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ABSTRACT 

 

Background 

Entomological monitoring of Aedes vectors has largely relied on surveillance of larvae, 

pupae and non-host-seeking adults, which have been poorly correlated with human disease 

incidence. Exposure to mosquito-borne diseases can be more directly estimated using Human 

Landing Catches (HLC), although this method is not recommended for Aedes-borne arboviruses. 

We evaluated a new method previously tested with malaria vectors, the Mosquito Electrocuting 

Trap (MET) as an exposure-free alternative for measuring landing rates of Aedes mosquitoes on 

people. Aims were to 1) compare the MET to the BG-sentinel (BGS) trap gold standard approach 

for sampling host-seeking Aedes vectors; 2) characterize the diel activity of Aedes vectors and 

their association with microclimatic conditions.  

 

Methods 

The study was conducted over 12 days in Quinindé – Ecuador in May 2017. Mosquito 

sampling stations were set up in the peridomestic area of four houses. On each day of sampling, 

each house was allocated either a MET or a BGS trap, which were rotated amongst the four 

houses daily in a Latin square design. Mosquito abundance and microclimatic conditions were 

recorded hourly at each sampling station between 07:00-19:00 hours to assess variation between 
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vector abundance, trapping methods, and environmental conditions. All Aedes aegypti females 

were tested for the presence of Zika (ZIKV), dengue (DENV) and chikungunya (CHIKV) viruses.  

 

Results 

A higher number of Ae. aegypti females were found in MET than in BGS collections, 

although no statistically significant differences in mean Ae. aegypti abundance between trapping 

methods were found. Both trapping methods indicated female Ae. aegypti had bimodal patterns 

of host seeking, being highest during early morning and late afternoon hours. Mean Ae. aegypti 

daily abundance was negatively associated with daily temperature. No infection by ZIKV, DENV 

or CHIKV was detected in any Aedes mosquitoes caught by either trapping method. 

 

Conclusion 

We conclude the MET performs at least as well as the BGS standard, and offers the 

additional advantage of direct measurement of per capita human biting rates. If detection of 

arboviruses can be confirmed in MET-collected Aedes in future studies, this surveillance method 

could provide a valuable tool for surveillance and prediction on human arboviral exposure risk. 
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BACKGROUND 

 

Mosquito--borne viruses (arboviruses) are an important cause of diseases in humans and 

animals. In 2017, estimates suggested that mosquitoes were responsible for approximately 137 

millions human arboviral infections with dengue (DENV), chikungunya (CHIKV), and Zika virus 

(ZIKV) being the most important [1]. Arbovirus transmission to humans depends on multiple 

factors that involve spatial movement and immunity of human populations [2–7], socio-

economic factors and access to basic services (especially water) [8–11], and the ecology and 

distribution of the mosquito vectors that transmit them [12–19]. These factors combine to 

determine the distribution and intensity of arboviral transmission, and generate often complex 

and highly heterogeneous patterns of exposure and infection [20,21]. As safe and effective 

vaccines for DENV, CHIKV and ZIKV viruses are not yet available [22–27], control of the Aedes 

mosquito vectors remains a primary strategy for reducing transmission [28–30].   

 

Knowledge of where and when humans are at greatest risk of exposure to infected 

mosquito bites is vital for prediction of transmission intensity and effective deployment of vector 

control [31–34].  In the case of malaria, this information is used to estimate a time or site-specific 

“Entomological Inoculation Rate” (EIR); defined as the number of infected mosquito bites a 

person is expected to receive. This metric is usually derived from conducting Human Landing 

Catches (HLCs); a method in which a participant collects and counts the number of mosquito 

vectors landing on them over a given sampling period, then the sample is tested for the presence 

of a pathogen [35]. By providing a direct estimate of human exposure, the HLC provides sensitive 
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predictions of malaria transmission [32,36–40]. However, this method raises ethical concerns due 

to the requirement for human participants to expose themselves to potentially infectious 

mosquito bites [41]. In the case of malaria, this risk can be minimized by providing participants 

with prophylaxis [42]. However, such remediation is not possible for arboviruses where often no 

prophylaxis is available, and therefore HLCs are not recommended for the surveillance of Aedes-

borne arboviruses [43,44].  

