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Abstract

We present the �rst solid theoretical foundation for interpreting the origin of Allee e�ects by provid-

ing the missing link in understanding how local individual-based mechanisms translate to global pop-

ulation dynamics. Allee e�ects were originally proposed to describe population dynamics that cannot

be explained by exponential and logistic growth models. However, standard methods simply calibrate

continuum models incorporating Allee e�ects to match observed global population dynamics, without

providing any mechanistic insight. By introducing a stochastic individual-based model, with prolifera-

tion, death, and motility rates that depend on local density, we present the �rst modelling framework

that gives rise to a range of global Allee e�ects. Using data from ecology and cell biology, we unpack

individual-level mechanisms implicit in an Allee e�ect model and provide simulation tools for others to

repeat this analysis.
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Understanding biological population dynamics provides insight into whether a population will survive or

become extinct. Salient features of these population dynamics, such as the growth rate and the maximum

population density, can be captured using suitable mathematical modelling frameworks1�16. A common

approach to model the density of a population, C(t), is to describe the per-capita growth rate 1;2. The

per-capita growth rate, f(C), can be used to specify the temporal evolution of population density as

1

C

dC

dt
= f(C). (1)

The most common mathematical descriptions of biological population dynamics are exponential and logistic

growth models1;2. Exponential growth is the simplest model, whereby f(C) is a positive constant (Fig. 1a).

While the exponential growth model captures observed low-density population dynamics1;4;8;17, exponential

growth implies that the population will eventually become in�nite. The logistic growth model (Fig. 1b) in-

corporates a linearly decreasing f(C) and is perhaps the most widely used model of biological and ecological

population dynamics1;4;8;17. This is because the logistic growth model captures two ubiquitous phenom-

ena: (i) near-exponential growth at low density, and; (ii) a �nite maximum density, termed the carrying

capacity 3�5;7;8;17;18.

Classical exponential and logistic growth models rely on several key assumptions regarding the underlying

biological mechanisms that drive population-level, or global dynamics6;9�13;19. These assumptions include:

all individuals survive at all densities1;2, and the intrinstic growth and death rates are independent of

density12. However, populations have been observed to grow more slowly at low densities than predicted by

the classical logistic model6, while other populations undergo extinction below a threshold density7;19. These

observations are inconsistent with logistic and exponential models and modi�cations have been proposed to

explain these observations3�8.

The Allee e�ect (Fig. 1c,d) is a common modi�cation of the logistic model that relaxes the assumption

that all members of a population will survive. This model describes situations in biology where the per-

capita growth rate is smaller, relative to logistic growth, at low population densities6;9�13;15;18;19. The Allee

e�ect is often discussed in the context of ecology and is relevant for describing the extinction of endangered

species11;18;20, population heterogeneity and structure21�24, the impact of invasive species18;20;21;25�27, and

the reduction of biological �tness15;18;28. While the Allee e�ect was �rst proposed in the ecology literature,

more recent interest in the cell biology literature suggests that there is a growing awareness of the role

of the Allee e�ect in populations of cells, including the eradication of cancer cells9;29;30, growth rates of

tumour cells4;8;30�32, and cell migration and invasion assays12. The Allee e�ect typically takes one of two

forms, depending on the behaviour at low densities: (i) the Strong Allee e�ect, describing negative per-capita

growth below some critical density threshold (Fig. 1d), resulting in the extinction of the population below

this threshold, and; (ii) the Weak Allee e�ect, describing a reduced, but positive, per-capita growth rate at

low densities (Fig. 1c).

Previous studies incorporating Allee e�ects solely examine global information4�6;8�11;13;15;18;31. Therefore,

it is not obvious a priori how global Allee e�ects arise from local, individual-based mechanisms. Alternatively,

stochastic mathematical models can explicitly incorporate individual-level mechanisms to describe growing

populations12;33;34. These kind of individual-based model (IBM) simulation frameworks represent single

members of the population as agents that, for example, move, proliferate, and die according to certain

biologically-motivated stochastic rules.

