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Impact statement 

The DNA replication protein CDT1a is crucial for genome integrity and is targeted for 

proteasome degradation just after S-phase initiation by FBL17 in proliferating and 

endoreplicating cells of Arabidopsis 
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Abstract Maintenance of genome integrity depends on controlling the availability of DNA 

replication initiation proteins, e.g., CDT1, a component of the pre-replication complexes that 

regulates chromatin licensing for replication. To understand the evolutionary history of CDT1 

regulation, we have identified the mechanisms involved in CDT1 dynamics. During cell cycle, 

CDT1a starts to be loaded early after mitotic exit and maintains high levels until the G1/S 

transition. Soon after the S-phase onset, CDT1a is rapidly degraded in a proteasome-

dependent manner. Plant cells use a specific SCF-mediated pathway that relies on the 

FBL17 F-box protein for CDT1a degradation, which is independent of CUL4a-containing 

complexes. A similar oscillatory pattern occurs in endoreplicating cells, where CDT1a is 

loaded just after finishing the S-phase. CDT1a is necessary to maintain genome stability, an 

ancient strategy although unique proteins and mechanisms have evolved in different 

eukaryotic lineages to ensure its degradation during S-phase.  
 

 

Introduction    
Faithful genome replication is a complex and risky process that requires robust and 

highly-regulated overlapping mechanisms to prevent genome instability. They operate 

primarily at the stage of DNA replication initiation at two complementary levels: selection and 

activation of DNA replication origins (ORIs), which is known as licensing, and dynamics of 

initiation proteins. 

ORI selection depends on the stepwise assembly of pre-replication complexes (pre-RC) 

at genomic sites that can potentially be used as active ORIs. The mechanism of sequential 

assembly of pre-RC components as well as the genomic sites preferred for pre-RC binding 

are in general terms highly conserved in all eukaryotes. Genomic locations of ORIs possess 

locally enriched stretches of GC and GC skew, in most of the cases also embedded in an 

open chromatin landscape typical of proximal promoters, transcriptional start sites and the 5’-

end of genes (Cadoret et al., 2008; Costas et al., 2011; Pourkarimi et al., 2016; Rodriguez-

Martinez et al., 2017; Sequeira-Mendes et al., 2019). Pre-RCs are macromolecular entities 

consisting of the origin recognition complex (ORC) heterohexamer that binds DNA and 

nucleates pre-RC assembly, the (cell division cycle 6) CDC6 and (Cdc10-dependent 

transcript 1) CDT1 proteins, and the minichromosome maintenance (MCM) heterohexamer 

(Riera et al., 2017; Yeeles et al., 2015).  

Contrary to the relatively high conservation of the general ORI features, regulation of the 

availability and dynamics of pre-RC protein components is highly species-specific, since 

multiple mechanisms have been reported in different model systems. Although Orc1 and 

Cdc6 protein levels vary during the cell cycle (DePamphilis, 2005), Cdt1 is redundantly 
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regulated at multiple levels, revealing its relevance to maintain genome stability and prevent 

re-replication-associated defects. The first regulatory level corresponds to a transcriptional 

control using the Cdc10 transcription factor in Saccharomyces pombe (Whitehall et al., 1999) 

whereas in animal and plant cells it relies on the E2F pathway (Castellano et al., 2004; 

Desvoyes et al., 2006; Yoshida and Inoue, 2004). In addition, Cdt1 availability is regulated 

during the cell cycle after the G1/S transition. While in S. cerevisiae Cdt1 is exported out of 

the nucleus (Tanaka and Diffley, 2002), in mammalian cells it is targeted to the proteasome 

for degradation by two E3 ubiquitin ligases that work independently, SCFSkp2 and CRLCdt2 

(Havens and Walter, 2011; Nishitani et al., 2006). It is noteworthy that targeting by SCFSkp2 

requires CDK-mediated phosphorylation whereas CRLCdt2 instead requires interaction with 

PCNA (Havens and Walter, 2011; Li et al., 2003). A third regulatory layer relies on the 

inhibition of Cdt1 function by geminin (Maiorano et al., 2000; Whittaker et al., 2000; 

Wohlschlegel et al., 2000), a protein present at high levels in S-phase until it is degraded by 

the anaphase promoting complex/cyclosome (APC/C) in mitosis (McGarry and Kirschner, 

1998).  

Maintaining correct levels of Cdt1 is crucial to prevent genome instability both in animals 

(reviewed in (Blow and Gillespie, 2008)) and plants (Castellano et al., 2004; Raynaud et al., 

2005). Given the different mechanisms evolved to control Cdt1 levels and their species-

specificity we wondered whether CDT1 function is regulated by ancient mechanisms evolved 

in plants, as suggested by early observations (Castellano et al., 2004). Here, we have 

addressed the question of how CDT1 protein levels are controlled in plant cells by analyzing 

the cell cycle dynamics of Arabidopsis CDT1a and by identifying the features shared with 

animal cells, such as its fast degradation after the G1/S transition and its targeting for 

degradation by the FBL17 F-box protein. We have also compared the CDT1a availability in 

proliferating and endoreplicating cells. The use of live imaging and new marker lines have 

been instrumental to obtain results that contribute to a better understanding of the 

evolutionary history of CDT1 regulation, a crucial licensing step for the maintenance of 

genome stability.  

 

 

Results 
Expression of CDT1a in proliferating cells 

The Arabidopsis genome contains two genes, CDT1a (At2g31270) and CDT1b 

(At3g54710), which encode CDT1 proteins, a key component of the pre-replication 

complexes (pre-RCs). Transcriptional GUS reporter lines revealed that both CDT1a and 

CDT1b genes show a very similar pattern of preferential expression in proliferating tissues 
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(Castellano et al., 2004). Here we have focused on CDT1a, which is an essential protein as 

revealed by the lethal phenotype of the corresponding T-DNA insertion mutant (Domenichini 

et al., 2012).  