 

Standard entomological monitoring for Aedes vectors is usually based on “exposure-free” 

surveillance of larvae or non-biting adults. This includes surveys of larvae or pupae in water 

containers [45–49], and collection of adult mosquitoes resting inside and/or around houses to  

indirectly estimate  human-vector contact rates [45,50–53]. While such surveillance methods are 

useful for confirming vector abundance and distribution, they are poor predictors of 

epidemiological outcomes such as disease incidence and outbreak potential [54,55].  

Consequently there is a need for vector sampling methods that can provide more reliable 

entomological indicators of arboviral transmission. 

 

Human exposure to arboviral infection is likely best assessed by surveillance of “host 

seeking” (human-biting) Aedes mosquitoes. Several methods have used to sample host seeking 

Aedes including  a variety of fan-operated traps that use visual attraction cues (e.g. Fay [56], the 

Fay-Prince trap [57], the black cylinder suction trap [58], duplex cone trap [59]) and lure-based 

traps. For the latter, artificial odours and attractants have been developed and tested for use in 

traps such as kairomone blends [60–67], BG-Lure® cartridges [68–70], and carbon dioxide (CO2) 
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[71]. Additionally other trapping methods have been developed that use live hosts as lures (e.g. 

animal-baited traps [72] and human-baited traps [85–87).].  Only a few studies have directly 

compared such alternative trapping methods against the HLC with most being outperformed by 

the latter  [74,75]. Out of all these methods, the BG-sentinel (BGS) trap has been  demonstrated 

as one of the most effective and logistically feasible [76–81], and thus often considered a gold 

standard for Aedes surveillance [82,83]. In a range of trap evaluation studies, the BGS 

outperformed other methods for Aedes vectors with the exception of the HLC [84]. Despite these 

advantages of the BGS, its ability to accurately reflect the biting rates experienced by one person 

remains unclear. Consequently, there is still a need for a safe alternative for direct assessment of 

human biting rates.  

 

Recently, a new  Mosquito Electrocuting Trap (MET) was developed as an exposure-free 

alternative to the HLC for sampling malaria vectors [98–100].  Similar to the HLC, this sampling 

method also uses human participants to lure mosquito vectors and trap them. However, the MET 

provides participants with full protection from mosquito bites so that no exposure is required. 

The MET consists of four squared-shaped electrocuting surfaces that are assembled around the 

legs of a host, with the rest of their body being protected by netting. Host-seeking mosquitoes 

are attracted towards the host by odour and heat cues as normal, but are intercepted and killed 

before landing. In previous trials in Tanzania, the MET matched the performance of the HLC for 

sampling malaria vectors in rural and urban settings [85–87]. This trap has also been used to 

assess host preference by baiting with human and livestock hosts [87], although it has not yet 

been evaluated for sampling Aedes vectors. If successful in this context, the MET could 
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significantly improve ability to monitor and predict arboviral transmission by facilitating an 

exposure-free direct estimation of EIR.     

 

This study reports the first evaluation of METs for sampling host-seeking Aedes vectors in 

a hotspot of DENV and ZIKV transmission in coastal region of Ecuador. This region is endemic for 

such arboviral diseases and has accounted for most of the cases reported in Ecuador. For 

instance, during the CHIKV outbreak in 2015, a total of 33,625 cases were reported in Ecuador, 

from which 96.02% was reported in the coastal region [88]. A similar pattern occurred during the 

ZIKV outbreak in 2016 and 2017, where approximately 98.49% of the cases were reported in this 

region from a total of 5,303 cases [89,90]. DENV has been reported every year in high numbers 

and considering 2016 and 2017, 84.78% of cases came from the coastal region from a total of 

25,537 cases [90,91].  

The objectives of this study were to: (1) evaluate the performance of the MET relative to 

the BGS trap for sampling host-seeking Ae. aegypti and other mosquitoes in the study area; and 

(2) use the MET to characterize the biting time of Ae. aegypti and other relevant mosquito species 

and their association with microclimatic conditions. 