IBMs are increasingly used to model population dynamics, partly because of technological advances mak-
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Figure 1: Relating global population-level models to an individual-based stochastic frame-

work, in order to understand the relationship between global per-capita growth functions

and individual-level interactions. A population can be described using one of two mathemetical frame-
works. In the �rst, global population models describe an averaged population density, C. These global
population models are described in terms of the density growth rate, dC/dt, or the per-capita growth rate,
f(C) = (1/C)(dC/dt). In the second, a population can also be described using a stochastic individual-
based model, where agents move, proliferate, and die based on stochastic rules (blue arrows). To ensure the
stochastic model is as realistic as possible, crowding e�ects are incorporated by not permitting any event
that would result in agent overlap (red crosses).
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ing it possible to perform high-throughput cell biology experiments and collect large quantities of individual-

level data. The task of choosing an appropriate model to capture and interpret experimentally-observed

individual behaviour is a signi�cant challenge35. Typically, global population models are calibrated to ex-

perimental data to provide insight into the global features of the population, such as the carrying capacity

or the low-density growth rate4;7;8;21. However, this standard approach provides no insight into the under-

lying individual-level mechanisms. Contrastingly, employing an IBM allows us to describe both the local

and global features of a population. The task of designing an IBM to describe speci�c Allee e�ects, or

higher-order e�ects (Fig. 1e), has never been considered.

In this work, we propose an IBM that incorporates motility, proliferation, and death processes in a pop-

ulation of individuals. This IBM incorporates crowding e�ects, whereby potential motility and proliferation

events can only take place if agents do not overlap (Fig. 1f). By allowing individual-level mechanisms to

depend on the density in a small neighbourhood surrounding an agent, the IBM is capable of describing a

rich variety of per-capita growth rates. The continuum limit description of the IBM recovers the exact form

of many Allee e�ect models for speci�c choices of IBM parameters. The main result is to pose and solve

an inverse problem that can be described in the following way. Given a particular per-capita growth rate

model, such as might be obtained by population-level experimental data, we determine which combinations

of individual-level proliferation and death rates give rise to that particular scenario. This work provides the

missing link in understanding between local, individual-based mechanisms and particular global outcomes,

thereby providing a solid theoretical foundation for understanding and interpreting the mechanisms associ-

ated with Allee e�ects. We conclude by demonstrating how these new tools can be applied in practice by

applying our modelling framework and solving the inverse problem to interpret data from both cell biology

and ecology experiments. Additionally, interactive MATLAB applets, one of which determines IBM rates

and simulations from a user-speci�ed per-capita growth rate, and another that determines IBM rates from a

user-speci�ed choice of model �t to experimental data, are available to others to repeat this analysis (Code

Availability).

Results

We consider a population of agents on a two-dimensional hexagonal lattice (Fig. 2). The IBM incorporates

agent motility, proliferation, and death, where the individual-level rates vary with local density. All results in

the main document consider the local density to be obtained by the six nearest neighbouring lattice sites (Fig.

2); additional results (Supplementary Information) show how our results generalise to larger neighbourhoods.

Other types of regular lattices, including square lattices and three-dimensional cubic lattices, can also be

used with the IBM framework.

The main objective of this work is to determine how individual-level mechanisms are linked to various

global Allee e�ects, which can be approached in two ways. The �rst approach is to demonstrate that this IBM

framework gives rise to a variety of Allee e�ects, which we refer to as the forward problem, since the input

of IBM parameters produces a certain global per-capita growth rate. The second approach is to determine

which individual-level parameters give rise to a speci�c global per-capita rate. We refer to this as the inverse

problem, as the inputs of the IBM parameters are unknown for a particular output per-capita rate. To

highlight the insights obtained through this approach, we present strategies to link experimental data to