To study the expression dynamics of CDT1a at the protein level we generated a 

translational fusion of the genomic CDT1a locus fused to CFP under its own promoter. 

Based on our analysis of the chromatin configuration at the CDT1a genomic locus (Sequeira-

Mendes et al., 2014), we cloned a promoter region of 1823 bp, encompassing proximal 

promoter region (state 1 and 2) and the intergenic region chromatin state 4 (Figure 1–figure 

supplement 1). Constitutive CDT1a overexpression leads to altered levels of nuclear ploidy 

(Castellano et al., 2004). Thus, we assessed that the pCDT1a::CDT1a-CFP line, both in a 

wild type and in the cdt1a-1 mutant backgrounds, showed a nuclear ploidy profile similar to 

that of the wild type plants, with only a small increased frequency of higher ploidy nuclei 

(Figure 1A).  In fact, the lethal phenotype of cdt1a-1 is suppressed by expression of the 

CDT1a-CFP fusion protein (Figure 1–figure supplement 2). These data led us to conclude 

that the CDT1a-CFP reporter could be used to study the CDT1a dynamics and regulation in 

proliferating cells of a developing organ. 

Analysis by confocal microscopy showed that CDT1a is detected in the different 

proliferating cells of the root apical meristem (RAM) as a nuclear protein (Figure 1B,C). It is 

noteworthy that expression of CDT1a-CFP in the cdt1a-1 mutant background showed an 

expression pattern similar to that of CDT1a-CFP in the wild type (Figure 1D,E). Epidermal 

cells showed a clear patchy pattern, typical of cell cycle regulated proteins (Figure 1B,D). 

Cells of the quiescent center (QC) appear in most cases devoid of CDT1a-CFP signal 

whereas most of the surrounding stem cells contained CDT1a-CFP (Figure 1C,E). CDT1a-

CFP-containing cells were frequent in the stele (Figure 1C,E).   

 
Figure 1. Expression of CDT1a in proliferating cells.  
(A) Nuclear DNA ploidy profiles of leaves #1/2 of 3-week-old Arabidopsis seedlings. 
N=10,000 nuclei in each nuclei were scored. Data correspond to mean ± s.d. Differences 
between ploidy levels of each genotype were not statistically significant using a t test with a 
Welch correction.  
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(B-E) Detection by confocal microscopy of CDT1a-CFP protein in the root meristem of 5-day-
old Arabidopsis seedlings in the wild type (B,C) cdt1a-1 mutant (lethal in homozygosis; D,E) 
backgrounds, in the epidermal cell layer (B,D) and in the plane of the quiescent center (C,E).  
 

 
CDT1a protein is loaded in early G1 and degraded at the G1/S transition in 
proliferating cells 

We used live imaging to study CDT1a dynamics during the cell cycle in the growing 

Arabidopsis root meristem cells by following the CDT1a-CFP signal in plants also expressing 

the constitutively expressed HTR5 histone H3.3-mRFP (Otero et al., 2016). Since mitotic 

cells did not contain CDT1a-CFP we started to follow the progression of mitotic cells into the 

next cell cycle. We observed that detectable levels of CDT1a appeared ~25-30min after 

finishing cytokinesis and continued to accumulate for a few hours during G1 of daughter cells 

(Figure 2A–movie supplement 1), showing a high degree of synchrony in their CDT1a 

loading pattern.  

Live imaging also revealed that nuclei containing the highest levels of CDT1a-CFP 

eventually lose the CDT1a-CFP signal (Figure 2B–movie supplement 1). The degradation 

kinetics was very fast (~20-30 min to reach undetectable levels of CDT1a), as demonstrated 

by quantifying the loss of CDT1a-CFP signal (Figure 2C).  
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Figure 2. Dynamics of CDT1a during the cell cycle. 
(A) Live imaging visualizing CDT1a loading during G1. The arrowheads mark two newly-
formed daughter cells entering the G1 phase. CDT1a-CFP (cyan) level is shown at different 
time points, as indicated. Nuclei were detected by the constitutive expression of histone H3.3 
HTR5-mRFP (red).  
(B) Live imaging showing the degradation of CDT1a-CFP (cyan). All nuclei are visualized as 
in (A) with HTR5-mRFP (red). Two cells are shown to illustrate the fast CDT1a degradation 
process.  
(C) Quantification of the CDT1a degradation kinetics by measuring the CFP signal intensity. 
Quantification was performed from cells (N = 4) exhibiting a CDT1a-CFP signal from the 
mid/late G1 until the complete loss of the cyan signal in the analyzed cell. Values were 
normalized to 100% at maximum fluorescence value. 
(D) Regulation of CDT1a-CFP during S-phase. Roots were labeled for 15 minutes with EdU 
(red) whereas CDT1a (green) was detected by immunofluorescence and all nuclei by DAPI 
staining (blue). Insets illustrate cases where the EdU+ nuclei are devoid of CDT1a (inset 1) 
and where a faint EdU and CFP signals colocalize (arrows in inset 2).  
(E) Quantification of CDT1a and EdU signals in nuclei with the indicated late or early/mid 
EdU labeling pattern. Note that these two signals are largely excluded from the same 
nucleus. Quantification was performed from nuclei (N≥200) in the RAM zone of the above 
described material (D).   
 