In addition, we took the opportunity to test for the presence of arboviruses in the 

collected Aedes females by both trapping methods to investigate arboviral transmission in the 

local area.  
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METHODS  

 

Location and Time of the Study 

This study was conducted in the neighbourhood of “Los Higuerones” (0°19’34”N, 

79°28’02”W, 78 m.a.s.l), located in the city of Quinindé (Rosa Zárate) – Ecuador. This 

neighbourhood is located in an urban setting dominated by small, closely packed houses (Figure 

1a), bordering the eastern side with the Blanco river (Figure 1b). Quinindé is located in the 

province of Esmeraldas, the northernmost province in the coastal region of Ecuador. During the 

2015 outbreak of CHIKV, this province accounted with the highest disease burden in the country, 

with a total of 10,477 cases [88]. While for DENV, during 2016, Quinindé alone accounted for 52% 

of the cases within Esmeraldas province, with a total of 689 cases out of a total of 1,319. In 2017, 

the number of DENV cases in Quinindé was much lower compared with 2016, where only 87 

cases were reported out of 334 in the province of Esmeraldas. Although there is a permanent 

incidence of arbovirus cases along the year, a higher incidence is usually reported during the first 

half of the year [11]. 

  

The study was carried out across 12 days in May 2017 (4th- 12th, and 16-18th). On each day 

of the study, mosquito sampling was conducted over 12 hours, from 07:00 – 19:00 hours. 

Mosquito sampling was conducted within the peri-domestic area (garden/yard) of four 

households (Figure 1b). These houses were selected on the basis of being physically accessible, 

and having residents present and willing to participate during an initial tour of the area with a 

local guide. Houses were separated by approximately 90 metres from one another. 
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Figure 1. View of the urban area of the city of Quinindé. (a) Location of Ecuador in the Americas 

highlighted in red (Taken from [92]). (b) Location of the city of Quinindé in the Pacific Coastal 

region, spotted by the red circle. (c) City of Quinindé showing Los Higuerones neighbourhood 

enclosed by the red line. (d) Enlarged view of Los Higuerones with the houses sampled spotted 

by the orange circles. 

 

 Trapping Methods  

Over the study period, host-seeking mosquitoes were sampled by two different methods 

as follows: 

 

BG- Sentinel trap (BGS) 

The BG-Sentinel® trap (BioGents, Regensburg, Germany) is a white, cylinder shaped trap 

made of plastic with a gauze cloth covering the top and a hollow black cylinder in the top centre 

of the trap (Figure 2a). The trap operates with a 12-volt battery that powers an internal fan that 
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produces inwards artificial air currents. In this study, each trap was baited with two BG-Lure® 

cartridges and a 1.4 litre cooler bottle filled with dry ice, as it is known that CO2 increases the 

catch efficiency of BGS traps [76,77,80]. Mosquitoes are attracted towards the baited traps and 

then sucked through the hollow black cylinder into an internal mesh bag that can be easily 

removed for posterior processing.  

 

Mosquito Electrocuting Trap (MET) 

The METs used here consisted of four 30 x 30 cm panels which were assembled into a box 

around the lower legs of a seated person (Figure 2b).  Each panel was made up of stainless steel 

electrified wires set within a PVC frame.  The wires were positioned 5mm apart, which is close 

enough so that mosquitoes could not pass through without making contact. Wires were vertically 

arranged in parallel, alternating positive with negative. When mosquitoes try to go through, 

contact is made and the voltage between wires kills them. 

Mosquitoes attracted towards the volunteer were intercepted and killed on contact with 

these panels. The MET is powered by two 12-volt batteries connected in series to a power source 

giving a power output of approximately 6 watts (10mA, 600 volts). An eggcrate ceiling grid panel 

made of plastic was placed at the inside side of each frame to provide protection to volunteers 

from accidentally touching the electrified wires. 

As an additional accessory to the MET, a retractable aluminium frame was built to cover 

the rest of the volunteer’s body with untreated mosquito-proof netting. Thus volunteers were 

completely protected from mosquito bites during their participation in trapping. A plastic 

tarpaulin was erected over the MET station at a height of 2m top to protect users from direct rain 
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and sunlight. Each MET was also set up on top of a white plastic sheet to isolate it from the ground 

and make it easier to see and collect shocked mosquitoes that fell onto the ground after touching 

the MET.  

 

 

Figure 2. Trapping methods used in this study. (a) Typical setting up of a BGS trap. (b) 

Technician baiting for the MET. 

