”invasion implies substitution” principle. Here, whenever

a mutant allele causing a small phenotypic change can successfully invade a population, the ances-

tral (or wild-type) allele will be replaced, whereby fostering gradual phenotypic change if the process

is repeated. It has been argued that this principle holds in a broad range of situations, including

spatially and demographically structured populations experiencing frequency and density dependent

selection under demographic and environmental fluctuations. However, prior studies have not been

able to account for all aspects of population structure, leaving unsettled the conditions under which

the “invasion implies substitution”-principle really holds. In this paper, we start by laying out a

program to explore and clarify the generality of the “invasion implies substitution”-principle. Par-

ticular focus is given on finding an explicit and functionally constant representation of the selection

gradient on a quantitative trait. Using geometric singular perturbation methods, we then show that

the ”invasion implies substitution”-principle generalizes to well-mixed and scalar-valued polymorphic

multispecies ecological communities that are structured into finitely many demographic (or physio-

logical) classes. The selection gradient is shown to be constant over the evolutionary timescale and

that it depends only on the resident phenotype, individual growth-rates, population steady states and

reproductive values, all of which are calculated from the resident dynamics. Our work contributes

to the theoretical foundations of evolutionary ecology.
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1 Introduction

A central theme in evolutionary biology is to understand how organisms have evolved to become adapted

to their environment. Of particular relevance is to understand adaptation to biotic environments which

contain, and are altered by, the interactions of the organism with members of its own and other species

(Pásztor et al., 2016; Estrela et al., 2018). Examples of such interactions permeate the biological world,

they include competition for resources, mate choice, helping behavior and cultural learning to name a

few, and will here be collectively referred to as social interactions. Social interactions, however, may

lead to complex frequency and/or density-dependent evolutionary dynamics. It may thus be felt that in

general not much can be said about the evolutionary adaptive trajectory of social traits.

Notwithstanding this complexity, it has been extensively argued that when mutations cause only small

changes to the phenotype under selection, the evolutionary trajectory of a phenotype can be continual

under directional selection, proceeding by a gradual, small-step by small-step transformation of the phe-

notype under focus (e.g., Hamilton, 1964; Eshel, 1983; Metz et al., 1995; Geritz et al., 1998; Rousset

and Billiard, 2000; Leturque and Rousset, 2002; Rousset, 2004; Rousset and Ronce, 2004; Geritz, 2005;

Rousset, 2006; Dercole and Rinaldi, 2008; Durinx et al., 2008; Lehmann and Rousset, 2014; Dercole and

Geritz, 2016). Such a paradigmatic Darwinian process (e.g., Dawkins, 1997) relies on the “invasion

implies substitution”-principle, which is the ultimate fixation in the population of any mutant that is

being favored by selection when initially rare. The “invasion implies substitution”-principle has been

suggested to hold not only for arbitrary social interactions, but also in cases where populations are spa-

tially and demographically (physiologically) structured and subject to demographic and environmental

fluctuations (Rousset, 2004; Geritz, 2005; Durinx et al., 2008; Lehmann and Rousset, 2014) and has been

called a “gift from God” (Hamilton, 1988).

The intuitive argument for justifying “invasion implies substitution”-principle relies on considering two

alleles, a wild-type (resident) allele coding for some phenotype and a mutant allele coding for some

closely similar phenotype. The argument is then that the dynamics of an appropriately weighted average

mutant allele frequency p in the population is much slower than the dynamics of all other variables

governing the demographic and genetic make-up of the population, such us population densities and

genetic associations like relatedness or linkage disequilibria (see Figure 1 panels A and B and Rousset,

2004, p. 196 and p. 206-207 for an early general discussion of this argument). Consequently, the genetic

and ecological variables (collectively referred to as population dynamical variables) that operate in fast

population dynamical time can be assumed constant at the slow evolutionary time at which the mutant

frequency p changes, rendering selection essentially frequency-independent. More precisely, the expected

change ∆p in (weighted) mutant frequency p is supposed to follow a dynamical equation like

∆p = δV(p)S +O(δ2), (1)

where δ is the phenotypic deviation between mutant and resident phenotype, and V(p) is frequency-

dependent but always a positive measure of genetic variation at the loci under selection, e.g., for a well-
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Figure 1: The three timescales that are relevant for the “invasion implies substitution”-principle. A)
The population dynamical timescale at which all fast genetic and demographic (ecological) dynamical
variables converge to their steady state. Here, the individual growth-rate matrix H determines the
resident dynamics. B) The evolutionary timescale at which the (weighted average) mutant frequency
p changes, and where the mutant allele may or may not substitute its ancestral resident allele. Here,
the fast population dynamical variables are at their steady state and thus constant. C) The long-term
evolutionary timescale at which the phenotype under selection changes (also called meso-evolutionary
timescale, Metz, 2011). The trait under selection takes values in the trait space Z. This panel gives
the timescale of the trait substitution sequence where each individual trait substitution is defined as an
invasion implies substitution event.

mixed population this is simply p(1 − p) with p being the average mutant frequency in the population.

Moreover, S is a frequency-independent selection gradient, which is a function of the fast population

dynamical variables and is calculated for a resident population. Whenever the selection gradient S is

non-zero, (1) says that if mutant frequency p increases when rare it substitutes the resident; that is, it

substitutes its ancestral phenotype. This is the “invasion implies substitution”-principle.

Decoupling the slow evolutionary variable p from the fast population dynamical variables, however, is

not straightforward in complex communities that exhibit population structure. When individuals are

structured into different demographic classes such as age or size classes, or when individuals inhabit

different spatial locations, it is not obvious how to define the mutant frequency and on which timescale

does it operate (Leturque and Rousset, 2002; Rousset and Ronce, 2004; Rousset, 2006). Indeed, class-

specific mutant frequencies and thus also the mean mutant frequency in the population are usually not

purely slow evolutionary variables (Leturque and Rousset, 2002; Rousset and Ronce, 2004). Moreover,

when individuals are structured into continuous or countably infinite age-classes and habitats (Metz and

Diekmann, 1986; Diekmann et al., 1998, 2001; Rousset, 2006), population dynamical variables such as

population densities or genetic associations are not necessarily fast either (Greiner et al., 1994; Rousset,

2006; Gyllenberg, 2007). In both situations a standard timescale separation method is not readily

applicable, or, may not even be possible.

Despite of these complications, it has been conjectured that the “invasion implies substitution”-principle
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nevertheless holds in structured populations (Rousset, 2004; Durinx et al., 2008; Metz and de Kovel,

2013), more specifically, in populations with finite number of demographic and spatial classes where

individuals are characterized by scalar-valued traits (Rousset, 2004). The central step here follows

from the realization that when the mutant frequency in the population p is defined as the class-specific

reproductive weighted average frequency (e.g., Stubblefield and Seger, 1990; Taylor, 1990; Leturque and

Rousset, 2002; Rousset, 2004; Lehmann and Rousset, 2014; Grafen, 2015), it is a purely slow evolutionary

variable operating in purely slow evolutionary time. Consequently, this suggests that the dynamics of

the weighted average frequency p can be generically cast in the form (1) and moreover with a selection

gradient that can be partitioned according to the following generic form

S = v

[
∂H

∂zself
+
∑
ω∈G

∑
c∈D

∂H

∂zothers in ω,c
Rothers in ω,c

]
n. (2)

Here, the matrix H is a resident growth-rate matrix whose elements hab give the rates at which individuals

are produced into demographic class a ∈ D by a single resident individual in demographic class b ∈

D and D denotes the demographic class-space. This matrix has v and n as leading left and right

eigenvectors giving, respectively, the resident individual reproductive values and steady states (see Figure

2 for the partition of S). Because eigenvectors can be scaled arbitrarily, in an alternative but equivalent

formulation the class-specific population densities n can be replaced by a probability distribution of a

demographic class, i.e., by class frequencies. The partial derivatives ∂H
∂zself

and ∂H
∂zothers in ω,c

are taken with

respect to the phenotype (more precisely, with respect to the contribution of an allele on the phenotype)

of the individual whose growth-rate we are considering, and with respect to the phenotype of individuals

in all the spatial and demographic classes over which we are summing ω ∈ G, c ∈ D, respectively,

where G denotes the spatial class space (i.e., the number of distinct spatial locations an individual can

inhabit). These derivatives are usually interpreted as fitness effects caused by mutations (see also Figure

2), and the matrix Rothers in ω,c weights these effects by the average genealogical relationship between

individuals that occupy the same spatial and demographic class as the individual whose growth-rate

is being considered, and individuals in spatial class ω ∈ G and demographic class c ∈ D. That is,

the elements of Rothers in ω,c are neutral relatedness coefficients (Rousset, 2004). To our knowledge, no

generalizations of (2) to more generally structured populations are known.

Equation (2) is consistent with all previous work on the “invasion implies substitution”-principle. In

particular, two categories of demographically unstructured population models have treated the “invasion

implies substitution”-principle in depth. The first category are well-mixed (panmictic) population models

with fluctuating demography caused by density and frequency-dependent selection (Geritz, 2005; Meszéna

et al., 2005; Dercole and Rinaldi, 2008; Dercole and Geritz, 2016), where population density is the single

population dynamical variable. These models include scalar-valued (Dercole and Rinaldi, 2008; Dercole

and Geritz, 2016) and vector-valued traits (Geritz, 2005; Meszéna et al., 2005), arbitrary (Dercole and

Rinaldi, 2008) or tightly clustered polymorphisms (Meszéna et al., 2005), as well as populations that are

part of a larger ecological community (Dercole and Rinaldi, 2008). The “invasion implies substitution”-

principle was here proven by singularly perturbing (Fenichel, 1979; Wiggins, 1994; Jones, 1995; Hek,
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Figure 2: The partitioning of the selection gradient S as an inclusive fitness effect. Suppose that, as a
thought experiment, the deviation between the mutant and resident phenotype δ is set to zero for all
mutant individuals in the population (i.e., all individuals have the same phenotype). Then, suppose a
“button” is pressed so that all mutant individuals in the population “switch” to expressing the small δ
deviation. Pressing the button can (marginally) affect the production rate hab of class a offspring of a
randomly sampled mutant individual residing in demographic class b in a given discrete spatial location
(denoted as “local habitat” in the figure) in two ways. First, it can affect the production “directly”
because the individual in class b expresses the δ deviation, which results in marginal effect ∂

∂zself
hab on

self. Second, the mutant can also be affected “indirectly” due to social (frequency or density dependent)
interactions with other mutant individuals expressing the δ deviation, which results in marginal effect

∂hab
∂zothers in ω,c

multiplied by the (relative) probability that individuals in ω, c also have the mutation (which

is conditional on the individual in class b), i.e., the probability Rb,others in ω,c where Rothers in ωc =
(Rb,ωc)a∈D. Because there are nb individuals in class b and the reproductive value of the produced
individuals in a is va , the selection gradient in (2) is obtained from va [ ∂∂zhab + ∂

∂zω,c
habRb,ωc ]nb by summing

over all possible spatial and demographic classes.