To find out when during the cell cycle degradation of CDT1a occurs we first asked 

whether proliferating cells containing CDT1a-CFP are progressing through S-phase by 

labeling with a 15 min pulse of 5-ethynyl-2’-deoxyuridine (EdU). We found that CDT1a-CFP 

and EdU signals did not colocalize in almost any of the nuclei analyzed (Figure 2D, inset 1). 

In the few cases found with detectable amounts of both CDT1a-CFP and EdU (<2%), the 

signals were very low (Figure 2D, inset 2). Independent quantification of the EdU and CDT1a 

signals further confirmed that most nuclei contained either signal but not both (Figure 2E). 

Furthermore, colocalization of both signals corresponded with an early S-phase EdU labeling 

pattern (Dvorackova et al., 2018), supporting the conclusion that CDT1a-CFP is degraded 

upon entering S-phase. Therefore, we conclude that CDT1a is deposited early after mitosis 

and is degraded rapidly as soon as cells pass the G1/S transition.  

 

CDT1a is loaded immediately after S-phase in endoreplicating cells 
Cells undergoing the endocycle in the transition zone of the root must replicate their 

genome during S-phase. However, the dynamics of pre-RC proteins, our focus here, as well 

as other mechanistic aspects of the endocycle S-phase are not well established. It is known 

that Cdt1 oscillates both in mitotic and endocycling Drosophila cells and exhibits low levels 

during S-phase (Thomer et al., 2004; Whittaker et al., 2000). We found that in the transition 

zone of the root where cells are engaged in the endocycle, more cells contained CDT1a than 

in the proliferative area but the pattern was also patchy with cells showing various levels of 

CDT1a-CFP, including a fraction of nuclei devoid of the protein (Figure 3A). A similar pattern 

was observed in the cdt1a-1 plants complemented with the CDT1a-CFP fusion protein 
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(Figure 3B). To determine the CDT1a status in relation to the endocycle S-phase we labeled 

with EdU and found that the vast majority of cells in the transition zone did not have 

detectable levels of CDT1a-CFP in EdU-labeled cells (Figure 3C, inset 1), and only a small 

amount showed low levels of CDT1a-CFP and EdU (Figure 3C, inset 2). This pattern was 

similar to that of the meristematic cells and strongly indicative of a fast degradation of 

CDT1a-CFP upon S-phase initiation during the endocycle. Therefore, we can conclude that 

the CDT1a dynamics during S-phase of both proliferating and endocycling cells is similar. 

 

 

 
Figure 3. Dynamics of CDT1a in endoreplicating cells.  
(A,B) Expression of CDT1a-CFP in endoreplicating cells of the transition zone of the root 
apex in a wild type (A) and in the cdt1a-1 (B) mutant backgrounds.  
(C) CDT1a dynamics during the endocycle G phase. Most cells possess the pattern shown in 
inset 1, where EdU-labeled nuclei are devoid of CDT1a. Example of cells exhibiting a low 
signal of CDT1a colocalizing with a low EdU signal (inset 2). All nuclei were counterstained 
with DAPI (blue).  
(D) Schematic of the strategy to visualize CDT1a loading during the G phase of the 
endocycle. Cells were pulse-labeled with EdU (15 min). Quantification of the time of 
appearance of CDT1a signal in EdU-labeled nuclei with a late-replicating pattern (labeled 
chromocenters; cell #2*) at different chasing times gives a direct measurement of CDT1a 
incorporation after the endocycle S-phase.  
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(E) Quantification of EdU and CDT1a-CFP signals at different chasing times of nuclei with a 
late-replicating EdU-labeling pattern (N=48, N=22, N=42 nuclei for chasing times 0, 30 and 
45 min, respectively).   
 

After termination of the endocycle S-phase, cells skip mitosis and enter a G phase before 

a new endoreplication round initiates. A key question is when after S-phase of endocycling 

cells start to load again CDT1. To answer this, we labeled root cells with EdU (15 min) and 

chased them for various times. The time taken by EdU-labeled cells with a late-replicating 

pattern (labeled chromocenters, Fig. 3D) to show a detectable CDT1a-CFP signal is a direct 

measurement of the time required for CDT1a to load during the endocycle G phase after S-

phase termination. We found that CDT1a is loaded just after a short (~20-30 min) time in 

late-replicating nuclei (Figure 3E). Our results demonstrate that the G phase of the endocycle 

behaves largely as a G1 phase, based on the CDT1a dynamics. 

 
Role of CDT1a domains in its dynamics and genome stability 

CDT1 is not highly conserved in sequence except for a ~150 amino acid-long C-terminal 

domain, involved in MCM interaction (Castellano et al., 2004; Ferenbach et al., 2005). We 

confirmed the relevance of CDT1 domains by testing whether two truncated versions of 

CDT1a were able to complement the lethal cdt1a-1 mutation (Figure 5A). We found that 

expression of the N-terminal moiety (N-CDT1a; amino acids 1-362) was unable to rescue 

viability of cdt1a-1 mutant (n=52 plants genotyped), in spite of having the expected 

expression domain (Figure 4B), but consistent with previous studies with animal Cdt1 

(Ferenbach et al., 2005). On the contrary, expression of the C-terminal moiety (C-CDT1a; 

amino acids 363-571), a truncation proposed recently as a cell cycle marker in pants (Yin et 

al., 2014), did allow the recovery of viable plants, allowing further studies (Figure 4G). The 

expression domain of the C-CDT1a in the RAM, both in a wild type and a cdt1a-1 mutant 

background, was different from the full-length protein (see also Figure 1 and 3), as it was 

present in many proliferating cells in the RAM as well as in the transition zone of the root but 

not in the elongation zone (Figure 4C,D). Importantly, this truncated version did not show the 

same dynamics during the cell cycle as the full-length protein, as revealed by an EdU pulse, 

showed S-phase cells containing high levels of C-CDT1a (Figure 4E), consistent with 

previous reports (Yin et al., 2014). Since the full-length protein is rapidly degraded upon S-

phase initiation, the maintenance of the C-terminal moiety during S-phase allowed us to 

evaluate whether it had deleterious effects. Indeed, flow cytometry analysis revealed that 

excess of C-CDT1a in a cdt1a-1 background during S-phase led to an abnormal nuclear 

ploidy profile with clear evidence of partially replicated genomes whereas expression of C-