various Allee e�ect models, which we interpret, for the �rst time, in terms of individual-level mechanisms.
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Figure 2: Agents on a hexagonal lattice with rates of proliferation and death that depend on the
local density. Individuals within a population (a) are represented as agents on a two-dimensional hexagonal
lattice (b). The corresponding proliferation and death rates of each agent are dependent on the local density
of agents. The simplest measure of local density is the number of nearest neighbouring agents, n, as shown
on the lattice. Here, n ranges from from n = 0 (red hexagon) to n = 6 (black hexagon). These di�erences in
local density are used to specify how the attempted proliferation rates (c) and the death rates (d) depend on
n. For example, in (b), there are three agents that each have one nearest neighbour (yellow hexagons). Each
of these agents will have the same attempted proliferation and death rates, whose magnitudes are shown
in (c,d) with yellow bars. We note that while an agent with six nearest neighbours (black hexagon) can
attempt to proliferate (c, black bar), the net probability of this attempt being successful will always be zero.
Nevertheless, an agent with six nearest neighbours can undergo a successful death event (d, black bar).

The Individual-Based Model (IBM)

We perform non-dimensional simulations where the hexagonal lattice spacing is ∆. These simulations can

be rescaled to match any particular application by rescaling ∆33;36. Each lattice site has position

(xi, yj) =



(
i∆ , j∆

√
3

2

)
, j even,((

i+
1

2

)
∆ , j∆

√
3

2

)
, j odd,

(2)

with i = 1, . . . , I, j = 1, . . . , J , and ∆ = 1.

Crowding e�ects are important in both cell biology and ecology12;22;33;34;36�39, so potential motility and

proliferation events that would result in more than one agent per site are aborted. Agents attempt to undergo

nearest neighbour motility events at rate mn ≥ 0, proliferation at rate pn ≥ 0, and death events at rate

dn ≥ 0 (Fig. 2c,d). Here, n ∈ {0, 1, . . . , 6} is the number of occupied nearest neighbour sites, providing

a simple measure of the local density. This is the key feature of the model that gives rise to non-logistic

phenomena.

For simplicity, we assume that all agents, regardless of their local density, have the same motility rate

(mn ≡ m). Furthermore, we choose m such that pn/m� 1 and dn/m� 1 for all n, since the characteristic

timescale for migration is much shorter than the characteristic timescale for proliferation and death40.

Agents are initially seeded on the lattice with a constant probability, representing spatially uniform initial

conditions. Furthermore, we impose re�ecting boundary conditions39;41 and, using a Gillespie approach42,

we simulate the number of agents as a function of time and space(Algorithm 1, Supplementary Information).
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To compare data from the IBM with the global population description, we average data from the IBM

using

〈C(t)〉 =
1

IJL

L∑
`=1

Q`(t). (3)

Here, Q`(t) is the total number of agents on the lattice at time t, in the `th identically-prepared realisation

of the IBM. The total number of identically-prepared realisations is L; we choose L = 100 for the results

presented in Figs. 3 and 4. A description of the numerical algorithm (Supplementary Information) and a

MATLAB implementation of this algorithm are available (Code Availability).

Continuum limit

While the IBM allows us to visualise realistic-looking individual simulations of population dynamics, as

well as to explicitly specify the individual-level behaviour of agents, it is convenient to derive a simpler

mathematical description of the average behaviour of the IBM, called the continuum limit description 12;14;36.

The continuum limit description gives us the ability to study global, deterministic, features of the IBM when

the number of lattice sites is large, as well as to understand how individual-level di�erences translate into

global outcomes.

Since the IBM employs spatially uniform initial conditions, the net �ux of agents entering and leaving

each lattice site due to migration is, on average, zero39;41. Therefore, spatial derivatives in the continuum

limit will vanish, meaning that the continuum description of the average agent density, C ∈ [0, 1], is a function

of time alone39;41. Furthermore, we assume that the occupancy status of lattice sites is independent. This

assumption, called the mean-�eld approximation 12;33;36, is mathematically convenient and is consistent with

setting m� pn and m� dn
33. Our results con�rm that the mean-�eld approximation is very accurate.