2010; Kuehn, 2015) the slow evolutionary dynamics in order to obtain an approximation for the mutant

frequency dynamics resulting from small but nonzero deviations between mutant and resident phenotypes

(Dercole and Rinaldi, 2008; Dercole and Geritz, 2016, see an alternative proof of Geritz, 2005). Such

perturbation analysis is essential in situations where fast population dynamical variables (e.g. population

density) may not persist under the perturbation caused by the invasion of a mutant phenotype (Geritz

et al., 2002) and may lead e.g. to a catastrophic extinction of the population (Ferriere, 2000; Gyllenberg

and Parvinen, 2001; Parvinen, 2016). The selection gradient was then shown to take the form S = ∂h
∂zself

(Dercole and Rinaldi, 2008; Dercole and Geritz, 2016), where population density comes into play as an

argument of the growth-rate function.

The second category of demographically unstructured models (Wakeley, 2003; Roze and Rousset, 2003;

Wakeley and Takahashi, 2004; Rousset, 2004, 2006) assumes that the population exhibits spatial or

group structure with limited dispersal, but as the population is not assumed to experience demographic

fluctuations all spatial locations are identical and so all individual belong to the same demographic class.

Thus, the single population dynamical variable is the genealogical relationship between individuals within

a group (that is of constant and finite size), i.e., the relatedness between group members. Invasion implies

substitution was shown to hold by using the diffusion approximation method for two timescales developed

in Ethier and Nagylaki (1980, 1988), where one scales up a finite population model by letting the number

of groups to go to infinity while the phenotypic deviation between mutant and resident phenotypes goes

to zero. Because the only population dynamical variable is density-independent relatedness (whose
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dynamics is further linear), relatedness itself depends smoothly on the evolving phenotype, and so the

aforementioned results are robust against small but nonzero phenotypic deviations caused by the invasion

of a mutant phenotype (for instance, no bifurcation leading to population extinction can occur). This

method was applied in the island model of dispersal (i.e., the spatial structure considered in Wright,

1931) for the discrete-time Wright-Fisher model (Wakeley, 2003) and for the Moran model (Wakeley and

Takahashi, 2004), whereas (Roze and Rousset, 2003; Rousset, 2004, 2006) showed that the “invasion

implies substitution”-principle holds for a much larger class of discrete-time population models including

diploid populations (in the absence of over and under-dominance), and showed that the selection gradient

can be expressed as S = ∂h
∂zself

+ ∂h
∂zothers

Rothers (Roze and Rousset, 2003; Rousset, 2004, 2006). A

related model considers isolation by distance (Rousset, 2006). Here the timescale separation is obtained

by utilizing the observation that the genealogical relationships between individuals in different spatial

locations can be captured by studying the proportions of distributions of coalescence times (Slatkin,

1991). The selection gradient was then shown to take the form S = ∂h
∂zself

+
∑
ω∈G

∂h
∂zothers in ω

Rothers in ω

and since the population is structured into countably infinite number of spatial locations, the population

dynamical variable (relatedness coefficient) is of a countably infinite dimension.

Some studies have also discussed invasion implies substitution in demographically structured populations

in both well-mixed and group-structured populations with limited dispersal. First and most recently,

Lion (2018a,b) discusses the “invasion implies substitution”-principle for a haploid well-mixed population

that is assumed demographically class-structured and part of a larger ecological community. Here, the

focus is given to the dynamics of the trait mean for a polymorphic trait that is tightly clustered around its

mean. Consequently, the timescale separation arguments were made in terms of aggregate variables such

as trait means and variances instead of the full distribution of mutant frequencies, which should actually

be considered in a full proof of the “invasion implies substitution”-principle, but nevertheless it was

shown that the selection gradient takes form S = v ∂H
∂zself

n. Second, the “invasion implies substitution”-

principle has been considered in the island model of dispersal with finite but demographically fluctuating

local population sizes (Rousset, 2004; Rousset and Ronce, 2004; Lehmann et al., 2016); division into

demographic classes such as age or size classes (Rousset, 2004); and sex-classes with different ploidy levels

(Roze and Rousset, 2004) and sex-specific imprinting (Van Cleve et al., 2010). Here, it is argued that

the timescale separation between the mutant frequency and the local genetic and demographic structure

holds when the mutant frequency is defined as the average frequency weighted by (demographically)

class-specific reproductive values (Taylor, 1990; Leturque and Rousset, 2002; Rousset, 2004) and using

the timescale separation arguments of Ethier and Nagylaki (1980, 1988), in which case the selection

gradient can be expressed under the form S = v
[
∂H
∂zself

+ ∂H
∂zothers

Rother

]
n (Rousset, 2004; Lehmann

et al., 2016). Similarly to the spatially structured model without demographic fluctuations, these models

contain only one spatial location and so relatedness only needs to be calculated within groups that belong

to the same demographic class (notice no summation in the selection gradient). However, no explicit,

step-by-step full proof of the “invasion implies substitution”-principle has actually been detailed for

these class-structured models (beyond invoking that Ethier and Nagylaki, 1980, 1988 applies to them,

e.g., Rousset, 2004, p. 196) and thus remains wanting in the literature. In particular, because each group
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consists of individuals that fluctuate between different demographic classes the growth-rate functions

as well as relatedness can be density-dependent under certain scenarios, which requires a more detailed

analysis on the robustness of the evolutionary mutant frequency dynamics under small but non-zero

perturbations caused by the invasion of the mutant.

In summary, while the “invasion implies substitution”-principle seems to be well established for several

biological scenarios, there is no completely detailed proof specifying all steps for the case of demograph-

ically and spatially class-structured populations. More generally, it remains to explore and clarify the

following sets of questions pertaining to the adaptive dynamics of closely similar phenotypes, and which

could be called the “invasion implies substitution”-principle program.

(I) What is the validity and generality of the “invasion implies substitution”-principle in structured

populations with respect to the trait space, the demographic class space, and the spatial class space

(respectively Z,D,G)?

(II) If the principle holds in a given model, (a) what conditions must the resident growth-rate matrix (or

operator) H satisfy, and (b) can the evolutionary dynamics of the mutant phenotype systematically

be expressed as in (1)?

(III) If the mutant dynamics satisfy (1), can we find an explicit expression for the selection gradient S

as in (2), that is, can we generically express S in terms of (a) individual reproductive values v,

(b) steady states n, and (c) relatedness R, all of which can be determined from resident quantities

such as the growth-rate matrix H evaluated at the attractor of the ecological community?

Our aim in this paper is to contribute to this program (or quest). Because answering the above question is

complex and has ramification with many evolutionary models, not everything can be answered in a single

paper. We thus consider here a scalar-valued quantitative trait under selection in a clonally reproducing

(or haploid) well-mixed population structured into finitely many demographic classes residing in a larger

ecological community (allowing for arbitrary eco-evolutionary feedback), and prove positive answers to all

three questions (I)-(III) posed above. In so doing, we lay out in detail the concept of singular perturbation

theory and multiple timescale analysis (Fenichel, 1979; Wiggins, 1994; Jones, 1995; Hek, 2010; Kuehn,

2015), which we apply to limited dispersal in a subsequent paper. Because we formulate our model

in continuous-time and from the outset assume that the population size is large, our treatment also

complements previous well-mixed demographically class-structured models (in particular those implied

by the models in Rousset, 2004), which are started with discrete-time and finite total population size

formulation and use scaling of both time and system size to obtain the desired timescale separation

(Ethier and Nagylaki, 1980, 1988; Rousset, 2004).

The rest of this paper is organized as follows. We start Section 2 by constructing a continuous-time

population model that completely describes the population as well as the evolutionary dynamics of the

ecological community. We then move on to study the mutant-resident dynamics in situations where the

mutant and its ancestral resident phenotype are closely similar (Section 3). In Section 4 we proceed to

prove the “invasion implies substitution”-principle by decoupling the slow evolutionary dynamics given
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by the average mutant frequency weighted by class reproductive values from the fast dynamics given by

the population dynamical variables. We conclude by discussing related work and the overall relevance

of our results to evolutionary ecology (Section 5).

2 Model

Consider an infinitely large haploid population where each individual is characterized by a single one-

dimensional (scalar-valued) continuous trait. The phenotypic value of the trait of each individual is

assumed fixed during its life and individuals are structured into finitely many demographic classes (Tay-

lor, 1990; Charleworth, 1994), e.g. age or size classes, which in contrast to the phenotype may change

throughout their life. The population of interest may also be part of a greater ecological community - in-

dividuals of the population interact with individuals from other species (e.g. predator-prey community),

which may also be structured into different phenotypes and demographic classes.

Preliminaries Let Z ⊂ R denote the space of phenotypes, D the set of m ∈ N+ distinct demographic

classes where m is finite, and take time to be continuous. As the present model has no spatial structure,

and thus no spatial classes, we omit the term “demography” in front of the word class. Note that Z and

D jointly give the full description of the life-history of individuals in the population (birth, maturation

and death) and hence jointly define a so-called individual-level state space (Metz and Diekmann, 1986;

Diekmann, 2002).

Moreover, suppose that the population, at least initially, is polymorphic with respect to the trait under

focus with all in all k distinct alleles segregating (each coding for a distinct phenotype), all of which

define the resident population. However, because we will assume that one (and only one) of the k alleles

undergoes a mutation giving rise to a new phenotype denoted zM ∈ Z (M stands for mutant), we single

out its ancestral phenotype and call it the ancestral resident phenotype zR ∈ Z, or simply, the resident.

After mutation, the population thus consists of a mutant allele (with phenotype zM), a resident allele

(with phenotype zR ∈ Z), as well as k − 1 other alleles, each with their respective phenotypes. Since,

under our assumptions, there is a one to one relationship between allele and phenotype, we will generally

just speak of mutant and resident phenotypes.

It will be useful to distinguish individuals not only by their phenotype but also the class they are in. For

example, a mutant that is in class a ∈ D will be identified with zM,a . We emphasise that zR,a and zM,a

take phenotypic value zR, zM ∈ Z, respectively, for all a ∈ D, and that this notation is introduced (only)

for a bookkeeping purpose, that is, to keep track of individuals moving in time through the individual-

level state space. Finally, to make a distinction between (resident individuals in) resident dynamics and

(resident individuals in) mutant-resident dynamics, we will drop out the subscript denoting residents (R)

whenever we are discussing ecological communities where the mutant phenotypes are absent.

We now first present a model for a polymorphic resident ecological community where the mutant phe-

notype is assumed absent (Section 2.1). Then, we extend the model to a situation where one of the
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phenotypes has undergone a mutation resulting in an arbitrary mutant phenotype and express the dy-

namical system in terms of class-specific mutant frequencies (Section 2.2). Finally, in Section 2.3, we give

several consistency relations and properties that relate mutant-resident dynamics to resident dynamics,

which will play a central role in deriving the main results of this paper.

2.1 Resident dynamics

Let n = (na)a∈D ∈ Rm+ denote the vector of densities (number of individuals per unit space) of (ancestral)

resident individuals in all the possible classes the individuals can be in, with element na ∈ R+ denoting

the density of resident individuals in class a ∈ D. Similarly, z = (za)a∈D ∈ Zm denotes the resident

phenotype vector where element za identifies individuals in class a ∈ D with a phenotype z ∈ Z. The

density vector nP ∈ Rl+ collects, for each class, the density of the other k− 1 resident phenotypes in the

population of the focal species and the densities of the rest of the ecological community. Hence, if we

have a community with a single species l = (k − 1)m, otherwise l > (k − 1)m.