CDT1a in wt and expression of full length CDT1a in cdt1a-1 showed comparable ploidy 

profiles (Figure 4F). Since the C-terminal moiety bears the MCM interaction domain, the 
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effect observed could be a consequence of altered availability of MCM, strongly suggesting 

that elimination of CDT1a early upon S-phase entry is a mechanism to prevent genome 

instability. Moreover, plants expressing the C-CDT1a in the cdt1a-1 mutant background 

could grow well but they reached smaller size (Figure 4G), produced smaller siliques (Figure 

4H) and contained aborted seeds (Figure 4I).  

 

 

 
 
Figure 4. Role of CDT1a domains in degradation and genome instability.  
(A) Schematic of the CDT1a full-length and deletion constructs expressed under the 
endogenous pCDT1a promoter. The MCM binding domain is located at the C-terminus of 
CDT1a. Note that the construct expressing the N-terminal moiety of CDT1a was not able to 
complement the cdt1a-1 lethal phenotype.  
(B) Expression of the N-terminal moiety (N-CDT1a-CFP) in wild type plants. 
(C) Expression of the C-terminal moiety (C-CDT1a-CFP) in wild type plants.  
(D) Expression of the C-terminal moiety (C-CDT1a-CFP) in cdt1a-1 mutant plants.  
(E) The C-CDT1a truncated protein is not degraded at the onset of S-phase, as it occurs with 
the full-length CDT1a protein.  
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(F) Representative nuclear ploidy profile of wild type plants (grey) and cdt1a-1 mutants plants 
expressing the full length CDT1a (cyan) or the C-terminal moiety (C-CDT1a; red). Note the 
abnormal profile of these nuclei with increased amounts of partially replicated genome 
(arrows). Leaves #3/4 of 22-day-old plants were used. The experiment was repeated at least 
3 times with similar results.   
(G) Complementation of the cdt1a-1 mutation with the CDT1a C-terminal half (C-CDT1a).  
(H) Siliques of control (wt) and transgenic plants expressing the C-CDT1a in the wild type or 
cdt1a-1 mutant background.  
(I) Detail of siliques shown in panel H to highlight the presence of aborted seeds.  
 
CDT1a is targeted for proteasome degradation 

Degradation of Cdt1 in animal cells occurs through the proteasome (Havens and Walter, 

2011; Nishitani et al., 2006). To assess whether this degradation pathway appeared early in 

evolution we treated Arabidopsis seedlings expressing CDT1a-CFP with bortezomib, an 

inhibitor of the catalytic subunit of the 26S proteasome (Bonvini et al., 2007). Treatment led 

to the accumulation of CDT1a-CFP in meristematic cells (Figure 5A).  As a control we also 

treated seedlings expressing CYCB1;1-GFP (Ubeda-Tomas et al., 2009) which is degraded 

by the APC in anaphase.  As expected, bortezomib-treated cells showed a significant 

accumulation of cells in anaphase with high amounts of CYCB1;1 (Figure 5B). To get further 

information, we treated plants with bortezomib during 4 h and pulsed-labeled them with EdU 

during the last 30 minutes of the treatment. We found that CDT1a-CFP colocalized with EdU 

after the bortezomib treatment, indicating that it was no longer degraded at the beginning of 

S-phase and that cells can proceed into S-phase with high levels of CDT1a-CFP.  

 

 
 
Figure 5. CDT1a is targeted for proteasome degradation.  
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(A) The expression of CDT1a-CFP (cyan) was assessed by confocal microscopy of root 
apices after treatment with DMSO (control) and proteasome inhibitors bortezomib (50 µM) or 
MLN4924 (25 µM) for 2.5 hours.  
(B) Effect of bortezomib and MLN4924 as in panel (A) on the CYCB1;1-GFP protein.  
(C) Detection of S-phase progression in the presence of proteasome inhibitors, as indicated. 
Roots were labeled with EdU (30min; red) at the end of the treatment with the indicated 
proteasome inhibitors. CDT1a-CFP was detected by immunofluorescence (green). All nuclei 
were counterstained with DAPI. Insets show details of the indicated panels. Arrowheads 
point to nuclei in S-phase also containing CDT1a-CFP.  

 

 

Similar accumulation of CDT1a was observed with another proteasome inhibitor, 

MLN4924, which prevents the neddylation step required for SCF activity (Figure 5A), 

revealing that CDT1a proteasome targeting requires ubiquitylation by an SCF-type E3 ligase. 

Since the neddylation step is not required for the APC/C activity, another type of E3 ligase, 

MLN4924 does not affect stability of CYCB1;1 (Figure 5B). Again, cells can be identified 

containing both CDT1a-CFP and EdU signals (Figure 5B).  

 

FBL17 targets CDT1a for proteasome degradation 
To identify the mechanism of targeting CDT1a for proteasome degradation we crossed 

CDT1a-CFP-expressing plants with several known mutants defective in cell cycle and 

growth-related SCF function. We found that both the expression pattern and the amount of 

CDT1a-CFP per nucleus were very similar in the skp2a, cul4a and skp2a,cul4a mutant 

backgrounds compared to controls (Figure 6A). This result was confirmed by western blot 

analysis that showed no increased levels of CDT1a-CFP in all mutants analyzed (Figure 6B). 