 

Experimental Design  

Every day of the study, four traps (two METs and two BGS traps) were set up in the 

peridomestic area of the four households (one trap per household) at the ground level under 

shade conditions. Traps were rotated among households each day, so that a different trapping 

method was used every consecutive day in each house. At the end of the study, this resulted in 

6 days of trapping being conducted with each of the 2 methods at all houses. 
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MET collections were carried out by members of the research team, who were all adult 

men (30-50 years old). During each hour of the collection period, one member sat within the MET 

for 45 minutes, with the trap being turned off for the remaining 15 minutes to allow volunteers 

to take a break. Members of the study team took turns sitting in the trap so that different 

collectors lured every hour. During the 15-minute period when traps were turned off, mosquitoes 

were recovered from trap surfaces and the ground below using a pair of forceps, counted and 

placed in empty 15 ml falcon tubes; which were labelled with a unique code linked to the date, 

household ID, trap ID, hour period and collector ID. Tubes were stored in a cooler box of 45 L 

capacity filled with dry ice to kill, preserve and transport the specimens.  

 

Each BGS was baited with two BG-Lure® cartridges on each day of sampling; with lures 

exchanged between the two BGS traps each day to minimize bias due to differential lure 

efficiency. BGS traps were further baited with carbon dioxide by adding one 1.2 L Coleman® 

polyethylene cooler bottle filled with dry ice. Dry ice containers were topped up every day. Like 

the MET, BGS sampling was conducted for 45 minutes of each sampling hour, with mosquito 

collection bags being checked and emptied during 15 minute break periods. Mosquitoes from 

BGS collection bags were emptied into pre-labelled plastic bags and transferred into a cooler box 

with dry ice to kill and preserve the mosquitoes.  

 

Temperature and relative humidity data were collected every 10 minutes at each 

mosquito sampling point using TinyTag® Plus 2 TGP-4500 (Gemini Co., UK) data loggers. Data 

loggers at the BGS sampling stations were tied and hung inside each of the traps, and loggers at 
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MET sampling points were placed on top of the bottom border of the netting frame, next to the 

MET.  

 

Morphological Analysis 

Mosquitoes collected in the field were transported to the Medical Entomology and 

Tropical Medicine Laboratory of the San Francisco de Quito University (LEMMT-USFQ) in cooler 

boxes filled with dry ice. At LEMMT-USFQ, mosquitoes were morphologically identified using 

taxonomical keys [93–95], counted and sorted into different cryo-vials according to date, 

household, trap type, hour of collection, species, sex and physiological status of females (blood 

fed/gravid and non-blood fed).  All female Ae. aegypti specimens were retained for subsequent 

molecular analysis to test for the presence of ZIKV, DENV and CHIKV.  These Ae. aegypti samples 

were grouped into pools of a maximum of 5 individuals.  

 

Molecular Detection of Arboviruses 

All pools of female Ae. aegypti specimens were screened for the presence of CHIKV, DENV 

and ZIKV.  Details on the RNA extraction, reverse-transcription and PCR procedures are given in 

the Supplementary File 1. 

 

Data Analysis 

Statistical analyses were performed in R 3.5.0 and R Studio 1.1.419. Generalized Linear 

Mixed Models (GLMM) were used to investigate variation in the abundance of host-seeking 

mosquitoes (per day and per hour) using package lme4 [96].  As mosquito abundance data was 
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overdispersed, all models were fitted with a negative binomial distribution. For all response 

variables of interest as described below, model selection was carried out through a process of 

backward stepwise elimination from a maximal model using Likelihood Ratio Tests (LRT) [97]. 

 

Statistical analysis was performed for Ae. aegypti, and Culex quinquefasciatus as the latter 

was the only other mosquito species found in high abundance in the study area. Cx. 

quinquefasciatus is a nuisance biting mosquito and also a known vector of West Nile Virus (WNV) 

[98].  

 

The BGS traps functioned continuously across all days and sampling hours.  However, the 

METs stopped running during some sampling hours; generally under conditions of very high 

humidity due to rainfall which resulted in dampness on the traps and some temporary short 

circuiting. When these malfunctions occurred, the damaged traps were turned off and repaired. 

This resulted in variation in the total number of hours sampled with each trapping method (MET: 

229 hours, BGS: 270 hours). This variation in sampling effort was accounted for in the statistical 

analysis. Days having less than 9 hours were excluded from the analysis. 