The resident dynamics is given by the set of ordinary differential equations

ṅ = H(z, z,n,nP)n

ṅP = P(z,n,nP),
(3)

where the dot ” · ” above the density vectors n and nP denotes the time derivative ” d
dt”. The matrix

H =
(
hab
)

a,b∈D ∈ Rm×m is the (ancestral) resident growth-rate matrix where entry hab(z, z,n,nP)

is a sufficiently smooth growth-rate function giving the rate at which a single individual of class b

produces individuals of class a. We emphasise that the first argument z ∈ Z in the growth-rate matrix

H(z, z,n,nP) identifies the phenotype of the individual whose growth-rate we are considering, while all

the remaining arguments describe the environment that the individual finds itself in. The matrix P ∈

Rl×l is the growth-rate matrix of the rest of the resident population and the ecological community and

is also a function of the environment that the individuals find themselves in. For notational convenience,

especially when it is clear from the context, we will drop from the growth-rate matrices and functions

all arguments that describe the environment, for example, we may write H(z) instead of H(z, z,n,nP)

and P instead of P(z,n,nP).

We note that all the growth-rate functions presented in this paper are constructed by assuming an in-

finitely large well-mixed ecological community, where individuals are assumed to undergo demographic

individual-level processes on a Poissonian basis; the demographic processes can be either asocial where

individuals react by themselves e.g., dying or moving from one age class to another, or social, resulting

from random encounters of pairs of individuals. The probability of any higher order encounter vanishes

in continuous-time models. However, all growth-rate functions can be non-linear and of any complexity

as we allow for arbitrary frequency and/or density dependent (pairwise) interactions. Different under-

lying assumptions on the encounters between individuals is possible, facilitating e.g. multiplayer games

(Weibull, 1995), but are not dealt with in this paper.
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Steady state of the resident dynamics Throughout the paper we assume that there exists an

equilibrium point (n̂, n̂P) ∈ Rm+l
+ to which the community given by (3) converges to and then stays at.

Importantly, this equilibrium is assumed to be hyperbolically stable, i.e. the real part of the dominant

eigenvalue of the linearized system (3) evaluated at the equilibrium is negative and bounded away from

zero (Hirsch et al., 1974). However, we allow the system (3) to contain multiple non-negative equilibria

or other attractors at which the community could potentially reside. Assuming multiple equilibria or

other attractors is not problematic when considering evolutionary dynamics because the so-called tube

theorem (Geritz et al., 2002) excludes ”attractor switching” for mutant-resident dynamics with closely

similar phenotypes. That is, the dynamics of the mutant with a similar phenotype to a resident will

never evolve to an alternative attractor. In Section 5 we discuss how our results can be extended to more

complicated attractors than equilibria.

2.2 Mutant-resident dynamics

We now introduce the mutant phenotype zM ∈ Z into the resident population. Let nR = (nR,a)a∈D ∈ Rm+
and nM = (nM,a)a∈D ∈ Rm+ denote the vectors of densities and zR = (zR,a)a∈D ∈ Zm and zM =

(zM,a)a∈D ∈ Zm the vectors of phenotypes of (ancestral) residents and mutants, respectively, in all the

possible classes the individuals can be in. The mutant-resident dynamics is then given by

ṅM = G(zM, zR, zM,nR,nM,nP)nM

ṅR = G(zR, zR, zM,nR,nM,nP)nR

ṅP = R(zR, zM,nR,nM,nP),

(4)

where G =
(
gab
)

a,b∈D ∈ Rm×m is the growth-rate matrix of individuals in the mutant-resident population,

such that G(x) := G(x, zR, zM,nR,nM,nP) is the growth-rate matrix of a phenotype x ∈ {zM, zR} and

that each entry gab(x) is a sufficiently smooth growth-rate function giving the rate at which a single

individual with phenotype x ∈ {zM, zR} in class b ∈ D produces individuals in class a ∈ D. It is

clear from this formulation that as we have assumed the growth-rate matrix G and its arguments be

identical for mutants and residents (except the first), we have assumed that mutants and residents

experience the exact same environment and thus the only difference in their growth-rate is due to their

own phenotype. In particular, every individual is surrounded by equal number (density) of mutants and

residents. Similarly to the second line of of the resident dynamics (3), R ∈ Rl×l is the growth-rate matrix

of the k − 1 remaining resident phenotypes in each class and of the rest of the ecological community.

Relative mutant-resident dynamics Because we are interested in the relative dynamics of mutants

zM ∈ Z and (ancestral) residents zR ∈ Z, it will be convenient to change the dynamical variables by

considering the frequency of mutants pM,a =
nM,a

na
in class a ∈ D, where na = nM,a+nR,a is the total density

of mutants and residents in class a ∈ D. The vectors p = (pM,a)a∈D ∈ [0, 1]m and n = (na)a∈D ∈ Rm+
are thus the vectors for class-specific mutant frequencies and class-specific total densities of (mutant and

ancestral resident) individuals, respectively. We emphasise that since we are interested in the relative
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dynamics of mutants and their ancestral residents, the mutant frequency pM,a is defined with respect

to mutants and their ancestral residents in class a ∈ D, not all k resident phenotypes present in the

population.

We can now rewrite the mutant-resident dynamics (4) in terms of the class-specific mutant frequencies

p and the class-specific total population densities n as

ṗ = F(zM, zR, zM,p,n,nP)p

ṅ = Ḡ(zR, zM,p,n,nP)n

ṅP = R(zR, zM,nR,nM,nP),

(5)

where Ḡ = (ḡab)a,b∈D, with ḡab = gab(zM)pM,b + gab(zR)pR,b , is the average mutant-resident growth-rate

matrix, and where F = (fab)a,b∈D ∈ Rm×m is the relative growth-rate matrix (see Appendix 6.1 for a

relative growth rate matrix for an arbitrary phenotype). The entries of the relative growth-rate matrix

for mutants F(zM) := F(zM, zR, zM,p,n,nP) are obtained by differentiation

ṗM,a =
d

dt

(
nM,a
na

)
=
ṅM,ana − nM,a ṅa

n2a

=
1

na
[ṅM,a − pM,a ṅa ]

=
∑

b

nb

na
gab(zM)pM,b − pM,a

∑
b

nb

na
ḡab , ∀a ∈ D,

(6)

where we have used equations (4) and (5) and the definition of class mutant frequencies pM,a . Motivated

by Lion (2018b, Appendix A.3), it will be useful to rewrite (6) by subtracting and adding a term∑
b
nb
na
ḡabpM,b , to obtain

ṗM,a =
∑

b

nb

na
[gab(zM)− ḡab ] pM,b +

∑
b

nb

na
ḡabpM,b − pM,a

∑
b

nb

na
ḡab ∀a ∈ D. (7)

This allows us to partition the mutant relative growth-rate matrix as

F(zM) = Fsel(zM) + F̄pc, (8a)

where Fsel = (f selab )a,b∈D ∈ Rm×m and F̄pc = (f̄pcab )a,b∈D ∈ Rm×m with entries, respectively, given by

f selab (zM) =
nb

na
[gab(zM)− ḡab ] (8b)

and

f̄pcab =


nb
na
ḡab ∀b 6= a

−
∑

c 6=a
nc
na
ḡac , for b = a.

(8c)

Notice that f selab (zM) is proportional to the difference between mutant gab(zM) and average growth-rates ḡab
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and thus captures the effect of selection (hence the superscript “sel”) on mutant allele frequency change.

The second term f̄pcab is proportional only to average growth-rates ḡab and hence captures non-selective

effects on allele frequency change due to transitions between classes. Since the relative growth-rate of

an individual due to the term f̄pcab is non-selective and thus independent of ones phenotype (see also

Appendix 6.1), the argument present e.g., in f selab (zM) is not included in f̄pcab , but it should nevertheless

be kept in mind that F̄pc depends both on mutant and resident traits. Such non-selective transitions

between classes nevertheless affect the dynamics of the mutant frequency, for instance if one class of

individuals, say newborns (or individuals living in a good habitat) have higher reproductive success than

older individuals (individuals living in bad habitat). Such deterministic change of allele frequency due to

non-selective forces have generally been referred to as changes due to “transmission” (following Barton

and Turelli, 1991; Kirkpatrick et al., 2002), since they result from alleles changing contexts (e.g., from

good habitat to bad habitat, from young to old individual; see Kirkpatrick et al., 2002 for more details on

the concept of the context of an allele and a discussion of transmission as an evolutionary force). When

the different contexts an allele can reside in are demographic classes, the changes in allele frequency due

to transmission have been called “passive changes” (Grafen, 2015; Lion, 2018a,b) and we adhere to this

terminology (hence the superscript “pc”).

2.3 Properties of growth-rates

In this section we present three properties that relate mutant-resident dynamics (4) to resident dynamics

(3) and then we apply them to the mutant relative growth-rate matrix (8). These properties and their

applications play a central role in Section 3 when discussing mutant-resident dynamics for closely similar

phenotypes and in Section 4 when proving our main result. The consistency relation given below is fully

analogous to the relation given in (Geritz et al., 2002; Dercole, 2016; Dercole and Geritz, 2016) and the

proposition given below is an analogue to a property derived for unstructured populations in (Meszéna

et al., 2005; Dercole, 2016).

Consistency relations:

G(x, zR, zM,nR,nM,nP)
∣∣∣zR=z
zM=z

= H(x, z,n,nP)

R(zR, zM,nR,nM,nP)
∣∣∣zR=z
zM=z

= P(z,n,nP),
(9)

for any x ∈ Z. This relation says that the growth-rate of any individual from any population and species

in the ecological community, when all (other) individuals in the population are of the same phenotype

z ∈ Z, is its growth-rate in a resident ecological community (3) where n = nR + nM.
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Corollary:

∂

∂zM
G(zM, zR, zM,nR,nM,nP)

∣∣∣zR=z
zM=z

=
∂

∂z
H(z, z,n,nP)

∂

∂zM
G(zR, zR, zM,nR,nM,nP)

∣∣∣zR=z
zM=z

= 0,

(10)

This property follows immediately from the Consistency relation describing the effect that a mutant

phenotype of an individual has on its own growth-rate. Trivially, residents don’t have a mutant phenotype

and so there is no such effect for the resident growth matrix. The same is true also for the matrix R,

but as we don’t need the Corollary for R we haven’t included it here.

Proposition:

∂

∂zM,a
G(x, zR, zM,nR,nM,nP)

∣∣∣zR=z
zM=z

=
∂

∂za
H(x, z,n,nP)pM,a , (11)

for any x ∈ Z and for all a ∈ D. This property says that the effect that all mutants in class a ∈ D in

the mutant-resident community (4) have on the individual growth-rate (left-hand side of (11)), is equal

to the effect that all individuals in class a ∈ D in the resident community (3) have on the individual

growth-rate, weighted with the probability that given a random pairwise encounter with an individual of

class a ∈ D, it is a mutant (right-hand side of (11)). This property is a consequence of the growth-rate

function being constructed in terms of pairwise interactions between individuals (generalized mass action

law), and is a direct generalization of the property 4 given for unstructured populations in (Dercole, 2016)

(see also Meszéna et al., 2005).