Therefore, we conclude that although CDT1a is likely targeted for degradation by a SCF 

complex soon after the onset of S-phase, neither SKP2A nor a CRL-type of ubiquitin E3 

ligase is involved in CDT1 degradation.  

Among the very large Arabidopsis family of F-box proteins, FBL17 is a key factor involved 

in cell cycle transitions during vegetative growth as well as during cell divisions of the 

germline (Gusti et al., 2009; Kim et al., 2008; Noir et al., 2015; Zhao et al., 2012). Thus, we 

hypothesize that FBL17 is a good candidate to target CDT1a for proteasome degradation. To 

test this, we crossed plants expressing CDT1a with heterozygous fbl17-1+/- plants. In spite 

that the fbl17-1 mutation is lethal, ~1% of the embryo progeny can be rescued and grow to 

produce an abnormal seedling (Noir et al., 2015). Although with a very altered root meristem 

it was clear that CDT1a-GFP accumulates and most cells maintain high levels of the protein 

in the fbl17-1 mutant background, compared to the control plants (Figure 6C). To further 

assess the involvement of FBL17 in CDT1a degradation we determined the dynamics of both 

proteins in plants expressing CDT1a-mRFP and FBL17-GFP. Live imaging demonstrated 

that high levels of CDT1a are maintained in nuclei while FBL17 protein starts to accumulate 
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and then rapidly diminished once the maximum levels of FBL17 are reached (Figure 6D and 

movie supplement 2).  

 

 
Figure 6. Identification of FBL17 as a F-box protein involved in CDT1a degradation.  
(A) Expression of CDT1a-CFP (cyan) assessed by confocal microscopy in root tips of wild 
type and indicated mutants of the proteasome pathway. Cell walls were detected by staining 
with propidium iodide (magenta).  
(B) Western blot revealing the amount of CDT1a-CFP protein expressed in the indicated 
lines. 
(C) Expression of CDT1a-CFP assessed by confocal microscopy in wild type and fbl17-1 
mutant root tips. The saturated image (inset) was acquired with the same confocal setting as 
in panel C (left).  Cell walls were detected as in panel A. 
(D) Live imaging showing the dynamics of CDT1a-mRFP (magenta) and FBL17-GFP (green) 
during the G1 and early S-phase. Note that the CDT1a signal disappears rapidly as the 
FBL17 protein reaches a certain threshold.  

 

 
FBL17-mediated CDT1a degradation is robust independently of protein levels 

It has been reported that the fbl17-1 mutant shows altered expression of several cell cycle 

regulatory proteins (Noir et al., 2015). We confirmed that both CDT1a and E2Fa are 

upregulated in fbl17-1 seedlings (Figure 7A). Since E2Fa expression is up-regulated in fbl17-

1 mutants and CDT1a is transcriptionally activated by E2Fa (Castellano et al., 2004; 

Ramirez-Parra et al., 2003; Vlieghe et al., 2005) one possibility is that the excess CDT1a 

levels detected in the fbl17-1 mutant is solely a consequence of transcriptional upregulation 

by the increased levels of E2Fa. To test this possibility, we generated plants expressing 

CDT1a under the control of a constitutive promoter, which is not regulated by E2Fa. Western 

blot confirmed the high amount of CDT1a expressed (Figure 7B). The protein is loaded in G1 

and degraded at the beginning of S-phase (Figure 7–figure supplement 3A), indicating that 

CDT1a is regulated at the posttranscriptional level in the meristem also under constitutive 
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expression. CDT1a-CFP accumulates at high levels in the differentiated zone and 

endoreplication is enhanced (Figure 7–figure supplement 3B,C). We also selected by 

crossing plants expressing CDT1a-CFP constitutively in the fbl17-1 mutant background and 

found that CDT1a accumulates in most proliferating cells of the small meristem of the fbl17-1 

mutant (Figure 7C), but to a lesser amount than to when CDT1a expression is controlled by 

its own promoter. Together these results indicate that the accumulation of CDT1a in the 

fbl17-1 background is due to a combination of both inhibition of selective proteolysis and 

transcriptional upregulation. Importantly, we found that mid S-phase cells labeled with EdU 

contained a significant amount of CDT1a (Figure 7D,E) indicating that indeed FBL17 is 

necessary to drive CDT1a degradation at the initiation of S-phase. Thus, we conclude that 

CDT1a regulation, including accumulation during G1 and rapid degradation early upon S-

phase entry, is very robust at the protein level, independently of the mRNA or protein 

expression levels.  

 

 
 
Figure 7. Regulation of CDT1a levels expressed under a constitutive promoter 
(A) Relative expression levels of FBL17, E2FA and CDT1a transcripts were determined by 
qRT-PCR in wild-type and fbl17-1 seedlings. The bar graph depicts the mean values of the 
indicated transcripts of one independent replicate (± standard errors of the technical 
triplicate). The experiment was repeated at least 3 times giving similar differential expression 
levels.  
(B) Western blot revealing the accumulation of CDT1a-CFP in plants expressing CDT1a from 
its own promoter (lane 1) and from a constitutive promoter (lane 2). Loading control is shown 
at the bottom. 
(C) CDT1a dynamics in wild type and fbl17-1 mutant, expressed with a constitutive promoter.  
(D) Detection of S-phase progression and CDT1a levels under constitutive expression in the 
fbl17-1 mutant background. Roots were labeled with EdU (30 min; red). CDT1a-CFP was 
detected by immunofluorescence (green). Insets show details of the indicated panel. All 
nuclei were stained with DAPI. 
(E) Quantification of EdU and CFP signal intensities in nuclei of plants expressing 
constitutively CDT1a-CFP in wt (black triangles) and fbl17-1 (green circles) mutant 
backgrounds (N=76, N=52 nuclei for wild type and fbl17-1 mutant, respectively).  
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Discussion 
A strict control of chromosomal replication is crucial to maintain genome stability. A 

primary step that is tightly controlled is the initiation of DNA replication that must occur once 

and only once per cell cycle. Thus, cells have evolved mechanisms to prevent that DNA 

replication origins (ORIs) are activated more than once in the same S-phase, so-called re-

replication, by sequential degradation of key factors (Arias and Walter, 2007; Coleman et al., 