Using the mean-�eld approximation, we describe the local density of agents in terms of the average agent

density. Speci�cally, for an agent to have a local density corresponding to n nearest neighbours, we require:

(i) an agent to be present at the particular site; (ii) n nearest neighbour sites are occupied, and; (iii) the

remaining (6 − n) nearest neighbour sites are vacant. These conditions give the density of agents with n

nearest neighbours, In ∈ [0, 1], as

In = Cn+1(1− C)6−n, n = 0, 1, . . . , 6; (4)

hence, In follows a binomial distribution.

To determine how the global agent density evolves, we examine the time rate of change in expected agent

density due to proliferation and death events, giving

dC

dt
=

1

6

6∑
i=1

pn(i)In(i)︸ ︷︷ ︸
proliferation events

−
6∑

j=0

(
6

j

)
djIj︸ ︷︷ ︸

death events

, (5)

where n(i) is the number of nearest neighbours is each neighbouring agent i. The binomial coe�cient,(
6

j

)
=

6!

j!(6− j)!
, accounts for all possible con�gurations of an agent's j nearest neighbours. For convenience,

we specify the death rate as a proportion of the proliferation rate: dn = αnpn, where αn ≥ 0. Equation (5)

can also be written in terms of the per-capita growth rate:
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1

C

dC

dt
= g(C) = (1− C)

5∑
n=0

γn

(
5

n

)
Cn(1− C)5−n − γ6C6, (6)

where

γn =


pn

(
1− 6αn

6− n

)
, n = 0, . . . , 5,

p6α6, n = 6.

(7)

A complete description of all steps required to derive equation (6) are given in the Supplementary Information.

We deliberately refer to the per-capita growth rate associated with the continuum limit as g(C), and the

per-capita growth rate prescribed via the global population behaviour as f(C). Later, we will show how to

choose the IBM parameters such that f(C) ≡ g(C). Additionally, we note that equation (6) groups the 14

parameters (pn, αn) as 7 linearly independent parameters, γn.

Allee e�ects arising from the IBM: the forward problem

We now demonstrate that the IBM framework gives rise to a rich variety of Allee e�ects. In the �rst instance,

we set αn = 0 for all n. Equation (7) implies that γn = pn for 0 ≤ n ≤ 5 and γ6 = 0, such that agents only

proliferate and move, and do not die. While this parameter regime is by no means a complete account of all

possible parameter combinations, it serves to highlight that g(C), from equation (6), can give rise to a suite

of Allee e�ects.

We consider three di�erent choices of pn:

pn =


1.5, 0 ≤ n ≤ 5, (Case 1)

0.25 + 0.5n, 0 ≤ n ≤ 5, (Case 2)

0.25

(
5

n

)
, 0 ≤ n ≤ 5. (Case 3)

(8)

We note that in Cases 2 and 3, the range of proliferation rates varies by a factor of 10 as n varies from zero

to �ve, demonstrating a signi�cant range of proliferation rates within a single IBM realisation. Equation (6)

gives,

g(C) =


1.5(1− C), (Case 1)

2.5(1− C)(0.1 + C), (Case 2)

0.25(1− C)(1 + 20C + 10C2 − 60C3 + 30C4). (Case 3)

(9)

The global population density, C, can be determined by solving equation (6) with a speci�ed initial condition,

C(0).

While we can retrieve logistic growth from the continuum limit of the IBM (Case 1; Fig. 3), we can

also obtain more complicated, nuanced, per-capita growth rates, including the Weak Allee e�ect (Case 2;

Fig. 3) and completely novel Weak Allee-like per-capita growth rates never previously described (Case 3;

Fig. 3). This variety of per-capita rates is particularly noteworthy, as this variety of Allee e�ects and the

connection to a simple biologically-motivated IBM has never been considered previously. This analysis of

three simple IBM parameter regimes su�ces to show that this IBM framework is related to a large class of

global population descriptions. Furthermore, in Fig. 3, as well as videos presented in the Supplementary