Properties of relative growth-rates Here we apply the above properties (9)-(11) to the mutant

relative growth rate matrix (8). Substituting the consistency relation (9) into (8) implies that the

selection component of the relative growth-rate matrix Fsel = 0 is a null matrix for phenotypic equality

between mutant and its (ancestral) resident, therefore

F(zM)
∣∣∣zR=z
zM=z

= F̄pc
∣∣∣zR=z
zM=z

, (12a)

where

fab(zM)
∣∣∣zR=z
zM=z

= f̄pcab

∣∣∣zR=z
zM=z

=


nb
na
hab(z) ∀b 6= a

−
∑

c 6=a
nc
na
hac(z), for b = a.

, (12b)

for all a, b ∈ D. We thus confirm that under phenotypic equality, selection (i.e., the component Fsel(zM))

plays no role (as it should not) and that the change in class-specific mutant frequencies is non-trivial

and purely determined by the matrix F̄pc. That is, under phenotypic equality it is the “passive changes”

that determines the dynamics of class-specific mutant frequencies (Taylor, 1990; Stubblefield and Seger,

1990; Charleworth, 1994; Grafen, 2015; Lion, 2018a,b).
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The Corollary (10) and the Proposition (11) immediately imply, respectively, that

∂

∂zM
f selab (zM)

∣∣∣zR=z
zM=z

=
nb

na

∂

∂z
hab(z)(1− pM,b) (13a)

∂

∂zM,c
f selab (zM)

∣∣∣zR=z
zM=z

= 0, (13b)

for all a, b, c ∈ D. Analogously to above, both properties describe the effect that a mutant phenotype

has on the mutant relative growth-rate. The property (13a) follows from the fact that the effect of a

mutant phenotype on ones own growth-rate is ∂
∂zhab(z) if one is a mutant and ∂

∂zhab(z)pM,b if one is an

average (random) individual in class b ∈ D. The property (13b) in turn follows from the fact that in a

well-mixed population all individuals experience the exact same social environment and hence the effect

that mutants in class c ∈ D have on a mutant growth-rate and an average growth-rate are equal.

3 Mutant-resident dynamics for nearby phenotypes

In this section, we will study the relative mutant-resident dynamics (5) for closely similar phenotypes. To

prove the “invasion implies substitution”-principle by using a timescale separation argument, we wish

that for closely similar phenotypes the mutant frequency in the population is a much slower dynamical

variable than all other dynamical variables in the model. If so, the fast dynamical variables would then

have enough time to reach their steady state (or at least to be sufficiently close to it) and thus could be

considered as constant arguments of the (much slower) evolutionary dynamics of the mutant frequency.

To check the timescale of all dynamical variables present in the relative mutant-resident dynamics (5),

let zM = zR + δ and let us Taylor expand (5) up to the second order about δ = 0,

ṗ = F(zM)
∣∣∣
δ=0

p + δ
d

dδ
F
∣∣∣
δ=0

p +O(δ2)

ṅ = Ḡ
∣∣∣
δ=0

n + δ
d

dδ
Ḡ
∣∣∣
δ=0

n +O(δ2)

ṅP = R
∣∣∣
δ=0

+ δ
d

dδ
R
∣∣∣
δ=0

+O(δ2),

(14)

which can be rewritten using (9) and (12) as

ṗ = F̄pc
0 p + δ

d

dδ
F
∣∣∣
δ=0

p +O(δ2)

ṅ = H(z)n + δ
d

dδ
Ḡ
∣∣∣
δ=0

n +O(δ2) (15)

ṅP = P + δ
d

dδ
R
∣∣∣
δ=0

+O(δ2)

where F̄pc
0 := F̄pc|δ=0 is as given in (12). From these equations, we can see that as all variables p,n

and nP fluctuate at a rate dominated by the terms of order O(1); that is, they are all fast population

dynamical variables. Or, in other words, none of the dynamical variables p,n nor nP are (at least not

purely) slow evolutionary variables dominated by the terms of order O(δ). This is true in particular for

the class-specific mutant frequencies p and also for the mean mutant frequency pM =
∑

a
na
n pM,a in the
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population (Appendix 6.2). Since there are no purely slow evolutionary variables, a timescale separation

can’t be readily performed.

In the next Section 3.1, we show that an average mutant frequency weighted by class reproductive values

is the (purely) slow evolutionary variable enabling a timescale separation argument to be made. In the

following Section 3.2, we then find the steady state to which the fast population dynamical variables

approach to, and then in Section 4 we use these results to prove the “invasion implies substitution”-

principle.

3.1 Class reproductive value weighted average mutant frequency

To find a purely slow evolutionary variable that tracks changes in class mutant frequencies p, thus

tracking also the mean mutant frequency in the population pM, we take an average of p over all pM,a with

weights chosen such that the change of this weighted average mutant frequency vanishes under phenotypic

equality. For the moment, let α be an arbitrary vector of weights normalized such as
∑

a∈D αa = 1, and

lets denote the average mutant frequency weighted by α with

pα := αp =
∑
a∈D

αapM,a . (16)

Because we are interested in the dynamics of pα, we follow the steps taken in Lion (2018b, Appendix

A.3), and differentiate with respect to time t and obtain

ṗα = α̇p + αṗ

=
[
α̇ + αF̄pc

]
p + αFsel(zM)p,

(17)

where we have used (5) and (8). Now, the class reproductive values are defined such that for any frequency

distribution p they “cancel” the class transitions due to “passive changes” or transmission between classes

(Taylor, 1990; Leturque and Rousset, 2002; Grafen, 2015; Lehmann and Rousset, 2014; Lion, 2018b),

rendering the dynamics of the weighted frequency (17) solely due to terms of class transitions due to

selection. This requirement is satisfied precisely when the term in the brackets in (17) is zero for all p,

which is true whenever

α̇ = −αF̄pc, (18)

where F̄pc is as in (8). Note that as f̄pcaa = −
∑

b 6=a f̄
pc
ab , the matrix F̄pc is the infinitesimal generator

matrix for a (backward) continuous-time mutant-resident Markov chain α on the state space D. Using

(18) as the definition for class reproductive values, the dynamics of the weighted mutant frequency (17)

reduces to

ṗα = αFsel(zM)p. (19)
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We have thus obtained that since α by definition satisfies (18), the dynamics of the weighted mutant

frequency pα is determined purely by the selection component of the relative growth rate matrix as given

in (19) (see for an alternative derivation in terms of individual reproductive values, Appendix 6.5.4).

Interestingly, as we have made no assumptions on the magnitude of δ, the above equation is valid for

arbitrary phenotypic values zM, zR ∈ Z and thus for arbitrary strength of selection. Moreover, because

Fsel|δ=0 = 0 is a null matrix (12), the dynamics of pα under phenotypic similarity (δ small) is

ṗα = δα
d

dδ
Fsel(zM)

∣∣∣
δ=0

p +O(δ2). (20)

Because the dynamics of pα for closely similar phenotypes is dominated by the terms O(δ), we will be

able to track mutant frequencies p (and pM) purely in slow evolutionary time by studying the δ-term of

pα. The average mutant frequency weighted by class reproductive values pα is thus a well suited proxy

for the slow evolutionary dynamics of pM.

Class reproductive values as fast and slow variables Whenever the class reproductive values α

are defined as in (18), the phenotypic values zM and zR as well as the fluctuations in the dynamical

variables p,n,nP, may be arbitrary. The class reproductive values are therefore defined both in fast

and slow time (depending whether the dynamical variables are at their steady state or not) as well as

for any strength of selection (which is determined by the magnitude of δ). If the variables n,nP under

phenotypic equality δ = 0 are at their steady state n̂, n̂P and thus constant in time, the steady state

class reproductive values α̂ are solvable from

0 = α̂F̂pc
0 , (21)

where F̂pc
0 = F̄pc

0 (z, n̂, n̂P). The class reproductive values α̂ can thus be defined as the left eigenvector

of F̂pc associated with the eigenvalue 0. This is the standard definition of the class reproductive values

that have long been used as allele frequency weights in class-structured models (e.g., Stubblefield and

Seger, 1990; Taylor, 1990; Taylor and Frank, 1996; Leturque and Rousset, 2002; Rousset and Ronce,

2004; Rousset, 2004). Therefore, α̂a can be interpreted as the asymptotic probability (looking backward

in time) that the ancestral lineage of a random individual was in class a ∈ D. That is, α̂a gives the

long-term contribution of all genes in class a ∈ D to the future composition of the population (e.g.,

Rousset and Ronce, 2004, p. 131; Lehmann, 2014, eq. 7; Lion, 2018b, p. 624).

3.2 Steady states and the critical and perturbed manifolds

In Section 3.1, we found that the slow evolutionary dynamics of the weighted average mutant frequency

pα (19) is a function of the fast population dynamical variables α,p,n and nP, and that under phenotypic

similarity (δ small) the dynamics of pα (20) is dominated by the terms of order O(δ) and the dynamics

of α,p,n and nP by the terms of order O(1). Under phenotypic equality (δ = 0) it is thus sufficient to
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study

α̇ = −αF̄pc
0 (z,n,nP)

ṗ = F̄pc
0 (z,n,nP)p

ṅ = H(z, z,n,nP)n

ṅP = P(z,n,nP),

(22)

where we used (15), (19) and where we have for clarity included all the arguments. Therefore, in fast

population dynamical time, the variables (α,p,n,nP) fluctuate and are expected to reach their steady

state while the weighted mutant frequency pα stays constant. The steady state (α̂, p̂, n̂, n̂P) of (22)

must, by definition, satisfy

0 = α̂F̄pc
0 (z, n̂, n̂P)

0 = F̄pc
0 (z, n̂, n̂P)p̂

0 = H(z, n̂, n̂P)n̂

0 = P(n̂, n̂P).

(23)

We recall from Section 2.1 that the equilibrium solution (n̂, n̂P) for the bottom two equations exists and

is hyperbolically stable (by assumption), and from Section 3.1 we know that the steady state α̂ exists

and can be calculated from (21). The remaining task is to find the steady state p̂, which can be solved

from

F̄pc
0 (z, n̂, n̂P)p̂ = 0 (24)

⇐⇒∑
b

f̄pcab (z, n̂, n̂P)
∣∣∣
δ=0

p̂M,b =
∑

b

nb

na
hab(z, z, n̂, n̂P)(p̂M,b − p̂M,a) = 0 ∀a ∈ D, (25)

and is given by

p̂ = (p̂M,1, . . . , p̂M,m) = (p, . . . , p), (26)

where the class-specific mutant frequencies pM,a in all classes a ∈ D are equal. Notice that any value of

p (biologically meaningful values lie between 0 and 1) gives a solution to (24) and hence the complete

solution to (24) consists of infinite number of equilibria (which lie on a line; note that such a degenerate

solution results from the fact that F̄pc
0 is a non-invertible matrix, Appendix 6.3). The exact value

of p ∈ [0, 1] to which the class mutant frequencies pM,a approach to, ∀a ∈ D, depends on the initial

condition p(t = 0). Interestingly, since by definition pα(t) = α(t)p(t) for all t as given in (16), and

since under phenotypic equality the weighted average frequency is constant in fast population dynamical

time (ṗα = 0 as shown in Section 3.1, but note that in slow time pα is no longer a constant), we must

have that α(0)p(0) = pα(0) = pα(t) = limt→∞ pα(t) =
∑

a α̂a p̂M,a = p, and so p̂M,a = p = pα(t) for all
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a ∈ D and for all t; that is, the asymptotic mutant allele frequency in each class is equivalent to the

reproductive value weighted mutant frequency.