2015). To prevent this harmful scenario for genome stability it is necessary to regulate the 

availability and function of key factors acting at the early stages of ORI activation after 

assembly of pre-replication complexes (pre-RC). However, sufficient amounts of chromatin-

bound pre-RCs are necessary for correct full genome replication because limiting amount of 

pre-RC or ORI activation in excess cause partial replication phenotypes (Blow et al., 2011; 

Moreno et al., 2016). Several pre-RC components are subject to control their nuclear 

abundance (Asano and Wharton, 1999; Castellano et al., 2001; DePamphilis, 2003; Kim and 

Kipreos, 2008; Kuo et al., 2012; Ohtani et al., 1998), but Cdt1 is probably the most tightly 

regulated pre-RC component (Arias and Walter, 2007; Castellano et al., 2004; Dorn et al., 

2009; Thomer et al., 2004). Cdt1 abundance needs to be high to ensure sufficient pre-RC 

assembly and ORI activation but also its nuclear level has to be reduced at some point after 

ORI activation to prevent re-replication. Thus, overlapping, although not redundant 

mechanisms operate at levels of transcriptional regulation, protein stability and activity, and 

involve species-specific mechanistic differences (Arias and Walter, 2007). 

Control of Cdt1 abundance is first exerted at the transcriptional level both in unicellular 

and multicellular eukaryotes. In S. pombe the CDC10 transcription factor, which also 

regulates other cell cycle genes (Whitehall et al., 1999), drives the production of high Cdt1 

mRNA levels (Hofmann and Beach, 1994). In animal and plant cells, transcription of Cdt1 

gene depends on the E2F family of transcription factors and the retinoblastoma-related 

proteins (Castellano et al., 2004; Desvoyes et al., 2006; Ramirez-Parra et al., 2003; Yoshida 

and Inoue, 2004). Consistent with this, we found progressive accumulation of a detectable 

signal of Arabidopsis CDT1a protein shortly after initiation of G1, which reached a maximum 

late in G1. Therefore, this mechanism appears to be conserved, although with different 

players in unicellular (yeast) and multicellular (animals, plants) organisms.  

A second pathway functioning in animal cells is the inhibition of Cdt1 activity by geminin, a 

protein that is regulated by the E2F pathway (Markey et al., 2004; Yoshida and Inoue, 2004), 

increases in S-phase and is maintained at high level until anaphase where it is degraded by 

the APC (McGarry and Kirschner, 1998). Geminin regulates DNA replication licensing 

(DePamphilis et al., 2006) by interacting with Cdt1 and inhibiting MCM loading (Maiorano et 

al., 2004; Wohlschlegel et al., 2000). Interfering with geminin abundance in animal cells by 
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altering its expression or proteolysis leads to genome instability (Neelsen et al., 2013; Zhu et 

al., 2004). Geminin appears to be an evolutionary acquisition of the animal lineage since it is 

not present in plant genomes, in spite that Arabidopsis encodes GEM, a CDT1-interacting 

protein, with remarkable functional analogies with animal geminin, but structurally unrelated 

(Caro et al., 2007; Caro and Gutierrez, 2007; Kroll, 2007; Luo et al., 2004; Seo and Kroll, 

2006). However, any potential role of GEM in CDT1a-related DNA replication functions has 

not been addressed yet.  

Proteasome-mediated degradation of Cdt1 seems to be a third mechanism in animal as 

well as in plant cells as demonstrated in this work. This is different from yeast where Cdt1, in 

complex with MCM, is exported out of the nucleus during S-phase (Nguyen et al., 2000; 

Tanaka and Diffley, 2002). Two different degradation pathways have been demonstrated in 

animal cells, mediated by the Skp2 and Cdt2 CRL receptors (Havens and Walter, 2011; 

Nishitani et al., 2006). Similar to animal Cdt1 that requires a SCFSkp2 complex, Arabidopsis 

CDT1a is targeted for degradation by a SCFFBL17 complex, a process that likely requires CDK 

activity (Castellano et al., 2004). The other pathway that controls human Cdt1 level is 

mediated by the Cdt2 protein, which is part of a CRL4 complex and instead of 

phosphorylation, requires interaction of Cdt1 with PCNA (Hayashi et al., 2018; Mazian et al., 

2019; Nishitani et al., 2006). This Cdt1 targeting mechanism is mediated by a PCNA-

interacting protein (PIP) motif located at the N-terminus of human Cdt1 (Havens and Walter, 

2011), which is not conserved in all animal species. The lack of a PIP box in Arabidopsis 

CDT1a makes unlikely that this pathway operates in plants to regulate CDT1a abundance.  

The plant F-box family contains >700 members (Gagne et al., 2002; Lechner et al., 2006). 

Among them, FBL17 has been reported as a crucial factor controlling cell proliferation in 

vegetative and germline tissues, endoreplication in various organs and, more specifically, the 

G1/S transition (Gusti et al., 2009; Kim et al., 2008; Noir et al., 2015; Zhao et al., 2012). 