Information, we show that averaged density data from the IBM, 〈C〉, agrees very well with C, con�rming
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Figure 3: Comparison of data from the IBM with the solution of the corresponding global

population description for di�erent suites of proliferation rates. Simulations of the IBM are shown
with three di�erent familes of proliferation rates pn (a,d,g), described in equation (8), along with the resulting
per-capita rate of the global population model (b,e,h), described in equation (9). The three di�erent families
of proliferation rates are referred to as Case 1 (a�c,j), Case 2 (d�f,k), and Case 3 (g�i,l), respectively. (c,f,i)
The solution of the global population description, C, is compared with averaged density data obtained by
performing 100 identically-prepared realisations of the IBM to give 〈C〉, where the initial agent density is
C(0) = 0.05. (j�l) Single realisations of the IBM, with the same colour scheme as in Fig. 2, are shown at
t = 0, 2, 4, and 6, corresponding to the blue circles on the 〈C〉 curves. For each realisation of the IBM, we
use a 100 × 115 hexagonal lattice, corresponding to the two-dimensional domain [1, 100] × [1, 100]. Here,
m = 100 max(pn).

8

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 18, 2019. ; https://doi.org/10.1101/774000doi: bioRxiv preprint 

https://doi.org/10.1101/774000


that the average agent density from the simulated IBM data is faithfully captured by the global population

description. With these results, we now turn to the inverse problem to determine which individual-level rates

describe global Allee e�ects.

Choosing IBM rates to match Allee e�ect models: the inverse problem

A standard practice for the application of an Allee-type model involves matching population-level experimen-

tal data to a particular continuum model, without any regard for the underlying individual-level mechanisms.

Therefore, it is natural to ask, for a given per-capita growth rate, f(C), how do we choose the IBM param-

eters so that the per-capita growth rate determined from the continuum limit of the IBM, g(C) in equation

(6), is identically f(C)?

Mathematically, we seek the parameters γn in equation (6) such that g(C) ≡ f(C). To do this, we

�rst note that equation (6) is linear in γn. Therefore, we can evaluate equation (6) at seven distinct points

Ci ∈ {C0, C1, . . . , C6} and obtain a corresponding linear system in γn. By denoting

g(Ci) =
6∑

j=0

Mijγj , (10)

we obtain the linear system

Mγγγ = f , (11)

where the 7 × 7 matrix M has entries [Mij ], γγγ is the vector of parameter values [γj ], and f is the vector

of function values [f(Ci)]. We note that the polynomials appearing in (6), Cn(1 − C)6−n, are linearly

independent, so M is never singular and the solution of this system is γγγ = M−1f . Furthermore, if f(C) is

a polynomial of degree 6 or less and f 6= 0, this unique solution of γγγ provides the IBM parameters such

that g(C) ≡ f(C). We discuss a method of determining the IBM parameters for other forms of f(C) in the

Supplementary Information.

To prevent populations from becoming in�nite, we require that f(C) will be non-positive when C = 1,

so we impose f(1) ≤ 0. Noting that g(1) = −γ6 = −p6α6 ≤ 0, this implies that γ6 = −f(1) ≥ 0, which

is consistent with the restriction that p6, α6 ≥ 0. Common per-capita rates and the corresponding IBM

parameters are tabulated in the Supplementary Information.

Upon determining suitable parameters γn that match a speci�c f(C), we then consider choosing pn and

αn from equation (7). One straightforward combination of parameters is

(pn, αn) =



(γn , 0) , γn ≥ 0, n < 6,(
(n− 6)γn

n
, 1

)
, γn < 0, n > 0,(

R , 1− γ0
R

)
, γ0 < 0, n = 0,

(γ6, 1), γ6 > 0, n = 6,

(0, 0), γ6 = 0.

(12)

Here, R = max
1≤n≤6

pn and only appears in the case when f(0) < 0. This choice of R provides a balance between

minimising the relative death rate α0 > 1 while preventing p0 from dominating other proliferation rates.