We have thus obtained that whenever the mutant and resident phenotypes are equal δ = 0, the dynamics

given by system (22) approaches in fast population dynamical time a steady state (α̂, p̂, n̂, n̂P), which

is solved from (23). We represent the infinite number of equilibrium points (α̂, p̂, n̂, n̂P) satisfying (23)

as the set

M0 = {(α̂, p̂, n̂, n̂P) ∈ ∆m × [0, 1]m × Rm+l
+ | p̂M,a = pα ∀a ∈ D}, (27)

where ∆m is the mth simplex and the subscript 0 indicates that we are studying the dynamics for

the case where δ = 0 (see Figure 3, top panel). The set M0 is the so-called critical (or equilibrium)

manifold (Jones 1995, Definition 1, p. 49; Kuehn 2015, p. 12, see also Appendix 6.4.2 and recall that a

manifold is here a sub-space of the original state space). This M0 manifold defines in fast population

dynamical time the set of equilibrium (or critical) points to which the dynamical system with phenotypic

equality δ = 0 approaches to. As such, it can be thought of as the state space for the average weighted

mutant frequency pα when δ = 0 (see Figure 3). Because (n̂, n̂P) is hyperbolic and the critical manifold

M0 is compact (the set of points are bounded and closed) consisting of a neutral line of equilibria, it

follows that M0 is compact and a normally hyperbolic invariant manifold (Appendix 6.4.2). Roughly

speaking, invariant manifold is normally hyperbolic if the dynamics near the manifold is governed by the

hyperbolicity condition while the dynamics on the manifold is neutral and thus invariant.

Slow manifold As elucidated above, the critical manifold M0 is compact and normally hyperbolic,

and therefore the results of Fenichel (1971, 1974, 1977, 1979, see also Appendix 6.4 and the references

within) guarantee that a perturbed manifold Mδ, the so-called slow manifold (Hek, 2010; Jones, 1995),

for the mutant-resident dynamics under phenotypic closeness exists, is close to, and has identical stability

properties asM0 (see also Figure 3, bottom panels). This slow manifoldMδ is thus a set of points that

are invariant under the flow of the full mutant-resident dynamics for small but nonzero δ (unlike inM0,

however, the points in Mδ are not equilibria), while in the neighborhood of Mδ and M0 the dynamics

of the system (22) are equivalent. In other words, because the dynamics under phenotypic equality given

by (22) approaches the critical manifoldM0, so does the dynamics under phenotypic closeness approach

the slow manifoldMδ (see Figure 3 and also, e.g., Jones 1995, Theorem 3, p. 62 and Theorem 6, p. 74).

Moreover, the dynamics of pα when restricted to M0 (in slow evolutionary time) and the dynamics of

pα when restricted to Mδ or to its neighborhood (in fast and slow time) are also equivalent (see a more

detailed discussion in Appendix 6.4). This result plays a fundamental role in Section 4, where we prove

the “invasion implies substitution”-principle by studying the singularly perturbed slow evolutionary

dynamics of pα.
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Figure 3: Top panel: Critical and slow manifoldsM0 andMδ, respectively. The critical manifoldM0

is obtained from the mutant-resident dynamics under phenotypic equality (δ = 0) by solving (23) and it
consists of a line (infinite number) of equilibria. For the system (5) where δ is small but nonzero there
exists a slow manifold Mδ, which is close to M0 and has the same dynamical properties as M0 (see
bottom panels). Bottom left panel: The fast population (31) and slow evolutionary (32) dynamics of
the singular system where δ = 0. The thin lines with arrows represent the fast dynamical convergence
given by (31) to M0 (where class-specific mutant frequencies are the weighted frequencies pα), and the
thick line with arrows represents the slow evolutionary dynamics of pα given by (32) on M0 (in this
example mutant frequency increases from 0 to 1). Bottom right panel: The mutant-resident dynamics
(29) or (30) where δ is small but nonzero. The results of Fenichel (1979) say that since the (fast) dynamics
for δ = 0 (bottom left panel) approaches M0 so does the dynamics for small but non-zero δ approach
Mδ. Moreover, the dynamics of pα on Mδ and its neighborhood, is equivalent of the (slow) dynamics
of pα on M0 (left panel).
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4 Invasion implies substitution

We now prove the “invasion implies substitution”-principle for a model presented in this paper whose

resident dynamics is given in (3). We prove the principle by separating the timescales at which the

various dynamical variables of the mutant-resident model (4) operate by using the weighted average

mutant frequency pα. Because the dynamics of pα is a function of class reproductive values α, mutant

frequencies p, (ancestral) resident densities n and the densities nP of the other resident phenotypes and

the rest of the ecological community, the complete mutant-resident dynamics for arbitrary phenotypic

values zR, zM ∈ Z (δ arbitrary) can be written by extending (5) as:

ṗα = αFsel(zM, zR, zM,p,n,nP)p

α̇ = −αF̄pc(zR, zM,p,n,nP)

ṗ = F(zM, zR, zM,p,n,nP)p

ṅ = Ḡ(zR, zM,p,n,nP)n

ṅP = R(zR, zM,p,n,nP),

(28)

where we have for clarity included all the arguments. Next, we write the dynamics of (28) under

phenotypic similarity in both fast and slow time, and then obtain two distinct limiting singular equations

(by letting δ go to 0) that can be easily analyzed. Finally, we glue them back together by perturbing the

obtained singular equations. By doing this the singular system (δ = 0) serves as an approximation to a

mutant-resident dynamics under phenotypic similarity (δ small but nonzero) such that all its dynamical

properties are preserved.

Let t denote the fast population dynamical time (the original time used throughout this paper) and let

τ denote the slow evolutionary time (see also Figure 1). Setting τ = δt we obtain the relation dτ = δdt

and then write the mutant-resident dynamics for closely similar phenotypes (δ small but nonzero) either

using the original time variable t

dpα(t)

dt
= δα

d

dδ
Fsel(zM)

∣∣∣
δ=0

p +O(δ2)

dα(t)

dt
= −α(t)F̄pc

0 +O(δ)

dp(t)

dt
= F̄pc

0 p(t) +O(δ)

dn(t)

dt
= H(z)n(t) +O(δ)

dnP(t)

dt
= P +O(δ)

(29)
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or using the new time variable τ

δ
dpα(τ)

dτ
= δα

d

dδ
Fsel(zM)

∣∣∣
δ=0

p +O(δ2)

δ
dα(τ)

dτ
= −α(τ)F̄pc

0 +O(δ)

δ
dp(τ)

dτ
= F̄pc

0 p(τ) +O(δ)

δ
dn(τ)

dτ
= H(z)n(τ) +O(δ)

δ
dnP(τ)

dτ
= P +O(δ).

(30)

Since we haven’t yet taken any limits the two systems (29) and (30) are identical, the only difference is

the notation. Let’s now take the limit δ → 0 and obtain two limiting singular equations, one for fast

population dynamical time

dpα(t)

dt
= 0

dα(t)

dt
= −α(t)F̄pc

0

dp(t)

dt
= F̄pc

0 p(t)

dn(t)

dt
= H(z)n(t)

dnP(t)

dt
= P

(31)

and the second for slow evolutionary time

dpα(τ)

dτ
= α

d

dδ
Fsel(zM)

∣∣∣
δ=0

p

0 = −α(τ)F̄pc
0

0 = F0p(τ)

0 = H(z)n(τ)

0 = P.

(32)

This confirms that in the fast population dynamical time (31) the average mutant frequency pα stays

constant and that the mutant-resident dynamics reaches the critical manifold M0 as found in (27), and

that the algebraic expression for M0 can be obtained directly from (32).

Because the variables α,p,n,nP in (32) have reached their critical manifold M0, we evaluate the right
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hand side of the first line in (32) at the M0 to obtain

[
α
d

dδ
Fsel

∣∣∣
δ=0

p

]
M0

=

[∑
a

αa

∑
b

(
∂

∂zM
f selab (zM) +

∑
c

∂

∂zM,c
f selab (zM)

)
δ=0

pM,b

]
M0

=

[∑
a

αa

∑
b

nb

na

∂

∂z
hab(z, z,n,nP)pM,b(1− pM,b)

]
M0

= pα(1− pα)
∑

a

∑
b

α̂a

n̂a

∂

∂z
hab(z, z, n̂, n̂P)n̂b ,

(33)

where we used (13). Therefore, by defining v = (va)a∈D as a vector of reproductive values va = αa
na

of an

individual in class a ∈ D (see Appendix 6.5 for more details), then at M0 we have

v̂a =
α̂a

n̂a
, (34)

and using (33) we can write the slow (singular) mutant-resident evolutionary dynamics (32) with a single

equation as

dpα(τ)

dτ
= pα(1− pα)

∑
a,b

v̂a
∂hab(z)

∂z
n̂b (35)

or in a matrix notation as

dpα(τ)

dτ
= pα(1− pα)v̂

∂H(z)

∂z
n̂. (36)

Alternatively, one can express (36) in terms of a probability distribution over all classes, i.e. in terms

of class frequencies defined as πa = na
n ,∀a ∈ D where n =

∑
a na is the total population size. Because

πn = n, where π = (πa)a∈D, one could also scale the individual reproductive values as ν = vn (see

Appendix 6.5) to get

dpα(τ)

dτ
= pα(1− pα)ν̂

∂H(z)

∂z
π̂. (37)

The two formulations (36) and (37) are equivalent, each providing a different perspective on the same

evolutionary process. As the matrix H gives the individual growth-rates, the expression in (36) describes

how all (mutant) individuals in different classes contribute to the mutant evolutionary dynamics. In (37),

the focus is on an average carrier of the mutant allele and how that representative individual contributes

to the mutant dynamics when weighted over all classes the carrier of the mutant can be in. The vector

π̂ thus gives the stationary distribution of classes a mutant, which is sampled from the collection of all

mutants (i.e., the mutant lineage), can be in.

Now, whichever formulation (36) or (37) is more convenient, geometric singular perturbation theory

guarantees that after initial convergence, the mutant-resident dynamics (29)-(30) in the neighborhood

of the manifold Mδ is equivalent to (can be approximated by) the dynamics given by the two singular

systems (31) and (32) (see Figure 3 and Appendix 6.4). In particular, the dynamics of the weighted
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mutant frequency pα for small but nonzero δ near Mδ can be approximated by the dynamics given in

(36) and (37) (in Appendix 6.4 the Corollary 3 and the Section 6.4.4). We have thus proved the below

”invasion implies substitution”-proposition and its Corollary, given the following assumption holds.

Assumption (A). Assume that the resident ecological community as defined in (3) contains a hyper-

bolically stable equilibrium (n̂, n̂P) ∈ Rm+l to which the resident population converges to and then stays

at.

Invasion implies substitution-proposition. Consider an ecological community with a polymorphic

demographically (physiologically) structured population as defined in (3), and assume that (A) holds.