Therefore, FBL17 appeared as an excellent candidate to be part of an SCF complex 

targeting CDT1a for degradation. Indeed, the fbl17-1 mutant shows a major accumulation of 

CDT1a, which may be at the basis of its defects in genome stability and cell proliferation 

(Gusti et al., 2009). It seems that a distinct F-box protein has evolved in plants to regulate the 

abundance of CDT1a as a mechanism for genome maintenance. Another difference with the 

regulatory mechanism acting on Cdt1 in animals (Rizzardi et al., 2015) is the absence of 

Arabidopsis CDT1a during the G2 phase. Although we cannot discard the existence of other 

degradation pathways, it seems that Arabidopsis CDT1a abundance is mainly regulated at 

the transcriptional level and by selective proteolysis. Given the importance of regulating DNA 

replication by overlapping mechanisms to prevent genome instability it is conceivable that 

additional safeguard mechanisms could have evolved in plants acting on other pre-RC 

components. The rationale and the tools available now should facilitate addressing these 
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questions in the future to gain insight into the evolutionary history of the mechanisms 

preventing genome instability in multicellular eukaryotes.  
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Materials and methods 
Plant growth 

 After stratification of Arabidopsis thaliana (Col-0 ecotype) seeds for 48h, plants were 

grown in 0.5x MS medium (pH 5.7) supplemented with MES, vitamins, 0.5 or 1% sucrose 

and 1% plant agar (Duchefa) at 21 °C and 60% moisture, under long day conditions (16 h 

light, 8 h dark). MS medium was supplemented with antibiotics for plant selection and the 

same MSS medium without agar was used for metabolic labeling and drug treatment. 

 

Generation of CDT1a reporter lines 
For the pCDT1a:CDT1a-CFP, pCDT1a:CDT1a-GFP and pCDT1a:CDT1a-mRFP constructs, 

the genomic fragment encompassing 1823bp of the promoter and the 2505 bp of the gene 

was cloned into the pDONOR221 using the gateway system and then inserted in frame with 

the FP into the destination vector pGWB443 for fusion with eCFP, pGWB450 for GFP and 

pGWB453 for mRFP (Nakagawa T. et al., 2009).  The C-CDT1a-CFP was generated by PCR 

mediated deletion of the 1578 bp N-terminal region using as a template the pCDT1a:CDT1a 

entry clone  (Hansson et al., 2008). For the N-CDT1aCFP construct, the 1823 bp CDT1a 

promoter and the 1577 bp 5’ moiety of gCDT1a gene were amplified by PCR using the KOD 

polymerase (Millipore) and domesticated into the pUPD2. The different modules (promoter, 

gene, eCFP and HSP18 terminator) were then assembled into a binary vector using the 

Goldenbraid system (Sarrion-Perdigones et al., 2014). The Goldenbraid system was also 

used to generate the construct for the CDT1a ubiquitous expression line, using the pU6 

promoter (At3g13855, 388bp), the genomic fragment of CDT1a coding sequence,  eCFP and 

HSP18 terminator. Primers used in this study are listed in Supplementary Table 1 (relate to 

Figures all figures). All constructs were checked by sequencing (Macrogen). Transgenic 

plants were generated by the floral dip method (Clough and Bent, 1998), using the 

Agrobacterium tumefaciens C58C1 strain and transformants were selected with kanamycin. 	

The cdt1a-1 GABI_KAT_025G08 knockout line was described earlier (Domenichini et al., 

2012) and obtained from the NASC. Mutants of the proteasome pathway fbl17-1 

(GABI_KAT_170E02), cul4-1, skp2a (GABI_KAT_293D12), skp2b (SALK_028396) have also 

been described previously (Bernhardt et al., 2006).   

For genotyping the T-DNA insertion mutants, total genomic DNA was extracted. One 

frozen leaf was grinded, resuspended in extraction buffer (d-Sorbitol 0.14M, Tris-HCl pH8 

220 mM, EDTA 22 mM, NaCl 0.8 M, CTAB 0.8%, n-laurylsarcosine 1%) incubated at 65ºC 

for 10 min and extracted with chloroform. DNA was precipitated with ethanol and 

resuspended in water. PCR amplification was carried out using primers listed in 

Supplementary Table 1 (relate to all figures) and Taq polymerase (NZYTech).  
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RNA extraction and RT-qPCR 
Purification of total RNAs from 12-day-old seedlings grown under in vitro conditions was 

performed using the Tri-Reagent (Molecular Research Center, Inc.) according to the 

manufacturer’s instructions. cDNAs were prepared using the High Capacity cDNA Reverse 

Transcription kit (Applied BiosystemsTM). Real-time amplification was carried out using gene-

specific primers and SYBR Green Master mix (Roche) on a Lightcycler LC480 apparatus 

(Roche) according to the manufacturer's instructions. The mean value of three replicates was 

normalized using the EXP (AT4G26410) and TIP41 (AT4G34270) genes as internal controls. 

Primers used in quantitative RT-PCR are listed in Supplemental Table 1.  

 
EdU labeling 
Four-day-old seedlings were incubated in liquid MSS supplemented with 20 µM of EdU for 15 

or 30 min at room temperature and when indicated, washed once with MSS and chased for 

the specified periods of time with 50 µM thymidine. Plants were then fixed with 

paraformaldehyde 4% and immunofluorescence was performed as described previously 

(Otero et al., 2016). Roots were imaged by confocal microscopy using a Zeiss LSM 710 or 

LSM800. 

 

Confocal microscopy 
Five- or 6-day-old roots were stained with propidium iodide (50 µg/mL) and observed using a 

Zeiss LSM710 confocal microscope. For live imaging, 4-day-old plants were transferred to a 

P35 glass bottom dish, covered with a piece of 1% agar MSS and acclimated for 4-10h in the 

growth chamber. FM4-64 (10 µM) was used to stain plasma membrane and images were 

acquired with a NIKON A1R+ confocal microscope. Quantification of fluorescence signal and 

movie editing were performed using FIJI.  