 

Four models were built to assess variation in the abundance of each mosquito species 

and sex combination respectively. For each of these four response variables, a maximal model 

was constructed that included the fixed explanatory variables of sampling effort (total number 

of hours of collection), trap type (MET or BGS), daily mean relative humidity (%RH), and daily 

mean temperature (°C). In addition, the interaction between daily mean temperature with 
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relative humidity was also included. Sampling day (1 through 12), household ID, trap ID and 

attractant ID (BG-Lure cartridge ID or MET volunteers ID) were included as random effects.  

 

Mosquito biting activity was assessed through analysis of variation in the mean number 

of females (Ae. aegypti and Cx. quinquefasciatus) caught per hour. Here, each mosquito species 

was analysed separately.  Each model included explanatory variables of trap type (MET or BGS), 

sampling hour, mean temperature (°C) per hour, mean relative humidity (%RH) per hour, and the 

interaction between hourly temperature and relative humidity. Sampling hour was defined as a 

continuous variable recoding the first hour of trapping (7-8 am) into 1, and increasing “hour” by 

one digit for each subsequent hour until 12 (17-18 hrs). Sampling hour was fit both as a linear 

and quadratic term; with the latter being used to test for peaks in biting time as have been 

previously reported for these mosquito species [99]. In addition, sampling day, trap ID, cluster 

ID, household ID (nested within cluster ID) and attractant ID (BG-Lure cartridge ID or MET 

volunteer ID) were fitted as random effects.   

 

RESULTS 

Mosquito Species and Abundance 

During the 12 day-experiment, a total of five mosquito species were collected by both 

trapping methods (Table 1). Cx. quinquefasciatus was the most abundant species (78.6%) 

followed by Ae. aegypti (15.63%), and small number of Aedes angustivittatus (2.69%), Limatus 

durhami (2.33%,) and Psorophora ferox (0.15%).  A small proportion of mosquitoes could not be 
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identified (0.51%, Table 1). Overall, more mosquitoes were collected with the BGS trap (60.77%) 

than with the MET (39.23%), but the numbers of Ae. aegypti were relatively similar (Table 1). 
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Table 1. Abundance of mosquito species collected by MET and BGS traps. Mosquito species 

abundances are split by sex and feeding status of females. The total sampling effort with the two 

METs was 229 hours, while for BGS traps was 270 hours over the 12 days of sampling.  

 
Mosquito Electrocuting Trap 

(MET) 
BG-Sentinel (BGS) trap  

Species ♂ 
♀ 

unfed 

♀ 

fed 

Total ♂ 
♀ 

unfed 

♀ 

fed 

Total 
Grand 

total 

Aedes aegypti 100 99 19 218 93 91 27 211 429 

Culex 

quinquefasciatus 
496 238 44 778 960 345 77 1382 2160 

Aedes 

angustivittatus 
4 38 6 48 0 24 2 26 74 

Limatus durhami 0 22 0 22 0 42 0 42 64 

Psorophora 

ferox 
0 1 2 3 0 1 0 1 4 

Unknown 0 5 3 8 0 5 1 6 14 

 Total MET: 1077 Total BGS trap: 1668 2745 
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In the BGS traps, some non-target insects including house flies, butterflies, crane flies, 

and many fruit flies were caught. No insect taxa other than mosquitoes shown in Table 1 were 

caught in MET collections.  

 

The mean daily abundance of Ae. aegypti was approximately 2 females and 3 males for 

the BGS trap, and 4 females and 4 males for the MET, but no significant differences between 

trapping methods were found (Table 2, Figure 3a,b). The only significant predictor of daily 

abundance of females Ae. aegypti was temperature, which exhibited a negative association 

(Table 2, Figure 4a). Similarly, the mean daily abundance of Cx. quinquefasciatus females did not 

significantly differ between trapping methods (Table 2, Figure 3c,d), however confidence 

intervals (especially for males) around estimates were very large, indicating that larger sample 

sizes may be required to robustly test if there were differences between trap types. The number 

of female Cx. quinquefasciatus per day varied between 16 and 207; with variation being even 

more pronounced for males where a high of 576 was caught on one day. The daily abundance of 

female Cx. quinquefasciatus was negatively associated with daily temperature (Table 2, Figure 

4b) and positively associated with the number of hours sampled in a day, while no significant 

differences were found in Cx. Quinquefasciatus regarding any covariate (Table 2).  
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Table 2. Summary table of statistical significance of terms tested from mosquito daily 

abundance. Chi-square (X2), degrees of freedom (df) and p-values (p) are provided for each sex 

within species. Bold values with an asterisk (*) indicate significant terms. Fixed effects with a 

double S symbol (§) indicate the interaction term. 