Furthermore, having γ6 > 0 only occurs when f(1) < 0, implying that the death rate d6 = p6α6, shown in
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black in Fig. 2, must be strictly positive.

Comparing the IBM with global population models

With this systematic method of determining the IBM proliferation and death rates that match various

choices of f(C), we compare the average agent density determined by the IBM, 〈C〉, with its corresponding

global population description, C. Results in Fig. 4 show that the IBM agent density agrees very well with

the global population description, provided that the initial agent density, C(0), is su�ciently far away from

any unstable equilibria of the global population description. An unstable equilibrium is a particular density

C∗ such that dC/dt at this density, C∗f(C∗), is zero, but agent densities near C∗ diverge away from the

equilibrium. For example, logistic growth (Fig. 4a) has an unstable equilibrium at C∗ = 0, whereas the

Strong Allee e�ect (Fig. 4c) has an unstable equilibrium for a positive C∗ (Fig. 4c has C∗ = 0.4).

IBM simulations where the density is close to an unstable equilibrium are dominated by stochastic

noise11;13;27; therefore, we do not expect that 〈C〉 will agree with C in these cases. Indeed, this disagreement

is clear in Fig. 4 with initial conditions in the Strong Allee e�ect and Hyper-Allee e�ect close to their

unstable equilibria (see Fig. 4 caption for the explicit forms of these per-capita rates). Nevertheless, the

IBM su�ciently captures the salient features of a large class of Allee-type dynamics with a suitable choice

of proliferation rates, death rates, and initial conditions.

Mechanistic interpretation of experimental data

Per-capita growth rates describing population growth and extinction can match the global trends in exper-

imental data3�8, but fail to provide any insight at the individual-level scale. In contrast, the mathematical

tools presented in this work provide the missing link that connects individual-level mechanisms to various

global per-capita rates, via solving equation (11). Therefore, we can provide insight into individual-level

behaviour from experimental data with the following approach. First, we choose a per-capita growth rate to

match the global features of the experimental data. Second, the associated global model parameters are then

�t to the data: for example, by minimising the least-square error between the global population description

and the experimental data. Last, we solve the inverse problem and determine the associated IBM parameters

that give rise to the experimentally-observed global behaviour.

To highlight the insight possible from this approach, we consider two population-level data sets and

provide previously hidden detail about individual-level behaviour6;7. In Johnson et al.6, BT-474 breast

cancer cells are seeded at three initial densities in a 96-well plate, and cell proliferation is observed for 328

hours. Model selection analysis in Johnson et al.6 suggests that an Allee e�ect is required to describe this

data. As there is no evidence of population extinction, we consider the Weak Allee e�ect with per-capita

rate

f(C) = r

(
C

A
+ 1

)(
1− C

K

)
, A > 0, and K > 0, (13)

where r is the per-capita growth rate at C = 0. We match this model to three experimental datasets

simultaneously by minimising the combined least-squares error of all datasets. This approach is di�erent

to the method presented in Johnson et al.6, where each dataset is �t separately to the authors' proposed

per-capita rate. As observed in Fig. 5, this Weak Allee e�ect model agrees with all three experimental

datasets simultaneously. Since the global parameters of the Weak Allee E�ect do not vary between the three

experimental datasets, we determine the underlying individual-level mechanisms using equation (11). In Fig.

5b, we show that the IBM proliferation rates associated with this Weak Allee e�ect increase linearly with
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local density, as we observed when discussing the forward problem (Fig. 3). This is to be expected, since

the Weak Allee e�ect also features a reduced growth rate at low densities. Furthermore, the individual-level

rates increase by a factor of about three, which is signi�cantly di�erent to simpler models such as the logistic

growth model, where the proliferation rates are independent of local density (see Fig. 4). We conclude

that the experimental observations presented in Johnson et al.6 can be explained by allowing the attempted

proliferation rates of BT-474 breast cancer cells to linearly increase as a function of local density. Without

posing and solving the inverse problem described here, this individual-level insight is not possible.