 

Flow cytometry 
Leaves #1-2 and #3-4 of 3 week-old plants were chopped with a razor blade in 500 µl of 

nuclear isolation buffer (Desvoyes et al., 2006). DAPI was added at 2 µg/ml and nuclei were 

analyzed using a FACSCanto II flow cytometer (Becton Dickinson). 

 

Protein extraction and Western blot analysis 
Nuclear extract was prepared with 0.2 g of seedlings (5 days after sowing) essentially as 

described previously (Desvoyes et al., 2018). The nuclear lysate was subjected to sonication 

in a Bioruptor (Diagenode), 10 cycles 30’ On, 30’ Off. After centrifugation the cleared extracts 
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(15 µg of proteins) were fractionated in a 10% polyacrylamide gel and protein 

immunodetection was realized with an antibody anti GFP (PABG1, Chromotek, 1/3000). 
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Figure supplements 
Figure S1. Gene organization and chromatin landscape of the CDT1a genomic region. 
The different chromatin states, as described (Sequeira-Mendes et al., 2014) covering the 

gene as well as the upstream region are indicated together with the DNase I hypersensitive 

sites. The color code is red (state 1, active gene), salmon (state 2, proximal promoter), pink 

(state 3, transcribed gene body), yellow (state 4, intergenic region) and brown (state 6, 3’ of 

transcribed gene).  

 

Figure S2. Phenotypic analysis of plants expressing the CDT1a-CFP fusion protein. 
The construct expressing CDT1a-CFP under its own promoter was expressed in wild type 

(wt) and cdt1a-1 mutant plants, as indicated. Note that the cdt1a-1 mutant is lethal and 

therefore the CDT1a-CFP protein seems to be fully functional.  

 

Figure S3. Constitutive expression of CDT1a-CFP.   
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(A) Constitutively expressed CDT1a is degraded right after the G1/S transition, as it is the 

case when expressed from its own promoter. Note that EdU labeling and CFP signals do not 

colocalize. 

(B) The expression domain of constitutively expressed CDT1a-CFP in the root apex is 

extended to the differentiated part of the root. 

(C) The nuclear ploidy profile is different from control plants since there is a reduction of 2C 

nuclei and an increase in 16C nuclei, likely the result of ectopic expression of CDT1a-CFP in 

the transition/differentiation zone, where cells normally endoreplicate, and not in proliferating 

cells.    

 

 

Additional files 
Supplementary Table 1. Primers used in this study 

 

Supplementary Movies 
Movie supplement 1. Loading and degradation of CDT1a-CFP during G1. 

Movie supplement 2. Dynamics of CDT1a-mRFP and FBL17-GFP.  
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Supplemental Table 1. Description of primers used in this study
Primers name sequence

Cloning Gateway
CDT1a attB1 GGGGACAAGTTTGTACAAAAAAGCAGGCTTAAAGCTTTAGAGAAGGAGG
CDT1a attB2 GGGGACCACTTTGTACAAGAAAGCTGGGTAAGAAAGCAGTGGAGCCAT

Cloning Goldenbraid
pU6 PCR1F GCGCCGTCTCGCTCGGGAGCTTTTTTTCTTCTTCTTCGTTCATAC
pU6 PCR1R GCGCCGTCTCGATCGATGTGGGACTTTTGAAG
pU6 PCR2F GCGCCGTCTCGCGATTAGATAAGAAAACGAAGCTG
pU6 PCR2R GCGCCGTCTCGCTCACATTCAATCACTACTTCGACTCTAG
cdsCDT1a pcr1 F GCGCCGTCTCGCTCGAATGAGTACACCAGGCTCTTC
cdsCDT1a pcr1 R GCGCCGTCTCGTAAGACGAAGTTGGTTTAGCC
cdsCDT1a pcr2 F GCGCCGTCTCGCGCAGATTAACATTGCTCCAACTC
cdsCDT1a pcr2 R GCGCCGTCTCGTTGCTGGATACATCTTCTTCTG
cdsCDT1a pcr3 F GCGCCGTCTCGGCGACGATGAAATACTCAGCATAC
cdsCDT1a pcr3 R GCGCCGTCTCGCTCGCGAACCAGAAAGCAGTGGAGCCATCT

PCRq 
CDT1aF GGATTTCACAGATGATATACCCATTGA
CDT1aR TCAATCGCTTTCCTCTCTTGTTCT 
E2FaF TGACGGATATTTGGAAAACTGACTC
E2FaR GGTGCTATTTCGCCCATTCC
FBL17F CTCGGGATGATCTGCGATGTC
FBL17R GACTTGGATTCTCTACAAAGGTCG

Genotyping 
cdt1a wt CCCTCAGGTATAATGCCCTATCTATTTTAG
cdt1a mut CAAGCTCTTCTTTTGTGATAACCC
skp2a  LP GCCTGAAGGATACAAGCACAG
skp2a  RP CCCAAGTTTGTAAAGCTGCAG
cul4  LP ACGTTTTACGATATACCCCGG
cul4  RP GGTCCTGGAATACTCTTTCCG
FBL17-1 RP GAACTGCTTGATCTGAGTGGG
FBL17-1 LP CCAACTTCCTTCTCTTCCCTG
FBL17-TDNA CCCATTTGGACGTGAATGTAGA
LB Gabi CCCATTTGGACGTGAATGTAGACAC
LBb1-3 salk ATTTTGCCGATTTCGGAAC
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