Explanatory 

variables 

Aedes aegypti Culex quinquefasciatus 

Males ♂ Females ♀ Males ♂ Females ♀ 

X2 df p X2 df p X2 df p X2 df p 

Sampling effort 3.38 1 0.07 1.95 1 0.16 0.31 1 0.58 15.91 1 <0.001* 

Trap type 2.18 1 0.14 0.60 1 0.44 0.95 1 0.33 1.5 1 0.22 

Temperature 0.22 1 0.64 4.62 1 0.03* 0.06 1 0.8 6.86 1 <0.01* 

Relative 

Humidity 
1.14 1 0.29 2.17 1 0.14 1.23 1 0.27 1.1 1 0.29 

Temperature   

:: Humidity § 
2.22 1 0.14 1.24 1 0.26 1.07 1 0.3 1.27 1 0.26 
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Figure 3. Predicted mean daily abundance of mosquitoes caught with different trapping 

methods. The upper panels show values for Ae. aegypti and the lower panels  Cx. 

quinquefasciatus. Panels on the left show data for females (♀) and on the right for males (♂).  

Error bars indicate the Confidence Intervals (C.I.) at 95%. 
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Figure 4. Predicted relationship between mean temperature and number of female mosquitoes 

collected. Panel a) shows Ae. aegypti and b) shows Cx. quinquefasciatus females. The black line 

indicates the mean predicted abundance and the shaded area the Confidence Intervals (C.I.) at 

95%. 

 

Mosquito Biting Activity 

Hourly mosquito catches recorded for BGS and METs were used to characterize the biting 

activity of female Ae. aegypti and Cx. quinquefasciatus. Variation in the hourly biting activity of 

female Ae. aegypti was best explained by a quadratic association between hourly mosquito 

abundance and time (Table 3), with activity being highest in the early mornings and late 
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afternoon, and little activity during the middle of the day (Figure 5a). After taking this hourly 

variation in biting rates into account, there was no additional impact of trapping method of the 

number of female Ae. aegypti collected per hour (Table 3, Figure 6). Variation in the hourly biting 

activity of Ae. aegypti was also significantly associated with an interaction between temperature 

and relative humidity (Table 3).  This interaction arose because the number of Ae. aegypti caught 

per hour was negatively associated with temperature under conditions of low relative humidity; 

but the strength of this association was lower as humidity increased (Table 3, Figure 7), although 

temperature and humidity were strongly associated (Figure S1).  

 

The biting activity of female Cx. quinquefasciatus also varied significantly across the 

sampling day. As with Ae. aegypti, this pattern was characterized as a quadratic relationship in 

which mosquito activity peaked during the early morning and late afternoon (Table 3, Figure 5b).  

Accounting for this activity pattern, there was no difference in the number of Cx. 

quinquefasciatus caught per hour in different trapping methods (Table 3, Figure 6b), and no 

association with temperature or humidity.  
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Table 3. Summary table of statistical significance of terms tested for association with  female 

mosquito hourly abundance. Chi-square (X2), degrees of freedom (df) and p-values are provided 

for females of each species. Bold values with an asterisk (*) indicate significant terms. Fixed 

effects with a double S symbol (§) indicate the interaction term. “N/A” indicates “not applicable” 

values for which single term significance was not possible because of their involvement in 

significant higher order terms.  

Explanatory 

variables 

Aedes aegypti - Females ♀ Culex quinquefasciatus - Females ♀ 

X2 df p X2 df p 

Trap type 0.60 1 0.44 7e-04 1 0.98 

Time (linear) N/A N/A N/A N/A N/A N/A 

Time 

(quadratic) 
8.70 1 <0.01* 142.1 1 <0.001* 

Temperature N/A N/A N/A 2.07 1 0.15 

Relative 

Humidity 
N/A N/A N/A 0.09 1 0.77 

Temperature    

:: Humidity § 
6.60 1 0.01* 0.09 1 0.76 
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Figure 5. Predicted abundance of biting mosquitoes between 7:00-19:00 hrs.  Panel a) indicates 