To compare contiuum descriptions with experimental results that arise in ecology, we consider the datasets

in Melica et al.7, where the dynamics of the population density of Aurlia aurita polyps growing on oyster

shells is measured. Melica et al.7 observe that a series of experiments where polyps are initially distributed at

low density leads the population density evolve to some particular carrying capacity. Interestingly, when the

same experiments are performed at a much higher initial density, the population decays to a di�erent, higher,

carrying capacity. This observation is explained in Melica et al.7 by supposing the population dynamics are

logistic, with the requirement that there are two di�erent carrying capacities, despite the fact that the classic

logistic model speci�es a single carrying capacity only. Instead, we consider the �Hyper-Allee e�ect� model,

Fig. 4(d), with per-capita rate

f(C) = r

(
C

A
− 1

)(
C

B
− 1

)(
1− C

K

)
, 0 < A < B < K. (14)

Equation (14) has the advantage that two stable equilibria, A and K, exist. We �t this model to two

experimental datasets simultaneously by minimising the combined least-squares error of both datasets. As

seen in Fig. 6, the Hyper-Allee e�ect model agrees with both experimental datasets with only a change in

the initial condition.

To provide further insight about the population dynamics of this experiment, we determine the corre-

sponding IBM parameters that give rise to this Hyper-Allee e�ect. We note that if f(C) is rescaled such that

the largest recorded density point, the high-density initial condition, corresponds to C = 1 (Supplementary

Information), then we must have f(1) < 0. Equation (11) implies that γ6 > 0, producing non-zero attempted

proliferation and death rates when an individual has n = 6 nearest neighbours, shown in black bars in Fig. 6

b,c. However, the presence of death rates at various local densities (Fig. 6c) drives low density populations

to the smaller carrying capacity A, while high density populations are driven to the larger carrying capacity

K. We conclude that the experimental observations in Melica et al.7, displaying the co-existence of two

stable population densities, can be explained by varying the death rates with local density.

In both examples, there is a clear need to use global population models more nuanced than logistic growth

to capture the experimentally-observed features. The resulting Allee e�ect models are able to explain a

variety of experimental data without requiring the global model parameters to be a function of the initial

condition.

Discussion

Allee e�ects were �rst proposed to describe observed behaviour of populations that exhibit features unable

to be explained by classical models, such as exponential and logistic growth. Such classical models rely on

heavily simplifying assumptions, including all population densities being able to survive, and the growth and

death rates being independent of the local density. The Allee e�ect relaxes these assumptions and modi�es
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Figure 5: Number of BT-474 breast cancer cells compared to model predictions shown in

Johnson et al.6 and the Weak Allee e�ect. The number of BT-474 breast cancer cells are shown at
low density initial conditions (LD), shown in blue circles, medium density initial conditions (MD), shown
in red circles, and high density initial conditions (HD), shown in green circles, over the span of 328 hours6.
A semi-log plot of the data is shown in the inset of the �gure to better distinguish the experimental data
at low cell numbers. The three datasets can be �t to a modi�ed Allee e�ect separately (dot-dash lines;
parameters and model description shown in Johnson et al.6). The Weak Allee e�ect (solid curves) is �t
to minimise the combined least-square error of all experimental datasets shown in Johnson et al.6. The
Weak Allee parameters are determined to be A = 148,K = 315, and r = 0.00757, with �t initial conditions
c1 = 2.27, c2 = 4.51, and c3 = 10.6. This parameter set yields the total least-squares error, combined over
all three datasets, of 230, compared to the total least-squares error of 10900 using the model described in
Johnson et al.6. The rescaled density is the cell number data divided by the carrying capacity, K. Using
this rescaled per-capita rate, we obtain the corresponding IBM parameters (b,c) by using equations (11) and
(12). The proliferation rates (b) are shown relative to p0, shown in red, which has been rescaled by r so
that p0 = 1. Unlike the logistic growth model (black dashed line), whose proliferation rates are independent
of the local density n, the Weak Allee e�ect corresponds to proliferation rates that linearly increase with n.
The magnitudes of the death rates are all zero.
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Figure 6: Density of Aurlia aurita polyps compared to model predictions of logistic growth and