Suppose that one of the phenotypes in the population undergoes a mutation, and that the mutant phenotype

zM ∈ Z and its ancestral (resident) phenotype zR ∈ Z are closely similar, i.e. δ = zM−zR for some small

δ 6= 0. Then, for sufficiently large time t and/or small δ, the dynamics of the weighted mutant frequency

pα in the resulting mutant-resident ecological community (28) can be approximated on the original time

scale by

dpα(t)

dt
= δpα(1− pα)S(z) +O(δ2), (38)

where the frequency-independent selection gradient S(z) can be expressed as

S(z) = v̂
∂H(z, z, n̂, n̂P)

∂z
n̂, (39a)

or alternatively as

S(z) = ν̂
∂H(z, z, n̂, n̂P)

∂z
π̂. (39b)

Successful invasion of a mutant implies the substitution of the resident.

Corollary (C). The subset of Z where the assumption (A) holds and where the selection gradient (39)

is nonzero indicates all the possible evolutionary trajectories of the phenotype under selection.

5 Discussion

We provided a proof of an “invasion implies substitution”-principle and gave a positive answer to all three

questions (I)-(III) posed in Section 1 for scalar-valued, polymorphic and well-mixed clonally reproducing

populations that are part of a larger ecological community and that are structured into finitely many

demographic (or physiological) classes.

The separation of ecology and evolution We proved the “invasion implies substitution”-principle

by separating the population dynamical and evolutionary timescales using the weighted average mutant

frequency, and then singularly perturbed the mutant-resident dynamics given as ordinary differential

equations (Fenichel, 1979; Wiggins, 1994; Jones, 1995; Hek, 2010; Kuehn, 2015; Dercole and Geritz, 2016)
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using the phenotypic deviation δ as the perturbation parameter. In this method, which is fully detailed

in Appendix 6.4 for the present context, one proceeds in three steps. First, one must be able to write the

mutant-resident dynamics for small values of δ in a fast-slow form ṗ = δσ(p, x, δ), ẋ = ϕ(p, x, δ), where

p represents a weighted mutant frequency in the population and x should capture all the fast (population

dynamical) variables. In Section 3, however, it became apparent that for small δ all dynamical variables

are fast variables, including class-specific and mean mutant frequencies, and so the model couldn’t readily

be written in the above fast-slow form. The solution here was to introduce a new variable which operates

purely in slow evolutionary time and is a proxy for the mutant frequency. In Section 3.1 we showed that

such a variable is the average mutant frequency weighted by class reproductive values (Taylor, 1990;

Leturque and Rousset, 2002; Rousset, 2004; Lehmann and Rousset, 2014; Engen et al., 2014; Lehmann

et al., 2016).

Once the mutant-resident dynamics is in the fast-slow form, in the second step one starts analyzing

the dynamics of the weighted mutant frequency p. Because studying its dynamics for nonzero δ is a

complicated task, one hopes that the dynamics of the much easier model where δ = 0 could serve as an

approximation for small but nonzero δ. To achieve this, one must first scale time by using δ as the scaling

parameter and then write the mutant-resident dynamics in both fast t and slow time τ = δt while letting

δ go to zero. In this step one thus analyzes two singular systems, one in fast time where p is constant

and x fluctuates according to ẋ = ϕ(p, x, 0), and the other in slow time where x is constant (i.e. is at

the steady state) and p fluctuates according to d
dτ p = σ(p, x, 0). For us to be able to draw conclusions

from this singular system the variable x must converge to its steady state in fast time. In our model this

follows directly from the assumption that the resident steady state (n̂, n̂P) is hyperbolically stable, i.e.

the real part of all eigenvalues of the Jacobian of the linearized resident dynamics are all negative.

In the third and final step one perturbs the above singular equations by applying geometric singular

perturbation results for ordinary differential equations developed in Fenichel (1971, 1974, 1977, 1979).

Provided certain conditions are satisfied, one can then equate the dynamics of the singular equations

where δ = 0 with the original system where δ is small but nonzero (i.e. the perturbed system). Conve-

niently, the sufficient condition for such a singular perturbation to be possible is that the steady state is

hyperbolic which is true by assumption. Therefore, if invasion implies substitution holds for the singular

system, it holds also for the original (perturbed) mutant-resident dynamics whenever the steady state is

hyperbolic.

The above-mentioned procedure can be applied to more general (demographically) structured models

than the one presented in this paper. First of all, the singular perturbation results in Fenichel (1971, 1974,

1977, 1979) allow a direct generalization of our result to models with attractors other than equilibria,

e.g. to limit cycles where population experiences deterministic periodic fluctuations. Because including

more complicated attractors would require some amount of additional notions (e.g. time-dependent

reproductive values as e.g. discussed in Lion, 2018b) we choose to leave this generalization for future

work. Second, more recent but equivalent results on invariant manifolds for semiflows (Bates et al., 1998,

2000; Kuehn, 2015) accommodate a more general demographic (physiological) structure, in particular,
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allowing for e.g. continuous age or size distributions. However, calculating the hyperbolicity of steady

states is considerably more involved in such cases (Greiner et al., 1994; Gyllenberg, 2007; Kuehn, 2015).

Selection gradient as a map between ecology and evolution The expression for the selection

gradient (39) was obtained directly from the timescale separation argument given in Section 4. We found

that the selection gradient can indeed be written as conjectured in (2), but with relatedness matrix R

playing no role. This is because we assume infinitely large population sizes with no spatial structure

(i.e., a well-mixed population) and hence genealogical relationships between any two individuals do not

affect the direction of selection. Nevertheless, the selection gradient can be written solely in terms of

resident population dynamical variables and resident growth-rates. This is practical since one can then

calculate directly from the resident dynamics which mutations can and cannot fix into the population,

that is, one can calculate the fate of the mutation before the mutation actually takes place. In this sense,

the selection gradient is a ”map” from the ecological to the evolutionary model (see Figure 1).

An analogous selection gradient for large class-structured populations with arbitrary social interactions

in a larger ecological community, and thus having the same biological scope, has been previously derived

in Lion (2018a,b). The model and the method obtaining the selection gradient however depart from ours

in that in Lion (2018a,b) the polymorphism is assumed tightly clustered around its mean and that the

dynamical equations were formulated in terms of change in mean phenotype. Such a formulation provides

links between the dynamics of the mean trait value and the “invasion implies substitution”-principle and

is thus complementary to our approach. The drawback in this approach, however, is that the timescale

of dynamical variables such as class-specific mutant frequencies is not easily accessible. Consequently,

in particular our results on the critical manifold M0 (Section 3.2), allows us to confirm that as the

class-specific trait variance is proportional to the class-specific mutant frequencies, it is indeed a fast

variable approaching the population mean trait variance, a result that was left open in Lion (2018a). We

conjecture that the ideas on tightly clustered phenotypes developed in Meszéna et al. (2005) together

with the results derived in this paper fully justify the selection gradient presented in Lion (2018a,b).

Long-term evolutionary dynamics The main implication of the “invasion implies substitution”-

principle is that it indicates the set of phenotypes that can invade and substitute their ancestral pheno-

types, thus providing a tool to study the long-term evolutionary dynamics of the trait under selection

(panel C in Figure 1 and Corollary in Section 4). The sequential invasion and substitution can occur

whenever the steady state is hyperbolic, thus excluding the possibility of bifurcations that may lead to

catastrophic extinctions, and whenever the selection gradient S(z) is nonzero, i.e. as long as we are

away from the extrema of the adaptive landscape. Such extrema identify the phenotypic values where

invasion no longer implies substitution and where more complicated evolutionary behaviour can occur

(Geritz et al., 1998; Priklopil, 2012; Dercole and Geritz, 2016). Nevertheless, because we have formulated

our model for arbitrarily polymorphic resident populations, the “invasion implies substitution”-principle

holds whenever the selection gradient is non-zero (and the steady state is hyperbolic). This is particularly

true after evolutionary dynamics converges and escapes a phenotypic value that is a branching point:
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“invasion implies substitution”-principle governs the direction of evolution even after the appearance of

new morphs.

5.1 Conclusions

This study is part of a quest aiming at generalizing and formalizing the hypothesis that social traits un-

der frequency and/or density dependent selection are generically subject to directional gradual change,

whenever mutations cause only small deviations to the phenotype under selection (and in the absence of

genetic constraints). Further, directional selection should be quantifiable by a selection gradient that con-

sist of reproductive value and relatedness weighted fitness differentials. In this study this hypothesis was

confirmed for well-mixed ecological communities with demographically (physiologically) class-structured

populations. Our results are directly applicable to several well-known models, such as SIR-models in

epidemiology and stage-structured models in life-history studies, and will be generalized to spatially

structured population with limited disperal in a forthcoming study.
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6 Appendix

6.1 Relative growth-rate for arbitrary phenotypes

In the main text, we derived the dynamics for class-specific mutant frequencies (5)-(8), where we obtained

a partition for the relative growth-rate matrix for a (single) mutant F(zM) = Fsel(zM)+ F̄pc, with a term

F̄pc that is independent of the phenotype of the (single) mutant. Here, we confirm that such a partition

exists independently of the phenotype of the individual whose relative growth-rate we are considering

by proceeding the same way as in the main text, except that we don’t specify the phenotype of the

individual whose relative growth-rate we are calculating. That is, we have

ṗX,a =
d

dt

(
nX,a
na

)
=
ṅX,ana − nX,a ṅa

n2a

=
1

na
[ṅX,a − pX,a ṅa ]

=
∑

b

nb

na
gab(zX)pX,b − pX,a

∑
b

nb

na

(
gab(zM)pM,a + gab(zR)pR,a

)
=
∑

b

nb

na
gab(zX)pX,b − pX,a

∑
b

nb

na
ḡab

=
∑

b

nb

na
gab(zX)pX,b − pX,b

∑
b

nb

na
ḡab + pX,b

∑
b

nb

na
ḡab − pX,a

∑
b

nb

na
ḡab

=
∑

b

nb

na
[gab(zX)− ḡab ] pX,b + pX,b

∑
b 6=a

nb

na
ḡab − pX,a

∑
b 6=a

nb

na
ḡab

(40)

for all a ∈ D, where ḡab = gab(zM)pM,b + gab(zR)pR,b and X ∈ {M,R}. Defining p := pM and 1−p := pR

as the vector of class-specific mutant and resident frequencies, respectively, we can write

ṗX = F(zX)pX

=
[
F̄pc(zX) + F̄pc

]
pX,

(41)

where the entries of F̄pc(zX) and F̄pc(zX), respectively, are

f selab (zX) =
nb

na
[gab(zX)− ḡab ]

f̄pcab =


nb
na
ḡab ∀b 6= a

−
∑

c 6=a
nc
na
ḡac , for b = a.

(42)

Notice that the component that gives the rates at which passive changes occur F̄pc is the same for both

mutant and resident phenotypes. In fact, an analogous expression can be derived for any polymorphism

as long as 1 =
∑

X pX,a for all a ∈ D.

6.2 Mean mutant frequency pM and the dynamics of class frequencies

In the main text, we showed that class-specific mutant frequencies p are both fast population dynamical

and slow evolutionary variables. More precisely, we showed that under phenotypic equality (δ = 0) the
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dynamics is dominated by the terms of order O(1) (Section 3) and that p approaches a line of equilibria

where p̂M,a = p for all a ∈ D, after which the dynamics is dominated by the terms of order O(δ) along this

line of equilibria (Section 3.2). Here, we confirm that the same applies for the mean mutant frequency

in the total population pM = πp =
∑

a πapM,a .