Ae. aegypti females and b) Cx. quinquefasciatus females. Dots represent the observed values 

which correspond to the right Y axis. The red line corresponds to the predicted mosquito 

abundance and the shaded area to the Confidence Intervals (C.I.) at 95%; both correspond to the 

left Y axis. 
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Figure 6. Predicted hourly abundance of mosquitoes using different trapping methods.  Panel 

a) represents Ae. aegypti and b) Cx. quinquefasciatus. The error bars indicate the Confidence 

Intervals (C.I.) at 95%. 
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Figure 7. Predicted relationship between the hourly  abundance of Ae. aegypti females and 

mean temperature (°C) under different relative humidity (RH) conditions. The black line 

represents the predicted abundance of Ae. aegypti in that hour, with the shaded area 

representing the 95% Confidence Intervals (C.I.).  

 

Molecular screen for ZIKV, DENV and CHIKV 

All positive controls worked in all of the PCRs carried out in this study. PCRs on S7 showed 

that RNA was successfully transcribed into cDNA in 121 mosquito pools out of 122 (Figure S2). 
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Weak bands coming from a few samples were observed on the gels from ZIKV, DENV 1-3 (PCR 

from universal primer) and DENV 4 (Figure S3, Figure S4 and Figure S5). Then, a second PCR was 

run on only those samples for reconfirmation. Weak bands were observed for a second time in 

some of the samples of ZIKV (Figure S6a). However, a PCR on the negative RT of those samples 

also showed weak bands (S6b) suggesting that they may be due to contamination with gDNA. 

Positivity of DENV 4 could not be confirmed either as no bands were observed on any of the 

samples (Figure S7). The second PCR of DENV 1-3 showed weak bands for the second time on a 

few samples (Figure S8), which were then tested on three separated PCRs using individual 

primers of DENV1, DENV2 and DENV3. However, positivity could not be confirmed either on any 

of the samples as no bands were observed (Figure S9). PCR results confirmed that no samples 

were infected with CHIKV either (Figure S10).  

 

 

DISCUSSION 

Identifying an accurate method to predict the exposure of humans to infected mosquito 

vectors has been an enormous challenge for Aedes-borne pathogens [81,100]. Here, we present 

the MET as a potential alternative for safe measurement of Aedes landing rates on humans. 

When tested in dengue, chikungunya and Zika-endemic settings in Ecuador, the MET provided 

similar estimates of Ae. aegypti abundance and biting activity as the current gold standard BGS 

sentinel method. While the BGS uses artificial odour baits and carbon dioxide (CO2) to lure 

mosquitoes into a standardized trap; the MET directly estimates the number of Aedes host-

seeking within the immediate vicinity of a real host. The standardization provided by the BGS 
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makes it easy and effective to use in widescale surveillance [82,84], although a limitation is that 

non-biogenic CO2 sources are not always available [71,78]. However, the degree to which BGS 

collections accurately reflect per capita human biting rates is unclear.  For example, BGS trapping 

efficiency may vary with the type and number and types of lures used, and volume of C02 released 

[60,76,101], making it difficult to infer how they translate to exposure experienced by one person 

in that environment. An advantage of the MET is that it is more directly analogous to the human 

landing catch in sampling mosquitoes in the process of host seeking on a person. This could also 

be seen on the total catches of the other mosquito species when compared to the total numbers 

trapped by the BGS. The MET could thus provide a useful supplementary surveillance method for 

estimation and validation of human biting rates and the associated entomological inoculation 

rate (EIR).  

 

By facilitating  a safe and more direct estimation of the EIR for Aedes-borne viruses, the 

MET could provide robust and precise entomological indicators of transmission intensity [85–87].  

Such indicators are much needed to understand heterogeneity in transmission [3,4,55], and 

evaluate the efficiency of vector control interventions. However this relies on the assumption 

that the MET accurately reflects the true Aedes exposure of one person per unit of time. 

Estimates of human exposure to the malaria vector An. gambiae s.l. from the MET were similar 

to those of the human landing catch in some studies [87,102]; whereas in others mosquito 

abundance was underestimated by the MET compared to the HLC [86]. Here it was not possible 

to directly compare the MET to the HLC because of ethical restrictions in using the latter in an 

area of high arboviral transmission. However we speculate that one factor that could cause the 
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MET to underestimate Aedes vectors biting rates is the area of the body protected. Whereas 

African Anopheles vectors generally prefer feeding on the lower legs and feet [103–105]; it is not 

clear if Aedes prefer to bite on specific parts of the body [106,107]. As a next step in validating 

this approach, we recommend the MET to be directly compared to the HLC under controlled 

conditions with uninfected Aedes vectors (e.g. semi-field experiments).  

