New Results
DNetPRO: A network approach for low-dimensional signatures from high-throughput data
View ORCID ProfileNico Curti, Enrico Giampieri, Giuseppe Levi, Gastone Castellani, Daniel Remondini
doi: https://doi.org/10.1101/773622
Nico Curti
1Department of Physics and Astronomy, University of Bologna
3INFN Bologna
Enrico Giampieri
2Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna
Giuseppe Levi
1Department of Physics and Astronomy, University of Bologna
3INFN Bologna
Gastone Castellani
1Department of Physics and Astronomy, University of Bologna
3INFN Bologna
Daniel Remondini
1Department of Physics and Astronomy, University of Bologna
3INFN Bologna
Article usage
Posted September 19, 2019.
DNetPRO: A network approach for low-dimensional signatures from high-throughput data
Nico Curti, Enrico Giampieri, Giuseppe Levi, Gastone Castellani, Daniel Remondini
bioRxiv 773622; doi: https://doi.org/10.1101/773622
Subject Area
Subject Areas
- Biochemistry (13346)
- Bioengineering (10160)
- Bioinformatics (32494)
- Biophysics (16722)
- Cancer Biology (13801)
- Cell Biology (19627)
- Clinical Trials (138)
- Developmental Biology (10617)
- Ecology (15698)
- Epidemiology (2067)
- Evolutionary Biology (20010)
- Genetics (13210)
- Genomics (18337)
- Immunology (13435)
- Microbiology (31469)
- Molecular Biology (13110)
- Neuroscience (68622)
- Paleontology (508)
- Pathology (2124)
- Pharmacology and Toxicology (3663)
- Physiology (5711)
- Plant Biology (11753)
- Synthetic Biology (3300)
- Systems Biology (8018)
- Zoology (1812)