the Hyper-Allee e�ect. (a) The density of polyps are shown in low density treatments (LD), shown in
red triangles, and high density treatments (HD), shown in blue triangles, over the span of 42 days. The
two datasets can be �t to logistic growth separately (red and blue dot-dash lines; parameters are listed in
Melica et al.7), but cannot match both datasets simultaneously. The Hyper-Allee e�ect (equation (14), solid
curves) is �t to minimise the combined least-square error of both expiremental datasets shown in Melica
et al.7. The Hyper-Allee parameters are determined to be A = 2.24, B = 4.69,K = 5.16, and r = 0.161,
with two �t initial conditions c1 = 0.0691 and c2 = 7.73. The stable carrying capacities of both models
are shown with dashed lines in the colours that correspond to their respective model. The rescaled density
is the density data divided by the maximal experimentally observed polyp density, c2. Using this rescaled
per-capita rate, we obtain the corresponding IBM parameters (b,c) by using equations (11) and (12). The
attempted proliferation rates (b) are shown relative to p0, shown in red, which has been rescaled by r so
that p0 = 1. The magnitudes of the death rates (c) are shown relative to their corresponding proliferation
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death rates when n = 6 (black bars) are non-zero.
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the logistic model by reducing the per-capita growth rate of a population to small or negative values at

low densities, resulting in the potential extinction of a population below some critical density threshold.

However, examination of Allee e�ects are nearly always performed at a global population scale alone. As

such, unpacking the underlying, individual-level mechanisms that give rise to global Allee e�ect models, has

remained an open question in biology and ecology.

We demonstrate that by permitting proliferation and death rates in the IBM to vary with local density,

we retrieve a large family of global population per-capita growth rates, including Allee e�ects. Furthermore,

we propose a systematic method to determine individual-level mechanisms in the IBM that agree with a

given particular per-capita growth rate model, such as might arise from experimental data. For example,

once a per-capita growth rate is chosen to match the global features of experimental data, we can solve

an associated linear system to determine the IBM parameters that give rise to the experimentally-observed

global behaviour. This method demonstrates that commonly used global per-capita growth rates, such as

logistic growth, the Strong Allee e�ect, and the Weak Allee e�ect, can all be recovered with this IBM.

In this work, we also present strategies to connect experimental data to various global population models,

which can in turn be linked to individual-level mechanisms. Speci�cally, we examine two experimental

datasets arising in cell biology and ecology6;7. In both cases, an Allee e�ect describes these datasets, and the

global model parameters are not sensitive to initial conditions as suggested previously. Consequently, the

IBM associated with these Allee e�ects not only provides better understanding of individual-level behaviour,

but also provides insight into the limitations of commonly used per-capita rates. This IBM is useful for both

theorists and experimentalists when analysing population dynamics; the modelling framework is simple to

use and interpret, yet the insight and implications of the framework are broad and widely applicable.

By shifting to a modelling paradigm that involves the combination of an individual-based framework and

its corresponding population dynamics, we provide unprecedented insight into the behaviour of individuals

from observed global behaviour. This insight provides a solid justi�cation for the inclusion of more com-

plex individual-level mechanisms to describe the salient features of population behaviour. The modelling

approach proposed here provides a framework capable of unifying common global population descriptions

with more complex population descriptions. Indeed, our results are not in con�ict with the most common

global population descriptions, including logistic growth and various forms of the Allee e�ect. Instead, our

work highlights that by building a model from the individual-scale up, we systematically recover the basic

underlying mechanisms that provide insight into whether a population will survive or become extinct.

15

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 18, 2019. ; https://doi.org/10.1101/774000doi: bioRxiv preprint 

https://doi.org/10.1101/774000


Code availability

All MATLAB codes used to generate results are available at https://github.com/nfadai/Fadai_Allee2019.
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