 

Both the MET and BGS trap sampled a similar composition of mosquito species in the 

study period.  However, estimates of the mean daily and hourly abundance of Ae. aegypti and 

Cx. quinquefasciatus were slightly but not statistically higher in MET than BGS collections. The 

relatively short period of this (12 sampling days) may have limited power to detect for minor-

moderate differences between trapping methods.  We thus conclude the MET is at least as good 

as the BGS gold standard for sampling host-seeking Aedes vectors in this setting, but also 

recommend further longer-term comparisons over a wider range of seasons, sites and 

participants to evaluate whether the MET outperforms the BGS. If we assume that MET is 

equivalent to HLC, these results are also consistent to those shown by Kröckel et al., who also 

observed that HLC captured more mosquitoes, although not statistically different from the BGS 

[84].  

 

Mosquito collections conducted here were also used to test for associations between 

Aedes host-seeking activity and microclimatic conditions. The impact of temperature and 

humidity on the life-history, physiology, behaviour and ecology of Ae. aegypti has been 

extensively investigated under laboratory conditions [108–116]. However, relatively little is 
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known about how microclimate impacts the diel host-seeking behaviour of wild Aedes. In 

general, the host-seeking activity Ae. aegypti and Cx. quinquefasciatus was higher on days when 

mean temperatures were lower (across range of 25°C to 30°C).  Additionally, the hourly biting 

rates of Aedes were negatively associated with temperature but only under conditions of low 

humidity.  As mean hourly temperatures were strongly negatively correlated with relative 

humidity (Figure S1), these results indicate that Ae. aegypti biting activity is highest during 

relatively cool and humid hours of the day. These microclimatic associations may account for the 

observed biting activity of Ae. aegypti and Cx. quinquefasciatus. A comprehensive review [99] of 

Ae. aegypti biting behaviour indicates that bimodal and trimodal activity patterns are often 

reported, with evidence of specific adaptations to other ecological features (e.g. artificial light 

availability) [99]. Such variability seems to be common and related to optimal humidity and 

temperature conditions available during such hours [117,118]. 

 

A key feature of any method for estimating EIR is its ability to estimate human biting rates 

and infection rates in mosquitoes. While the results here presented indicate that the MET could 

be used to estimate the human biting rates, the infection rates could not be measured as none 

of the Aedes mosquitoes collected with either trapping method were positive for arboviruses. 

Reported rates of arboviruses in Aedes vectors are generally very low (0.1% to 10%) even in high 

transmission areas (e.g. [119–126]). Thus failure to detect arboviruses within the relatively small 

sample size of vectors tested here (e.g. 207 individuals tested in 122 pools) is not unexpected.  

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 2, 2019. ; https://doi.org/10.1101/774596doi: bioRxiv preprint 

https://doi.org/10.1101/774596
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 
 

Although promising, the MET has a number of limitations relative to the BGS for sampling 

host seeking Aedes. First, it requires human participants and the trap itself is heavier, which is 

more labour intensive than using BGS.  Also, as the METs used here are still research prototypes 

produced on a bespoke basis without a licenced manufacturer, their production cost is currently 

more expensive than BGS traps (approximately £650 versus £170 per trap, respectively). In 

addition, some technical problems were experienced including a tendency to short circuit under 

conditions of high air humidity. These limitations are expected to be improved if manufactured 

at scale as manufacturing costs would fall and technical improvements should make the MET 

suitable for humid environments. The enormous advantage of the MET is therefore, its potential 

ability to estimate the EIR  for arboviral infections. 

 

CONCLUSIONS 

Here we evaluated the MET as a tool for estimating human biting rates of the arboviral 

vector Ae. aegypti in a high transmission setting in coastal Ecuador. The MET performed at least 

as good as the current BG-sentinel trap gold standard for estimating the mean abundance per 

hour of host-seeking Aedes, and provided a realistic representation of hourly activity patterns. 

We conclude MET is a promising tool for Ae. aegypti and other mosquito species surveillance, 

which could uniquely enable a relatively direct estimate of the arboviral entomological 

inoculation rate experienced by communities.   
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