To confirm this, it is sufficient to show that π approaches in fast population dynamical time an isolated

equilibrium which persist under perturbation of δ. If this is so, then the dynamics of pM is first dominated

by the terms of order O(1) and then of order O(δ) and we get our claim. This is checked immediately from

the following Section 6.2.1 where we detail the dynamics of class frequencies: because by assumption the

steady state n̂ is hyperbolic so is the steady state π̂ in (51) (and thus it persists under perturbations).

6.2.1 The dynamics in terms of class frequencies

In this section we will re-write the resident dynamics (3) and the relative mutant-resident dynamics (5)

in terms of total population densities and class frequencies which are respectively defined as

n =
∑
a∈D

na

πa =
na

n
, a ∈ D.

(43)

Note that since n is a scalar we have the relation

nπ = n. (44)

Resident dynamics The dynamics of the total density is obtained by using (43) and by differentiation

ṅ =
∑

a

na =
∑

a

∑
b

hab(z)nb =
∑

a

∑
b

hab(z)πbn = r(z)n (45)

where r(z) := r(z, z, n,π,nP) =
∑

a
∑

b hab(z)πb is the total mean growth-rate of an individual in

the resident population. The dynamics of class frequencies is obtained by using (43), (45), and by

differentiation

π̇a =
ṅa

n
− πa

ṅ

n
=
∑

b

1

n
hab(z)nb − r(z)πa =

∑
b

hab(z)πb − r(z)πa , ∀a ∈ D, (46)

or in a matrix notation

π̇ = (H(z)− r(z)I)π, (47)

33

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/773580doi: bioRxiv preprint 

https://doi.org/10.1101/773580
http://creativecommons.org/licenses/by-nc-nd/4.0/


where I is the identity matrix. We have thus obtained that the resident dynamics (3) can be rewritten

as

ṅ = r(z)n

π̇ = (H(z)− r(z)I)π

ṅP = P

(48)

Relative mutant-resident dynamics Using (5) and an analogous derivation to the previous section,

we obtain for the relative mutant-resident dynamics

ṗ = F(zM)p

ṅ = r̄n

π̇ =
(
Ḡ− r̄I

)
π

ṅP = R

(49)

where r̄ =
∑

a
∑

b [ḡab(zM)pM,b + ḡabpR,b ]πb is the total mean growth-rate of an individual in the total

population. Notice that alternatively r̄ =
∑

a
∑

b [ḡab(zM)qM,b + ḡabqR,b ], where qX,a =
nX,a

n is the prob-

ability that given an individual is sampled from the total population it is an individual in class a ∈ D

with phenotype zX ∈ {zM, zR}.

Steady state under phenotypic equality In section 3.2, we found that the steady state n̂ = n̂M+n̂R

under phenotypic equality δ = 0 can be solved from

0 = H(z, z, n̂, n̂P)n̂, (50)

and is thus the right eigenvector of the resident matrix H(z, z, n̂, n̂P) associated with the eigenvalue

0. Here, we are interested to express the steady state under phenotypic equality in terms of the total

population size n and class frequencies π. Using Section 2.3, we have

ṅ = r̄
∣∣
δ=0

n = r(z)n

π̇ =
(
Ḡ− r̄I

)
δ=0

π = (H(z)− r(z)I)π,
(51)

where the (non-trivial) solutions n̂ and π̂ are obtained from

0 = r(z, z, n̂, π̂, n̂P)

0 = (H(z)− r(z, z, n̂, π̂, n̂P)I) π̂.
(52)

Using (44) the steady state can be written as

(n̂, π̂) = (n̂,
n̂

n̂
).
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Note that because r(z) in-front of the identity matrix in (51) is scalar-valued, both n̂ and π̂ are the right

eigenvectors of H(z, z, n̂, n̂P) associated with the eigenvalue 0 (this is in fact obvious since we have the

relation nπ = n, i.e. an eigenvector scaled by a scalar is also an eigenvector associated with the same

eigenvalue).

6.3 Infinite number of equilibria in M0

Here, we give an argument as to why the singular system δ = 0 contains infinite number of equilibria.

Because f̄pcaa = −
∑

b 6=a f̄
pc
ab the matrix F̄pc is a transition matrix with an eigenvalue 0. Because the

eigenvalue is solved from 0 = det[F̄pc − 0 · I] = det[F̄pc], the determinant of F̄pc is zero implying that

it is not an invertible matrix and hence F̄pcp doesn’t have a unique isolated solution p (see e.g. Hirsch

et al., 1974, Proposition on p. 80).

6.4 Fenichel’s Theorems

Here, we go through in detail the results of Fenichel (1971, 1974, 1977, 1979) that are relevant for the

“invasion implies substitution”-principle so that our paper is self-contained. This section can be seen as

a general recipe on how to translate any mutant-resident dynamical system (that is expressed in terms

of ordinary differential equations) into a singular perturbation problem, and how the theory of Fenichel

allows us to obtain a complete description of the dynamics for the mutant frequency in the full mutant-

resident model where δ is small but nonzero. We will in most part follow the exposition of Jones (1995);

Hek (2010)(with a small dose of Kuehn, 2015).

The full mutant-resident dynamical model (arbitrary δ) as given in (28) is our starting point

ṗα = αFsel(zM, zR, zM,p,n,nP)p

α̇ = −αF̄pc(zR, zM,p,n,nP)

ṗ = F(zM, zR, zM,p,n,nP)p

ṅ = Ḡ(zR, zM,p,n,nP)n

ṅP = R(zR, zM,p,n,nP).

(53)

This system can be equivalently written as

ṗα = s(pα, x, δ)

ẋ = φ(pα, x, δ)
(54)

where pα ∈ [0, 1] ⊂ R1, x = (α,p,n,nP) ∈ RN+ (with N = 3m+ l), and where

s(pα, x, δ) = αFsel(zM, zR, zM,p,n,nP)p

φ(pα, x, δ) =
(
−αF̄pc(zR, zM,p,n,nP), F(zM, zR, zM,p,n,nP)p, Ḡ(zR, zM,p,n,nP)n, R(zR, zM,p,n,nP)

)
.

(55)
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(H1) The functions s, φ are sufficiently smooth.

Given (H1) the Taylor expansion of (54) about δ = 0 is

ṗα = δσ(pα, x, δ)

ẋ = ϕ(pα, x, δ),
(56)

where

σ(pα, x, δ) =
d

dδ
s(pα, x, δ)

∣∣∣
δ=0

+O(δ)

ϕ(pα, x, δ) = φ(pα, x, 0) + δ
d

dδ
φ(pα, x, δ)

∣∣∣
δ=0

+O(δ2).

(57)

6.4.1 The relative mutant-resident dynamics

As in the main text, let t be the fast (population dynamical) time and τ = δt the slow (evolutionary)

time. For simplicity we will use a dot for the time derivative in fast time (as in the main text) and a

comma for the time-derivative in slow time.

The original (perturbed) fast and slow system We can write, for small but nonzero δ, the system

(56) in both fast and slow time as

ṗα = δσ(pα, x, δ)

ẋ = ϕ(pα, x, δ),
(58)

and

p′α = σ(pα, x, δ)

δx′ = ϕ(pα, x, δ),
(59)

together with (57), and we re-iterate that pα ∈ [0, 1] ⊂ R1 and x ∈ RN+ (with N = 3m+ l).

The singular fast and slow system By taking the limit δ → 0 and by applying (57) we obtain two

singular sets of equations for both fast and slow time:

ṗα = 0

ẋ = ϕ(pα, x, 0) = φ(pα, x, 0)
(60)

and

p′α = σ(pα, x, 0) =
d

dδ
s(pα, x, δ)

∣∣∣
δ=0

0 = ϕ(pα, x, 0) = φ(pα, x, 0).

(61)

36

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/773580doi: bioRxiv preprint 

https://doi.org/10.1101/773580
http://creativecommons.org/licenses/by-nc-nd/4.0/


6.4.2 Fenichel’s Theorems 1 and 2

Throughout, whenever we are referring to a distance between two nonempty sets we use the notion of

Hausdorff distance (see e.g. Kuehn, 2015, p. 55).

Critical manifold The set of critical (equilibrium) points ϕ(pα, x, 0) = 0 is obtained by solving

N equations yielding an 1-dimensional manifold. That is, the set of critical (equilibrium) points is

parametrized by pα. We will denote a (biologically relevant) subset of those points with

M0 ⊂ { (pα, x) | ϕ(pα, x, 0) = 0 }, (62)

which is the critical manifold mentioned in the main text. The manifold M0 is normally hyperbolic

because (by assumption) the linearization of (58) at each point inM0 has exactly one eigenvalue on the

imaginary axis (Jones, 1995, Definition 1, p. 49). This means that the dynamics in the neighborhood of

this manifold is governed by the non-zero eigenvalues and the flow on the manifold is governed by the

zero eigenvalue, i.e. the dynamics on the manifold is neutral (each point is mapped to itself). Note also

that since [0, 1] is compact the following hypothesis holds throughout.

(H2) The set M0 is compact and normally hyperbolic. Moreover, the linearization of (58) at each

point in M0 has exactly one eigenvalue on the imaginary axis and N eigenvalues on the left-side of the

imaginary axis (i.e. the manifold M0 is locally asymptotically stable).

The following theorem is an adaptation from Jones (1995, Theorem 1, p. 49) and Hek (2010, Theorem

2, p. 354).

Fenichel’s Invariant Manifold Theorem 1. Assuming (H1) and (H2), for δ non-zero but sufficiently

small, there exists a (slow) manifold Mδ that lies within O(δ) of M0 and is diffeomorphic to M0.

Moreover, it is invariant under the flow of (58).

Remarks: i) Diffeomorphism guarantees that (58) restricted to Mδ is a small perturbation away from

(61) (Hek, 2010, see the final paragraph on p. 354); ii) This theorem has been also given in Hirsch et al.

(1977). iii) Note that at the moment we only know about the flow on the manifold Mδ and not in the

neighborhood of the manifold (which will be addressed in the following theorem). iv) Jones (1995) uses

the concept of local invariance. This concept, however, is not needed in our model because our critical

manifold has a boundary which can’t be crossed by any trajectory (Jones, 1995, see the final paragraph

on p. 49): the two boundaries of M0 are pα = 0 and pα = 1 which are always (for any model and for

any parameter values) invariant.

The following version of the theorem is an adaptation from (Jones, 1995, Theorem 3, p. 62) and (Hek,

2010, Theorem 4, p. 359).

Fenichel’s Invariant Manifold Theorem 2. Assuming (H1) and (H2), for δ non-zero but sufficiently

small, there exists a stable manifold W s(Mδ) that is diffeomorphic to and lies within O(δ) of W s(M0).

Moreover, W s(Mδ) is invariant under the flow of (58).
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Remarks: i) The stable manifolds W s(M0) and W s(Mδ) are N + 1-dimensional. ii) The solutions in

W s(Mδ) decay to Mδ at an exponential rate (see the next theorem and corollaries), but not to any

specific point. iii) The above theorem holds when we are in a sufficiently close neighborhood ofMδ (this

is being dealt with in Section 6.4.3).

6.4.3 Fenichel’s Theorem 3 and its Corollaries

In this section we will discuss the relative mutant-resident dynamics in the neighborhood D ofMδ (and

hence in the neighborhood of M0). A normally hyperbolic critical manifold M0, by definition, consists

of critical points y0 (where y = (pα, x) and the subscript 0 denotes that the point y is in M0), each of

which has its own stable manifold W s(y0), which is N -dimensional (Hek, 2010, p. 372, Section 6). We

thus have

W s(M0) = ∪y0∈M0W
s(y0). (63)

The point y0 ∈M0 is called a base point and the manifolds W s(y0) are fibers of W s(M0). Note that in

the previous Theorem 2 we saw that W s(M0) perturbs to W s(Mδ). The question is whether W s(y0)

also perturbs to an analogues object. This is not obvious because whereas the point y0 is invariant and

so is W s(y0), its counterpart W s(yδ) for yδ ∈ Mδ is not invariant and so isn’t yδ (cause yδ in general

isn’t an equilibrium). However, as discussed in Hek (2010, second and third paragraph on p. 376, Section

6.1.), the whole family W s(Mδ) is invariant in the sense of the following theorems and corollaries.

Let’s restrict our attention to the neighborhood D of Mδ, where we can safely assume that the linear

terms (eigenvalues) of (58) dominate the dynamics. Lets focus on the trajectories in W s(Mδ) that are in

the neighborhood D. Let y · t denote the application of a flow after time t to an initial point y. Similarly,

A · t denotes the application of the flow after time t to a set A, and y · [t1, t2] is the resulting trajectory

if the flow is applied over the interval [t1, t2] (Hek, 2010, Section 6.1.).

The following definition is an adaptation from Hek (2010, Definition on p. 376) and Jones (1995, Definition

3 on p. 74).

Definition The forward evolution of a set A ⊂ D restricted to D is given by the set

A ·D t = {y · t | y ∈ A and y · [0, t] ⊂ D}. (64)

The following version of the theorem is an adaptation from Jones (1995, Theorem 6, p. 74) and Hek

(2010, Theorem 8, p. 376 and Figures in Section 6.1.).

Fenichel’s Invariant Manifold Theorem 3. Assume (H1)-(H2). For every yδ ∈ Mδ, there is an

N -dimensional manifold

W s(yδ) ⊂W s(Mδ) (65)
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that is O(δ) close and diffeomorphic to W s(y0). The family {W s(yδ) | yδ ∈ Mδ} is invariant in the

sense that

W s(yδ) ·D t ⊂W s(yδ · t) (66)

if yδ · r ∈ D for all r ∈ [0, t].

Remark: This somewhat abstract theorem is nicely depicted in a diagram in Hek (2010, p. 377).

The following version of the corollary is an adaptation from Jones (1995, Corollary 1, p. 76) and Hek

(2010, Corollary 9, p. 377).

Corollary 1. There are constants κ, β > 0 so that if y ∈W s(yδ) ∩D, then

||y · t− yδ · t|| ≤ κ exp[−βt] (67)

for all t ≥ 0 for which y · [0, t] ⊂ D and yδ · [0, t] ⊂Mδ.

The following corollary immediately follows (Hek, 2010, see the discussion after Corollary 9, p. 378):

Corollary 2. Suppose that y ∈W s(Mδ) has a base point yδ ∈Mδ, then

||y · t∗ − yδ · t∗|| ≤ Cδ, ∀t∗ ≥ β−1 log
κ

Cδ
. (68)

This means that we can find a point in time t∗ after which the distance between any two points, one

point on Mδ and the other in the neighborhood D, is of distance O(δ). Note the resemblance of this

inequality to Nagylaki (1979, equation (37) on p. 440).

Finally, the following Corollary 3 is central in equating the mutant-relative dynamics for small non-zero

δ in fast (original) time t to the dynamics obtained for the singular system in fast time τ . This follows

from the previous Corollaries 1 and 2 by realizing that instead of talking about forward evolution of

points we may talk directly about trajectories (Hek, 2010, see the final paragraph of Section 6.1.):

Corollary 3. Associated to a trajectory γ(t; y) ⊂ W s(Mδ), there is trajectory γδ(t; yδ) ⊂ Mδ, with

γ(0; y) = y and γδ(0; yδ) = yδ, such that

||γ(t; y)− γδ(t; yδ)|| ≤ Cδ, ∀t ≥ β−1 log
κ

Cδ
. (69)

Remark: This Corollary gives the justification for the bottom right panel of Figure 3: the trajectory

γδ(t; yδ) is the trajectory on the slow manifoldMδ, and the trajectory γ(t; y) is the one in the neighbor-

hood of Mδ that is approaching Mδ and the trajectory γδ(t; yδ).
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6.4.4 Relating the slow-time singular system (36)-(37) to Equation (1)

From Theorem 1, we obtained that Mδ and M0 are O(δ)-distance away, that is, with some abuse of

notation, we got

yδ = y0 +O(δ), (70)

which in the model (53) reads as

n̂δ = n̂0 +O(δ), n̂P,δ = n̂P,0 +O(δ), α̂δ = α̂0 +O(δ)

p̂δ = p̂0 +O(δ), where p̂ = (p, . . . , p)

pα,δ = α̂0p̂0 +O(δ).

(71)

Here, the subscript δ and 0 denote that those variables take values on Mδ and M0, respectively. Then,

using Corollary 2, we have that the estimates (70) and (71) hold ∀t ≥ β−1 log κ
Cδ , i.e.

yD = y0 +O(δ), (72)

which in the model (53) reads as

n̂D = n̂0 +O(δ), n̂P,D = n̂P,0 +O(δ), α̂D = α̂D +O(δ)

p̂D = p̂0 +O(δ), where p̂0 = (p, . . . , p)

pα,D = α0p̂0 +O(δ),

(73)

∀t ≥ β−1 log κ
Cδ , where we use the subscript D to denote that y takes a value in D. Moreover, by Taylor

expansion we also have ∀t ≥ β−1 log κ
Cδ that

∂H(z)

∂z

∣∣∣
D

=
∂H(z)

∂z

∣∣∣
M0

+O(δ). (74)

Now, in the main text (36) (or alternatively (37)) we derived for the slow singular system δ = 0 an

equation

p′α = pα(1− pα)v̂
∂H

∂z
n̂, (75)

and by using (72)-(74) and the Corollary 3 we have that pα in the neighborhood D ofMδ can be written

in slow evolutionary time τ as

p′α = pα(1− pα)v̂
∂H

∂z
n̂ +O(δ) (76)

and therefore in fast original time t as

ṗα = δpα(1− pα)v̂
∂H

∂z
n̂ +O(δ2), (77)
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whenever t ≥ β−1 log κ
Cδ (which can also be written in terms of τ). This gives a full justification to

equation (1) in the main text.

6.5 Individual reproductive values

This exposition in this Appendix is motivated by Lion (2018b) who, in contrast to standard practice in

calculating the reproductive values only at the steady state, defined the reproductive values in both fast

population dynamical as well as slow evolutionary time. We, however, depart from the exposition of Lion

(2018b) by deriving a dynamical equation (analogues to the one in Lion (2018b)) for an alternatively

scaled definition for individual reproductive value. Moreover, in the final Section 6.5.4 we show an

alternative derivation for the dynamics of the weighted mutant frequency pα by using such individual

reproductive values.

In e.g., Taylor (1990); Rousset and Ronce (2004); Lion (2018b) the individual reproductive values are

defined as

νa =
αa

πa
, ∀a ∈ D; (78a)

namely, such that they satisfy the normalization

ν · π =
∑

a

νaπa = 1. (78b)

(recall that
∑

a αa = 1). Here, we also use the following definition

va =
αa

na
, ∀a ∈ D, (78c)

and owing to νaπa = vana ,∀a ∈ D, we have

ν · π =
∑

a

νaπa = 1

v · n =
∑

a

vana = 1,
(79)

where ν,v are the vectors of νa and va , respectively. Also, recall that πan = na and hence

πn = n

ν = vn.
(80)

41

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/773580doi: bioRxiv preprint 

https://doi.org/10.1101/773580
http://creativecommons.org/licenses/by-nc-nd/4.0/


6.5.1 The dynamics of va

By differentiation we obtain

v̇a =
1

na
α̇a −

1

na
va ṅa

= − 1

na

[∑
b

αb
na

nb
ḡba − αa

∑
b

nb

na
ḡab

]
− 1

na
va

∑
b

ḡabnb

= −
∑

b

vb ḡba + va

∑
b

nb

na
ḡab − va

∑
b

nb

na
ḡab

= −
∑

b

vb ḡba , , ∀a ∈ D,

(81)

which can be expressed with a matrix notation as

v̇ = −vḠ. (82)

6.5.2 The dynamics of νa

Using (8), Section 6.2.1, and performing a similar calculation to above, we obtain

ν̇a =
1

πa
α̇a − νa

1

πa
π̇a

=

[
−
∑

b

αb

πa

na

nb
ḡba +

αa

πa

∑
b

nb

na
ḡab

]
− νa

πa

[∑
b

ḡabπb − r̄πa

]

= −
∑

b

νb ḡba + νa r̄

(83)

which can be expressed with a matrix notation as

ν̇ = −ν
(
Ḡ− r̄I

)
. (84)

6.5.3 Individual reproductive values va and νa as left eigenvectors

Using (82) and Section 2.3 the slow evolutionary time definition of v under phenotypic equality δ = 0 is

0 = v̂H(z, z, n̂, n̂P), (85)

that is, v̂ is the left eigenvector of the resident matrix H(z, z, n̂, n̂P) associated with the eigenvalue 0.

Similarly, the slow evolutionary time definition of ν under phenotypic equality δ = 0 is

0 = ν̂ (H(z, z, n̂, n̂P)− rI) , (86)

and because the identity matrix is multiplied by a scalar, the solution to above is equivalent to solving

0 = ν̂H(z, z, n̂, n̂P), (87)
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hence both ν̂ and v̂ are the left eigenvectors of the resident matrix H(z, z, n̂, n̂P) associated with the

eigenvalue 0. Moreover, from (80) we have

ν̂ = n̂v̂. (88)

6.5.4 The dynamics of the weighted mutant frequency using individual reproductive values

Here we show a more direct calculation for the dynamics of the weighted mutant frequency pα. Because

αp =
∑

a

αa
nM,a
na

=
∑

a

vanM,a = vnM (89)

we have

pα = αp = vnM = pv. (90)

Therefore

ṗv = v̇nM + vṅM

= v̇nM + vG(zM)nM,
(91)

where G(zM) can be partitioned as

G(zM) = Gsel(zM) + Ḡ, (92)

where Gsel(zM) = (gselab )a,b∈D and

gselab = gab(zM)− ḡab , ∀a, a ∈ D, (93)

and Ḡ is as in the main text (5). The weighted mutant frequency can thus be written directly in terms

of individual reproductive values as

ṗv =
[
v̇ + vḠ

]
nM + vGselnM, (94)

and by defining v such that it satisfies (82) we get

ṗv = vGselnM. (95)

Notice that this is indeed equivalent to (19) and that under phenotypic equality ṗv|δ=0 = 0. Now, taking

the derivative of the above with respect to δ and using Section 2.3 we immediately obtain (36).
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